INDEX

Page numbers in italics refer to tables, boxes, and figures.

A
ABET accreditation criteria, 31, 63
Accessibility, 41
Accuracy of information, 139
Acknowledgment, 68
Active cognitive processing, 168
Ad hominem/appeal to authority, 30
Allan, T. J., 40
American Society for Civil Engineering Code of Ethics, 65
American Society for Engineering Education (ASEE), 196
American Society of Civil Engineers, 120
American Society of Mechanical Engineers (ASME), 119
Appeal to authority, 30
Appeal to common knowledge, 30
Appeal to ignorance, 30
Application and documentation of information, 24–25
Appropriate application of information, 178
ASM Materials Information database, 155
Assessment
of contextual applicability of design information, 141, 141–146, 143–145
diagnostic, 189–190, 189
of forward communication of information and knowledge, 178–180, 180
of technologies and methods, 54
Association of American Colleges and Universities, 28, 29
Association of College and Research Libraries (ACRL), 22
Atman, C. J., 38, 102
Attribution, 68
Audience
intended, 140–141, 161
viewing of presentations, 167–168
Authority
appeal to, 30
trustworthiness of information and, 139
Page numbers in italics refer to tables, boxes, and figures.

B
- Bacon, Francis, 29–30
- Bailey, D. E., 163
- Barley, W. C., 163
- Barriers to information use, 41–42
- Beitz, W., 9, 11
- Bias, confirmation, 30
- Books, 131–132
- Bursic, K. M., 38

C
- Calibrated support and CELT, 190
- Cardella, M. E., 103
- Case-based reasoning, 128
- Category suits, 129
- CES Selector, 155
- Challenger, space shuttle, 18, 76
- Childress, D., 78
- Choices, false, 30
- Choosing the preferred approach, 46, 47
- Citation management, 78–79, 79, 147
 in the classroom, 79–81
- Clarification, task, 46, 47, 48, 49–50
- Clarity, 18–19, 116
- Clients, 88, 88–89. See also Stakeholders
 backgrounds, exploring, 91
 eliciting information from, 91–92
- Code of Ethics for Engineers, 62
- Code of Federal Regulations (CFR), 121
- Codes and regulations, 120–121, 121
- Coffeemaker activity, 190–192, 191
- Collection stage, ISP, 26–27
- Commercial off the shelf (COTS) components, 152–153
 locating, 156, 156
- Common challenges for students, 195–197
 communication, 89–91, 160–162
 decision making, 138–139
 design practices, 102–103
- Common challenges for students (continued)
 ethics, 62–63
 information literacy, 186–187
 knowledge management, 76–77
 materials and components, 150–151
 presentations, 160–162
 prior art, 126–128
 reflection, 173–174
 safety, 116–117
 stakeholders and, 89–91
- Common fallacies of reasoning, 28–30
- Common knowledge, appeal to, 30
- Communication. See also Presentations
 with all stakeholders, 46, 47, 48, 51–52, 52
 assessment of forward, 178–180, 180
 common challenges for students, 89–91, 160–162
 for eliciting information from clients and other stakeholders, 91–92
 identifying critical information for, 163–164
 persuasion with integrity, 162–163
 stage, design, 38
 using media effectively for, 168
- Competency, 66–67
- Concept development stage, 37
- Conceptual design stage, 38
- Confidentiality, 69
- Confirmation bias, 30
- Consensus heuristic, 167
- Constraints, using information to develop, 109–110, 110
- Context, 105–107
 applicability of design information, 141,
 141–146, 143–145
 establishment, 54
 information locating, 106–107
 used in framing of problem, 107–109
- Copyright, 70, 70–72
- Costs, 41, 106, 108
Creative exploration, directed, 14, 14
Credibility of presentations, 162
 packaging of critical information for, 164–167
Criteria, using information to develop, 109–110, 110
Criteria for Accrediting Engineering Programs, 31, 63
Critical analysis of team processes, 176, 177
Critical Engineering Literacy Test (CELT), 189, 189–190
Critical information
 identifying, 163–164
 packaged for successful presentations, 164–167
Critical thinking, 27–28
 design as, 12–13
 VALUE rubric, 28, 29
Critical Thinking Foundation, 27–28
Cultural context, 105, 108
Currency of information, 140

