Venice Variations
Psarra, Sophia

Published by University College London

Psarra, Sophia.
Venice Variations: Tracing the Architectural Imagination.
University College London, 2018.
Project MUSE. muse.jhu.edu/book/81927.

For additional information about this book
https://muse.jhu.edu/book/81927

For content related to this chapter
https://muse.jhu.edu/related_content?type=book&id=2779344
Illustrations

Introduction

0.0 Venice. View of the city and San Marco Basin (Bacino).
 Drawing by Athina Lazaridou xxvi
0.1 (a) The Invisible Cities Project, an illustration project inspired by Italo Calvino's *Invisible Cities*.
 Illustration by Karina Puente 2
(b) Aerial view of Venice. Image by Robert Simmon, NASA's Earth Observatory (public domain), via Wikimedia Commons 2
(c) Le Corbusier. Model of the Venice Hospital. © FLC/ADAGP, Paris and DACS, London 2017 3
0.2 Venice in the Lagoon. Drawing by the author. GIS data provided by Università IUAV di Venezia – Laboratorio di Cartographia e GIS 5
0.3 Baldassare Longhena's Santa Maria della Salute with Giuseppe Benoni's Punta della Dogana (the Sea Customs House) in the foreground and Andrea Palladio's Redentore in the background. Image by Supechilum, CC BY-SA 4.0 via Wikimedia Commons 9
0.4 Le Corbusier. Site map of the Venice Hospital project. © FLC/ADAGP, Paris and DACS, London 2017 9
0.5 Gentile Bellini. *Procession in Piazza San Marco* (1496). Image courtesy of Museo Nazionale Gallerie dell'Accademia di Venezia 13
0.6 Jacopo de’ Barbari. *Venetie MD*. Bird’s eye view of Venice, c. 1500. The superimposed lines (by the author) reveal the geometrical coordination of the Rialto, Piazza San Marco and the mythical figures. Museo Correr, Venice 14

Chapter 1

1.0 Venice. View of the city and San Marco Basin (Bacino) from the southeast. Drawing by Athina Lazaridou 26
1.1 Fra Paolino. Map of Venice, fourteenth century. From Cronica a mundi initio… Biblioteca Nazionale Marciana, Venice (Ms. Lat. Z, 399 (= 1610))

1.2 (a) Map of contemporary Venice showing churches, campi and the Piazza San Marco. Drawing by the author

(b) Campi and churches in Venice. Removing all other information from the map of Venice reveals an ‘archipelago’ of campi and monuments. Drawing by the author

1.3 Pedestrian network of Venice. Measure of normalised angular choice at radius 3000 metres. The measure of choice accounts for through-movement, or the simplest paths that are more frequently used in order to move between each pair of origins and destinations. Drawing by the author

1.4 (a) Squares, churches and wellheads in Venice. Drawing by the author

(b) A selection of squares in Venice. The squares are irregularly shaped spaces, situated close to one (or more) canals, fronted by a church and comprising one or more wellheads (vera da pozzi). Drawing by the author

1.6 Wellheads are the centrepieces of many public squares in Venice. Photos by the author

1.7 Analysis of visual integration within islands in Venice. Integration accounts for how ‘close’ every element in the map is to every other element in terms of topological turns (or changes of direction). Adapted from Franco Mancuso, Venezia è una città: Come è esta construirà e come vive (Venezia: Corte del Fontego, 2009)

1.8 (a) Analysis of London. Measure of choice at radius n. Image by Bill Hillier

(b) Analysis of London. Measure of choice at radius 700 metres. Image by Bill Hillier

1.9 (a) The networks of canals and alleys in Venice. Drawing by the author

(b) Flights of steps linking land with the water in Venice. Photos by the author

1.10 Canal network of Venice. Measure of normalised angular choice at radius 3000 metres. Drawing by the author

1.11 The canals as major elements for the distribution of various types of resources and people. Photos by the author

1.12 Combined pedestrian and canal networks in Venice (joined through steps). Measure of normalised angular choice at radius 3000 metres. Drawing by the author

1.13 Venice. Topological step-depth from all canals. The red lines indicate one step, or one change of direction from a canal. Progressive difference of colour, from orange to green, signifies one or two turns away from a canal and a square. Drawing by the author

1.14 Venice. A taxonomy of element-types. Drawing by Tania Oramas Dorta

1.15 (a) Venice. Canal network and squares located within 50 metres from the highest values of normalised angular choice (1.3 and above). Drawing by the author

(b) Venice. Pedestrian network and squares located within 50 metres from the highest values of normalised angular choice (1.3 and above). Drawing by the author

