How and Why to Read and Create Children's Digital Books

Kucirkova, Natalia

Published by University College London


For additional information about this book
https://muse.jhu.edu/book/81333

For content related to this chapter
https://muse.jhu.edu/related_content?type=book&id=2772041
Innovative approaches to support personalised multimedia story-making

This final chapter introduces you to a story territory that is currently uncharted by state schools: the interconnection between physical objects and virtual story worlds. Whereas in everyday life we frequently use digital objects that are connected to virtual spaces through RFID (radio-frequency identification) technology (e.g. when swiping a credit card at the entrance to an underground station), this technology has not yet entered public educational systems.

This chapter aims to introduce educational professionals to the potential of this and related technologies, notably their potential to support children’s reader identities and agency in learning. Children’s personal stories can be scaffolded with physical objects that are connected to multimedia files with RFID technology or wirelessly. Such digital systems are already embedded in many popular children’s games, which indicates the need for teachers to be aware of these technologies’ potentials and limitations. In addition to technologies that connect the digital and physical, I shall describe some organisations that connect classroom-based and virtual stories through story museums and galleries. To end the chapter, I return to the line of argument in the previous chapters and discuss the community and agentic aspect of children’s reading on screen. I conclude with some inspiring examples of digital communities that welcome story authorship and conversation.

Innovation in educational technologies: what do teachers think?

One big caveat has to be made: this chapter focuses on pioneering ideas and innovative educational technologies, but innovation in industry and
the commercial sector does not always equate to progress in educational terms. Launching a product may guarantee it will be the first product on the market but not a long-term (or even in some cases short-term) learning benefit for children. Whereas some companies operate according to a trial and error model, educationalists stand on a foundation provided by previous researchers and professionals. Therefore, many educational technology researchers, including me (e.g. Kucirkova 2017d), have advocated interdisciplinary and industry–research models where knowledge and skills work together to innovate in the educational sector. Collaborative industry–research models are not the norm; their instantiation entails the allocation of resources and also changes in attitudes towards what constitutes research and business success. Innovation in educational technologies should be received with a cautious open mind by all three stakeholders: researchers, teachers and designers.

**Researchers, teachers and designers innovating together**

Traditional educational research has historically been concerned with documenting and evaluating what was rather than what could be. Conversely, successful technology companies have relied on models that test the technology with a small group of children but sell it to large groups. Teachers are caught in-between the research and industry efforts and get little say about how research or design could be improved. Yet, teachers could play a crucial role in research–industry collaborations. Teachers have a unique position in mediating not only children’s access to technologies in the classroom but also children’s use of technology at home. The latter is accomplished through parent evenings, teachers’ conversations with parents and school newsletters and messaging dedicated to technology use. For example, many schools in the UK have a dedicated ICT safety section on their website where they advise parents on appropriate controls and settings. Teachers’ knowledge of children’s learning is uniquely contextualised by children’s everyday lives, and teachers’ insights can therefore yield new perspectives relevant to both researchers and designers/developers. While the industry is churning out more powerful and sophisticated tools, researchers are still looking for definitions. Given the uneven pace of industry production and research dissemination, it is often individual teachers’ attitudes and technological savviness that determine whether children will or will not have access to the latest technology trends.
It is imperative that the three different stakeholder groups – teachers, designers and researchers – work together on the development of educational technologies. Certainly, each stakeholder group has their own agenda but the trio share responsibility for children’s wellbeing. This shared commitment is depicted in Figure 10.1.

In general, the discussion of benefits and limitations of educational technology should be cognisant of the three-way influence of innovation, evaluation and application practices represented by developers, teachers and researchers. The question of whether we consider innovation in the children’s toy industry to be design inventiveness or commercial exploitation would require another and longer discussion. My aim is to ensure that teachers have at least some awareness of how the mechanisms in smart learning environments work.

**Smart learning environments**

Tangibles, the internet of toys (IoT) and intelligent objects are part of the smart learning trends that are increasingly being adopted by toy and digital games companies in Western countries. Smart learning environments are personalised, data driven and part of ‘today’s innovation-rich, networked, cloud-based and data-driven learning environments’ (Hoel & Mason 2018, p. 1). I am limiting my description of smart learning environments to the aspects that are most directly linked to this book’s focus on reading on screen: tangibles and smart technologies that connect physical objects to digital fictional stories.
Tangibles

Tangibles – aka ‘tangible computing systems’, ‘tangible user interfaces’ or ‘phygital objects’ – can be thought of as systems that connect physical objects (artefacts) and digital platforms. Given this connection between the digital and physical, they have considerable potential for young children’s learning. There are various ways in which physical objects can be connected to digital platforms such as digital libraries or video games. The most popular and functional way is the RFID system.