D
Data, Information, Knowledge, Wisdom (DIKW) model, 36, 37
Dealing with uncertainty, 16–17
Decision making
 acknowledging sources of ideas and, 146–147
 assessing the contextual applicability of design information and, 141, 141–146, 143–145
 common challenges for students, 138–139
 pro/con evaluation and, 142, 143
 Pugh Analysis and, 142–143, 144
 trustworthiness of information and, 139–141, 141
 weighted, 143–146, 145
 when there are gaps in knowledge, 146
Descriptive and prescriptive models of engineering design, 8–11
Design communication stage, 38
Design fixation, 126, 165
Design information audit, 130, 130
Design practices. See also Materials and components
 categories of information importance and, 103–105
 codes and regulations in, 120–121, 121
 common challenges for students, 102–103
 contextual information in, 105–107
 international issues in, 121–122, 122
 locating and accessing standards in, 122–123
 using context in framing the problem, 107–109
 using information to begin ideation, 110–112, 111
 using information to develop criteria and constraints, 109–110, 110
Design specifications, 118–119
Design standards, 119, 119–120
 codes and regulations, 120–121, 121
Design thinking movement, 12
Detailed design stage, 37, 38
Diagnostic assessment, 189–190, 190
Digital natives, 23
Directed creative exploration, 14, 14
Distillation and translation of project knowledge, 55
Documentation and application of information, 24–25, 178
Dossick, Carrie, 163
Dropbox, 76
Duong, K., 79
Dym, C. L., 36, 38

E
Economics of projects, 41, 106, 108
Eisenberg, M. B., 138
Elemental engineering design activities, 46–48
Eliciting strategies, information, 95, 96
Ellis, D., 40
EndNote, 79, 79
Engel, D., 39
Engineering design, 195–197. See also Design practices
Engineering design (continued)
 as critical thinking, 12–13
 defined, 8
 descriptive and prescriptive models of, 8–11
 elemental activities, 46–48
 failures, 15–19, 172, 172, 173
 human-centered, 89
 implications for student projects, 19
 information use in, 36, 37, 37, 38
 informed approach to, 195
 interdisciplinary nature of, 8
 as learning activity, 11–12, 56
 as lived experience, 13–14
 as problem solving, 8
 risks, 17, 17
 success factors in, 15–19
 ways to think and talk about, 8–14
 Web-based collaboration, 19

Engineer’s Handbook, 155

Environmental considerations, 105–106, 108
 materials and components selection
 and, 152

Eppinger, S. D., 36, 37

Ethics
 common challenges for students, 62–63
 competency and, 66–67
 concept of professional integrity and, 64–66
 confidentiality and, 69
 copyright, 70, 70–72
 ethical use of information and, 24–25
 intellectual property and, 69–71, 70
 objectivity and, 67–68
 patents and, 70, 70–71, 72
 professional expectations of integrity and,
 63–64
 truthfulness and, 68–69

Evaluation of information, 23–24

Evidence-based decision making, 14, 14

Existing knowledge. See Prior art

Expectations, managing, 16

Exploration
 directed creative, 14, 14
 stage, ISP, 26–27

F

Failure of engineering projects, 15–19, 172, 172, 173

Fallacies of reasoning, common, 28–30

False choices, 30

Familiarity, 41–42

Farr, J. V., 152

Felder, R. M., 95

Feynman, Richard, 18

Format, 42

Formulation stage, ISP, 26–27

Fosmire, M., 31, 103

Freedom, 14, 14

Frog Design, 128

G

Gaps, knowledge, 146

Generalization, inappropriate, 30

Gerstberger, P. G., 40

Gooch, S. D., 15

Google, 23, 26
 Drive, 76, 83

Grasping opportunities, 17

Gunn, A. S., 118

Gunn, C. J., 63

H

Hales, C., 15

Haugan, M., 40

Head, A. J., 138

Hertzum, M., 40

Heuristics, 167

Hiort af Ornäs, V., 53

Historical information, 105, 108
Hogan, Christine, 174
Honesty, 68–69
How People Learn, 25–26
How Students Learn, 172
Human-centered design, 89