(c) Venice. Combined canal and pedestrian network and squares located within 50 metres from the
highest values of normalised angular choice
(1.3 and above). Drawing by the author

1.16 Venice. Measure of ‘normalised angular integration’ at
radius 3000 metres. Drawing by the author

1.17 Palazzo Franchetti Cavalli, Venice. Photo by the author

1.18 (a) Venice. Palaces located within 50 metres distance
from a square. Drawing by the author
(b) Venice. Palaces located within 50 metres distance
from a square and the highest values of normalised
angular choice in the combined pedestrian and
canal network (1.3 and above). Drawing by the author

1.19 (a) Venice (1829). Scuole and guilds. Drawing by
the author
(b) Venice (contemporary). Small pieces of public art
that decorate the city. Drawing by the author

1.20 (a) Four-pointed star models of Venice of radius 500
metres (top left) and radius n (bottom left) for
each of the four networks (1. pedestrian / 2. canal
/ 3. pedestrian + canal collapsed into one system
/ 4. pedestrian + canal joint through flights of
steps and unlinked at bridges). Drawing by Tania
Oramas Dorta
(b) Four-pointed star models of Venice for each of the
four networks. Drawing by Tania Oramas Dorta

1.21 Four-pointed star models of 51 cities, including Venice
and Manhattan. Drawing by Tania Oramas Dorta.
Database of cities: courtesy of Bill Hillier

1.22 Trading networks of cities in late medieval period.
Drawing by the author

1.23 Plan of the City of New York and of the Island, as laid out
by the Commissioners, altered and arranged to the present
Board. Maps 73953(9)

1.24 (a) Venice 1829. Pedestrian network, measure of
normalised angular choice, at radius 3000 metres.
Drawing by the author
(b) Venice 1859. Pedestrian network, measure of
normalised angular choice, at radius 3000 metres.
Drawing by the author
(c) Venice 1910. Pedestrian network, measure of
normalised angular choice, at radius 3000 metres.
Drawing by the author
1.25 (a) Venice 1829. Canal network, measure of normalised angular choice, at radius 3000 metres. Drawing by the author 77
(b) Venice 1859. Canal network, measure of normalised angular choice, at radius 3000 metres. Drawing by the author 78
(c) Venice 1910. Canal network, measure of normalised angular choice, at radius 3000 metres. Drawing by the author 79

1.26 Venice 1859. The squares located within 50 metres from the elements of the highest values of normalised angular choice in the combined pedestrian–canal system, radius 3000 metres. Drawing by the author 80

1.27 Venice 1859. Canal network, measure of normalised angular integration, at radius 3000 metres. Drawing by the author 81

Chapter 2

2.0 Venice. View of the city and San Marco Basin (Bacino). Drawing by Athina Lazaridou 82

2.1 Il Volo del Turco. Anonymous woodcut showing the unfinished library and the two-storey Zecca (sixteenth century). Museo Correr, Venice 84

2.2 Vinegia. From Benedetto Bordone’s Isolario (1528). Museum Correr, Venice 87

2.3 (a) Map of contemporary Venice with Piazza San Marco. Drawing by the author 91
(b) Three-dimensional model of Venice with the Piazza San Marco. Having served as the religious and civic centre of Venice in the days of the Venetian Republic, the Piazza is one of the most celebrated urban squares in the world. Drawing by Athina Lazaridou 91

2.4 Venice. View of the Piazza and the Piazzetta from the water. Image by Mariordo (Mario Roberto Durán Ortiz) – own work, CC-BY-SA 4.0 via Wikimedia Commons (https://commons.wikimedia.org/w/index.php?curid=61002136) 92
2.5 Canaletto. *The Bacino of San Marco on Ascension Day*. Royal Collection Trust / © Her Majesty Queen Elizabeth II 2017

2.7 Venice. Doge’s Palace. Porta della Carta. Photo by the author

2.8 Canaletto. *The Piazza looking west from the Procuratie Nuove*. Royal Collection Trust / © Her Majesty Queen Elizabeth II 2017

2.10 Venice. Canal network. Measure of normalised angular choice, at radius 3000 metres. Drawing by the author

2.11 Venice. Pedestrian network. Measure of normalised angular choice, at radius 3000 metres. Drawing by the author

2.12 Venice. Pedestrian network. Measure of normalised angular choice, at radius 3000 metres. Drawing by the author

2.13 Venice. Pedestrian network. Measure of normalised angular integration, at radius 3000 metres. Drawing by the author

2.15 Piazza San Marco, fifteenth century. Visual integration. Drawing by the author

2.16 Piazza San Marco, fifteenth century. Visual integration in the urban context of the adjoining islands. Drawing and photos by the author

2.17 Piazza San Marco, sixteenth century. Visual integration in the urban context of adjoining islands. Drawing and photos by the author

