-
Hydrologic and Isotopic Modeling of Alpine Lake Waiau, Mauna Kea, Hawai'i
- Pacific Science
- University of Hawai'i Press
- Volume 59, Number 1, January 2005
- pp. 1-15
- 10.1353/psc.2005.0005
- Article
- Additional Information
- Purchase/rental options available:
Analysis of hydrologic, meteorologic, and isotopic data collected over 3 yr quantifies and explains the enormous variability and isotopic enrichment (δ18O = +16.9, δD = +50.0) of alpine Lake Waiau, a culturally and ecologically significant perched lake near the summit of Mauna Kea, Hawai'i. Further, a simple one-dimensional hydrologic model was developed that couples standard water budget modeling with modeling of δD and δ18 O isotopic composition to provide daily predictions of lake volume and chemistry. Data analysis and modeling show that winter storms are the primary source of water for the lake, adding a distinctively light isotopic signature appropriate for high-altitude precipitation. Evaporation at the windy, dry summit is the primary loss mechanism for most of the year, greatly enriching the lake in heavy isotopes.