ICR Grid method, 129
Idea-test cycle, 11–12
Ideation deck, 128
IDEO, 18, 92, 97, 128, 129
Idols of the cave, 29–30
Idols of the marketplace, 30
Idols of the theater, 30
Idols of the tribe, 29
Ignorance, appeal to, 30
Ill-structured design, 32
Inappropriate generalization, 30
Industry magazines and blogs, 133–134
Information gathering
 design setting and, 107
 identifying stakeholders for, 92–93
 InfoSEAD model, 186, 187, 187–188, 190
 models, 36–37
 sources, 188
 supporting the argument, 188
 techniques and tools for effective, 128–134
 value of, 37–39
Information habits of engineers, 39–41
Information literacy
 applying and documenting information in, 24–25
 common challenges for students, 186–187
 common fallacies of reasoning and, 28–30
 critical thinking and, 27–28
 defined, 22
 engineering design and, 32
 evaluation of information in, 23–24
 facets of, 22–25, 187
 goals for engineering students, 31–32
 integrating, 78, 78
Information literacy (continued)
 knowledge management and, 77–78
 locating of information in, 23
 managing expectations and, 16
 need for, 22
 process model for information gathering and, 26–27
 recognizing need for information in, 22–23
 reflective judgment and, 28, 28
 scaffolding student skills in, 186, 188–193, 189, 191–192
Information locating, 23, 106–107
 about material properties, 154–155
 standards, 122–123
Information management. See Knowledge management
Information needs, 22–23, 103–105
Information overload, 42
Information-Rich Engineering Design (I-RED) model, 48–52, 77
 activities mapped to information space, 53–56, 55
 application of, 56
Information Search Process (ISP), 26–27, 50
Information-seeking activities
 InfoSEAD model, 187–188
 prompting questions for, 53, 54, 54–55
Information trustworthiness, 139–141, 162
Information use barriers, 41–42
InfoSEAD model, 186, 187, 187–188, 190
 scaffolding and, 188–193, 189, 190–192
Infrastructure, 106, 108
Inherent safety, 117–118
Initiation stage, ISP, 26–27
Inner Earth Object (IEO) items, 153
Innovative design, 18
Instance cards, 129
Institute of Electrical and Electronics Engineers (IEEE), 116
Integration of information literacy within knowledge management, 78, 78
Integration of technical details, 54
Integrity. See also Ethics
 concept of professional, 64–66
 persuasion with, 162–163
 professional expectations of, 63–64
Intellectual property, 69–71, 70
Intended audience, 140–141, 161
Intentional progression, 14, 14
International Electrotechnical Commission
 (IEC), 121
International issues, 121–122, 122
International Organization for Standardization
 (ISO), 121
International Telecommunications Union
 (ITU), 122
Interview techniques, 93–97, 94
 learning styles and, 95, 96
 personas and, 97
Investigation of prior work, 54
Ion, W. J., 36, 129
I-RED model. See Information-Rich Engineering
 Design (I-RED) model

J
Jeffryes, J., 41
Jones, L., 31
Journals and proceedings, 132

K
Kilgore, D., 102
King, D. W., 38, 39, 41
King, P. M., 28
Kirkwood, P. E., 146
Kitchener, K. S., 28
Knovel, 155
Knowledge, skills, and abilities (KSA), 162
Knowledge management, 195–196
 citation management and, 78–81, 79
 common challenges for students, 76–77
Knowledge management (continued)
 defined, 76
 evaluation of interventions in instruction for,
 81–83, 82
 expanding the skill set in, 83–84
 information literacy and, 77–78
 integrating information literacy within,
 78, 78
 librarian instruction in citation management
 for, 79–81
 plan assessment rubric, 81, 82
 processes improvement, 55
 reflection and, 172–173
 strategy development, 54
Knowles, M. S., 25
Kraaijenbrink, J., 76, 77, 78
Kuhlthau, C. C., 53, 77
Kulp, C., 39
Kwasitsu, L., 39, 40