2.18 Piazza San Marco, sixteenth century. Visual integration. Drawing by Athina Lazaridou

2.19 (a) San Giorgio Maggiore (Andrea Palladio) framed by the arch of the Orologio. Photo by the author
2.20 Piazza San Marco. Network of visibility lines drawn at a tangent to all entrances and buildings. Drawing by the author 112

2.21 Piazza San Marco. Visual polygons representing views from the highlighted areas located on either side of the Loggetta. Drawing by the author 113

2.22 (a) Piazza San Marco and Basin. Visual polygons representing views from the Orologio and the Molo and lines drawn frontally to the Redentore and San Giorgio Maggiore. Drawing by the author 115
(b) Piazza San Marco and the Bacino. Geometrical coordination of monuments. Drawing by Athina Lazaridou 115

2.23 Portolan map: these maps were navigational charts based on compass roses, estimated distances and designated lines of bearing. Maps of the Liber Secretorum Fidelium Crucis. Author: Vesconte Pietro. Italy (Venice). Circa 1320–1325 Latin. © The British Library Board. C13671-25/2737 117

2.24 Sebastiano Serlio. Three types of stage sets, showing different kinds of street scenes. (Top) The ‘tragic scene’ capturing a street with noble buildings and palaces. (Bottom left) The ‘comic scene’ comprising a typical street. (Bottom right) The ‘satyrical scene’, a bucolic vision of the countryside 121

2.25 Palladio. Teatro Olimpico, Vicenza. Photo by the author 122

2.27 Venice. San Marco and San Salvador. Drawing by the author 128

2.29 Portrait of Luca Pacioli (1445–1517) with a student, via Wikimedia Commons 136
Chapter 3

3.0 Venice. Drawing by Athina Lazaridou

3.2 Italo Calvino. Invisible Cities. Notation of the narrative structure (based on names and numbers provided in the contents of the book). Drawing by the author

3.3 Italo Calvino. Invisible Cities. Notation of narrative structure and reading path sequence in which cities are presented in the fiction. Drawing by the author

3.4 Italo Calvino. Invisible Cities. Notation of the grid structure of the fiction. Drawing by the author

3.5 The four types of symmetry in a tessellation. Drawing by the author

3.6 Italo Calvino. Invisible Cities. Notation of narrative structure and transformations embedded in the description of cities. Drawing by the author

3.7 Italo Calvino. Invisible Cities. Network of adjacency relations among thematic classes. Drawing by the author

3.8 Italo Calvino. Invisible Cities. Diagram of narrative space-time (x-axis) and historical time (y-axis) in the penultimate dialogue between Marco Polo and Kublai Khan. Drawing by the author

Chapter 4

4.0 Palladio. Villa Rotonda (top). Le Corbusier. Tokyo Museum (bottom). Drawings by Athina Lazaridou

4.1 Le Corbusier. Venice Hospital. Drawing by the author

4.3 Le Corbusier. Venice Hospital. Third floor. Drawing by the author

4.4 Le Corbusier. Venice Hospital. Ground floor (bottom); first floor (middle); mezzanine level (top). Drawings by the author
4.5 Le Corbusier. Venice Hospital. Diagrams of morphogenesis and geometrical analysis of the building. Drawing by the author

4.6 Vittore Carpaccio. Martyrdom of the Pingrims and the Funeral of Saint Ursula. Museo Nazionale Gallerie dell'Accademia di Venezia

4.7 Le Corbusier. Venice Hospital. Axial integration analysis of the entire building. Drawing by the author

4.8 (a) Le Corbusier. Venice Hospital. Axial integration analysis of third floor without voids (top). Axial integration analysis through voids (bottom). Drawing by the author

(b) Venice Hospital. Visual integration of third floor without voids (top). Visual integration through voids (bottom). Drawing by the author

4.9 (a) Campo San Giovanni and Paolo. Photo by the author

(b) Campo San Giovanni and Paolo. Jacopo de’ Barbari, Venetie MD. Bird’s eye view of Venice, c. 1500. Museo Correr, Venice. The squares of Venice are adjacent to and open to the canals on at least one side. This can be seen in the map of de’ Barbari and was a characteristic of squares from the city’s early days

(c) Squares and canals are represented by the same colour (green), showing that a large number of them are next to the water (shown in circles) or a río terra, a former canal. Drawing by the author

4.10 Le Corbusier. Venice Hospital. Dematerialised squares shown with circles. In a manner analogous to the squares in Venice which are adjacent to the water, the square-shaped areas in the Hospital are open to the exterior at least on one side. Drawing by the author