L
Lafferty, M., 41
Latent knowledge, 92
Learning
 activity, design as, 11–12, 56
 how to learn, 25–26
 need, 25
 self-directed, 25
 styles, 95, 96
 transfer problem in, 26
Leckie, G. J., 39
Legal information, 106, 108
Leonardi, Paul, 163
Leone, L. L., 63
Lessons learned, 176, 177
Level of information, 140–141
Librarians, 79–81, 196
Liking heuristic, 167
Literature review, 36–37
INDEX

Little, P., 36, 38
Lived experience, 13–14
Locating of information, 23, 106–107
about material properties, 154–155
on standards, 122–123

M
Managing expectations, 16
Mapping Information-Rich Engineering
Design activities to information space,
53–56, 55
Mars climate Orbiter, 116
Materials and components
classes and examples of, 151, 152
commercial off the shelf (COTS), 152–153
common challenges for students, 150–151
environmental considerations, 152
locating commercial off the shelf (COTS),
156, 156
locating information about properties of,
154–155
selection procedure, 153–154, 154
selection strategy, 151–152
sources of information and data on, 155–156
Materials Project, 155
MatWeb, 156
Measurable ways to meet design criteria,
165–166
Measures of success, 18
Media, 168
Mendeley, 79, 79
Metzger, M. J., 139
Model(s)
of engineering design, descriptive and
prescriptive, 8–11
information gathering, 36–37
Information-Rich Engineering Design (I-RED),
48–52
Model world, 12
Moriarty, M., 31
Mosberg, S., 37
Mythbuster activity, 189, 192, 192

N
NASA, 172, 173
National Academies, 25
National Institute of Standards and
Technology, 120
Data Gateway, 156
National Research Council, 26
National Society of Professional Engineers
(NSPE), 62, 63, 64, 65
Need for information, 22–23, 103–105
Neff, Gina, 163
NIST Data Gateway, 156

O
Oakes, W. C., 63
Objectivity, 67–68
of information, 139–140
Observation, 92–93
OpenOffice, 83
OpenProj, 83
Open Source and Creative Commons
Licensing, 71, 71
Opportunities, grasping, 17
Organization, team, 46, 47, 48, 48–49
Organized translation, 14, 14
O'Sullivan, C., 77

P
Pahl, G., 9, 11
Parker-Gibson, N. T., 146
Part to whole, 30
Patents, 70, 70–71, 72
information gathering using, 132–133
Peer reflection on presentations, 175
Pejtersen, A. M., 40
Personal synthesis, 14, 14
Persuasion with integrity, 162–163
Personas, 97
Pettigrew, K. E., 39
Physical world, 12
Piccinino, R., 31
Pilerot, O., 53
Planning design stage, 37
Preliminary design stage, 38
Pre-reflective judgment, 28, 28
Prescriptive and descriptive models of engineering design, 8–11
Presentations. See also Communication
common challenges for students, 160–162
credibility of, 162
knowing how audience views, 167–168
packaging critical information for successful, 164–167
peer reflection on, 175
using media effectively for, 168
Presentation stage, ISP, 26–27
Prior art, 70, 70–71
common challenges for students, 126–128
team processing of, 134
techniques and tools effective information gathering and, 128–134
Prior work investigation, 54
Problem definition design stage, 38, 195
Process improvements, 176, 177
Process model for information gathering, 26–27
Pro/con evaluation, 142, 143
Production design stage, 37
Product/trade literature, 133–134
Professional expectations of ethics and integrity, 63–64
Progression, intentional, 14, 14
Project Management Body of Knowledge (PMBOK), 15, 16, 17
Project management plan, 176, 177
Proof by example, 30
Publicity, right of, 70, 70–71
Pugh Analysis, 142–143, 144
Purzer, S., 103