4.11 Doors in Venice connecting houses with the transportation system of the canals. Photos by the author

4.12 Venice. The sequence of bridges is analogous to the sequence of pathways crossing the voids in the Venice Hospital. Photo by the author

4.13 Le Corbusier. The Venice Hospital. View of accessible space and views of inaccessible spaces seen through reflections on glass surfaces. The view point is located
at the central square area, which facilitates entrance by
visitors to the third floor. Drawing by the author

4.14 Palladio. Villa Rotonda. Drawings by Athina Lazaridou

4.15 Palladio. Villa Rotonda. Visual integration and
permeability graph (top). View to the outside from
the front entrance (bottom left). Front view (bottom
middle). Side view (bottom right). Drawing and photos
by the author

4.16 Palladio. Villa Rotonda. Visual polygons from the
central hall and the space at the top left side. Drawing
by the author

4.17 Plan of Soane’s House, now Sir John Soane’s Museum.
Drawing by the author

4.18 (a) Visual integration analysis of Sir John
Soane’s Museum. Drawing by the author
(b) Sir John Soane’s Museum. Visual polygons
representing views of accessible spaces, drawn
from selected view-points (white circles). Drawing
by the author

4.19 Le Corbusier. Villa Savoie. Plans, section and
elevations. © Laurence King, FLC/ADAGP, Paris and
DACS, London 2017

4.20 Le Corbusier. Design for the Mundaneum. Le Corbusier
experimented with a large circulation ramp, spiralling
upwards to form a ziggurat shape. © FLC/ADAGP, Paris
and DACS, London 2017

4.21 (a) Le Corbusier. Museum of Contemporary
Art (1931). © FLC/ADAGP, Paris and DACS,
London 2017
(b) Le Corbusier. Centre for Contemporary
Aesthetics (1936). © FLC/ADAGP, Paris and
DACS, London 2017
(c) Le Corbusier. French Pavilion in San Francisco
(1939). © FLC/ADAGP, Paris and DACS,
London 2017
(d) Le Corbusier. Museum of Unlimited Growth
(1936). © FLC/ADAGP, Paris and DACS,
London 2017

4.22 (a) Le Corbusier. Tokyo Museum (1959). Ground
floor. Drawing by Athina Lazaridou

4.24 Le Corbusier. Tokyo Museum. (Top) Permeability graph and axial visual links. The four zones in different colours mark the pinwheel scheme. (Bottom left) Visual integration analysis (though central void and stairs). (Bottom right) Visual integration analysis (without central void and stairs). Drawings by the author

4.27 Mies van der Rohe. Barcelona Pavilion. (Top) The geometric analysis of the plan reveals local symmetries. The onyx wall and the luminous box are located at the centre of two rectangles. (Bottom) The edges of partitions in the Pavilion are aligned by lines of movement and sight. Drawings by the author

4.28 Mies van der Rohe. Barcelona Pavilion. Reflections on the surface of the onyx wall create the illusion of surfaces that penetrate one another. Photo by the author

Chapter 5

5.0 Venice. Drawing by Athina Lazaridou 228
5.1 Taxonomy of path connectors linking islands. Drawings by the author 234
5.2 Examples of squares linked by different types of path connectors. Drawings by the author
(a) Campo San Fantin 236
(b) Campo San Polo 236
(c) Campo San Toma 236
(d) Campo San Stin and Campo San Agostin 236
(e) Campo Santa Maria Nova, Campo dei Miracoli and Campiello dei Miracoli 236
(f) Campo Santa Maria Zobenigo, Campiello dei Callengeri and Campo della Feltrina 236
(g) Campo San Giacomo dall’Orio, Campo Nazario Sauro and Campo dei Tedeschi 236
(h) Campo San Barnava 236
5.3 Campo San Giacomo dall’Orio. Photo by the author 237
5.4 Le Corbusier. Venice Hospital. Examples of different path connectors. Drawing by the author 241
5.5 Rem Koolhaas. The City of the Captive Globe. Image courtesy of the Office for Metropolitan Architecture (OMA) 246
5.6 Four types of knowledge. Drawing by the author 251
5.7 Diagram of architecture defined as expanded field. The horizontal axis plots the variance of artefacts based on whether they are built or un-built. The vertical axis marks variations from designed to non-designed artefacts. The four squares correspond to different scales of artefacts, buildings, building complexes, cities and landscape. The diagram should be seen as being analytical and generative, producing multiple hybrid forms of agency and authorship. The purpose is to challenge the opposition between individual and collective authorship, as well as between built structures which we can analyse and know objectively, and imaginative projection. Drawing by the author 255
Figure 0.0 Venice. View of the city and San Marco Basin (Bacino). Drawing by Athina Lazaridou