Q
Quality
information, 188
project, 42
Quasi-reflective judgment, 28, 28
Questions for information-seeking activities, 53, 54, 54–55

R
Reasoning
case-based, 128
commom fallacies of, 28–30
reflective, 28, 28
Recognition of need for information, 22–23
Refinement, solution, 46, 47, 48, 51
Reflection, 52, 172–173
application in design class, 175–180, 177–180
and assessment of forward communication of information and knowledge, 178–180
common challenges for students, 173–174
on design processes, 176–177, 177–178
frameworks for disciplined, 174–175
on interim team reports, 175–176
Reflective judgment, 28, 28
Reflective reasoning, 28, 28
RefWorks, 79, 79
Regulations and codes, 120–121, 121
Relevance/information overload, 42
Repetition, 30
Right of publicity, 70, 70–71
Riley, D., 31
Risks, engineering design, 17, 17
Robbins, S., 39
Rogers Commission Report, 18

S
Safety, 18–19, 117–118
codes and regulations, 120–121, 121
common challenges for students, 116–117
locating and accessing standards for, 122–123
Safety (continued)
standards, 119, 119–120
SAID (Situation, Affect, Interpretation, Decision) framework, 174–175
Sapp Nelson, M., 31, 49
Scaffolding, 186, 188–193, 189, 191–192
Scope and focus of paper, 178
Scope/depth/breadth of information, 140
Segee, B., 153
Selection
material, 151–154, 154
solution, 46, 47, 48, 50–51
stage, ISP, 26–27
Self-directed learning skills, 25
Seven Pillars of Information Literacy, 22
SharePoint, 83
Silverman, L. K., 95
Simplicity, 18–19
Singh, J., 77
Society of College, National, and University Libraries (SCONUL), 22
Solomon, B. A., 95
Solution
refinement, 46, 47, 48, 51
selection, 46, 47, 48, 50–51
synthesis, 46, 47, 48, 50, 195
Specificity and verifiability, 166
Stages of information searches, 26–27
Stakeholders, 88, 88–89, 146
common challenges for students working with, 89–91
communicating effectively with, 46, 47, 48, 51
eliciting information from, 91–92
exploring client backgrounds and, 91
identified for information gathering, 92–93
interview techniques for, 93–97, 94
personas and, 97
Standards, 119, 119–120
codes and regulations, 120–121, 121
information gathering from technical, 133
locating and accessing, 122–123
Storyboards, 108–109
Students, engineering
common ethical challenges for, 62–63
design principles and, 19
information goals for, 31–32
Style/grammar, 178
Success
factors in engineering design projects, 15–19
measures of, 18
Sustainability, 65–66
Sylvain, C., 39
Synthesis
personal, 14, 14
solution, 46, 47, 48, 50, 195
System design stage, 37
T
Tacit knowledge, 92
Task clarification, 46, 47, 48, 49–50
Teams
organization, 46, 47, 48, 48–49
processing of prior art, 134
reflection on interim reports by, 175–176
stakeholders and, 88, 88–89
Tenopir, C., 38, 39, 41
Testing design stage, 37
Trademark, 70, 70–71
Trade/product literature, 133–134
Trade secret/trade dress, 70, 70–71
Transfer problem, 26
Translation, organized, 14, 14
Trustworthiness of information, 139–141, 162
Truthfulness, 68–69
U
U. S. Patent and Trademark Office, 132
Ulrich, K. T., 36, 37
Uncertainty, dealing with, 16–17
Users, 88, 88–89. See also Stakeholders
gathering input from, 90
observing, 92
Valid Assessment of Learning in Undergraduate Education (VALUE), 28, 29
Value of information gathering, 37–39
Vesiland, P. A., 118
Von Kármán, Theodore, 8

Weighted decision making, 143–146, 145
Wertz, R. E. H., 103

Wijnhoven, F., 76, 77, 78
Winchenbach, S. A., 153
Wodehouse, A. J., 36, 129

Zotero, 79, 79