The RFID tagging system consists of a small chip that connects to a digital system through a small antenna. The chip can be tiny (so tiny that it can be implanted under the skin of a finger) but, to function, it requires a reader, that is, a technology that enables the connection between the chip and the digital system. Such a reader can be provided with a smartphone. For example, travellers now frequently pay for public travel by scanning their phone or in restaurants by scanning their debit card to make a contactless payment. The connecting technology used here does not require internet connection, which is an important practical asset for spaces such as underground stations or for tagging animals who move around without a stable internet connection.

RFID technology is being increasingly leveraged by toy manufacturers. Instead of connecting the chip to process a payment, the technology can be used to unlock a feature in a game or to progress a digital story. Commercial uses include popular children’s toy sets and video games such as Skylanders, Pokemon Ramble or Disney Infinity Toys. These toys work on the principle of so-called decentralised RFID tagging, which involves multiple copies of the same artefact to connect to a specific point in a video game. For example, with Skylanders, parents can buy for their children Skylanders figures that appear to be non-digital, but as soon as they are placed on the reader they activate a specific virtual functionality. The reader is a special pad that connects to the game on the screen: it reads the tag and activates a specific sequence in the digital game. Each Skylanders figure carries a tag that unlocks its virtual version (avatar) in the game.

The teachers I interviewed as part of my Economic and Social Research Council (ESRC) project on personalised stories were not aware of RFID or of figures connected to digital games. Yet, in the very classroom where I held the interviews I noticed many children keeping their Skylanders figures in their ‘home trays’ (trays in which children keep their personal belongings in this school). The use of RFID technology for story-related games is a significant motivational factor for children.
These toys are not cheap and represent for many children a status symbol. Children like to bring their *Skylanders* figures to school or carry them to their friend’s house to activate their own part in a shared game. What I always highlight to the teachers is the fact that the connection between the physical toy and the digital game is determined by the commercial producer, not by a teacher or the child. The commercial providers develop the toys and the technology that reads the tags incorporated in these toys and the games the children play. These toy manufacturers thus influence two markets and two environments in one go: the physical world of toys and the virtual world of games. Now let’s imagine that part of the equation is influenced by another group of stakeholders: parents, teachers, librarians and the children themselves. Let’s imagine that users themselves decide which objects get connected to which digital stories. There is no need to buy these objects and the stories are not driven by monetised mechanisms but are based on the users’ own stories, agendas and fantasies. This is the approach followed in some recent research-led projects aligned with the agency/reciprocity framework.

**Strategies for using tangibles to enrich children’s digital stories**

Stories2Connect

In the research project Stories2Connect, led by Candice Satchwell at the University of Central Lancashire, a collection of artefacts were co-designed by the project participants to share with a range of audiences. The project’s aim was to use the latest technology to share children’s and young people’s stories of resilience. The project was nested in a participatory model to conduct research with disadvantaged young people, who are positioned as experts on their lives and authors of their own stories. The project involved, inter alia, the development of an interactive picture map, a suitcase of stories and an Arcade Machine that displayed children’s digital stories within the artefact of a tangible game machine. The stories were recorded as video files. Users could access and manipulate them with, for example, the joysticks and buttons of the Arcade Machine. The technology used was a Raspberry Pi computer that connected the video files to the tangible interface. The benefits of such representations of children’s stories are not necessarily quantifiable but have been significant for the participants’ lives. Dr Satchwell wrote that “Through their participation in the project the
children become powerful as not only providers of stories, but tellers of them’. There was keen public interest in the participants’ personal stories, and the various artefacts were displayed in several public areas where community members could listen to and ‘play’ children’s stories. Crucially, the children and young people were positioned as those who decided and led the ways in which their stories were shared. The children were instrumental in the representation of their stories on screen as films and also off screen as books, and even in the connection between the two. More about Stories2Connect is available from the project website:

http://stories2connect.org/

The Magic Cloud

The importance of children’s authorship and agency was also the driving force in our project with the Magic Cloud technology. Magic Cloud was developed by PlingToys Ltd and has an open-ended design with no pre-established connection between tags and digital content. Magic Cloud connects tangible artefacts to digital files through a simple tagging system: a RFID reader is placed inside a cushion in the shape of a cloud and a set of tags are supplied with the kit, which can be placed on any physical object that fits the size of the cushion. The tag can be linked to any digital file that the teacher uploads to the computer and links the object with. For example, teachers can link a natural object, such as a pebble, with an audio file of a rain song. In our project with a local school, we explored how Magic Cloud could be used to motivate children to read for pleasure by connecting their favourite objects to existing digital stories. Teachers shared with us several ideas for how the system could connect classroom objects to audio-recorded stories or curriculum-related activities. The teachers’ and children’s enthusiasm in exploring Magic Cloud encouraged us to develop the technology further. Magic Cloud can be ordered from PlingToys Ltd:

http://www.magiccloud.co.uk/

Smart toys and the internet of toys

Another important technology that is part of children’s smart learning environments at home and in some pre-schools and schools is the IoT, also known as ‘toys that listen’ or ‘smart toys’; these are character toys that have digital dimensions and connections (Ihamäki & Heljakka 2017). You can think of these toys as physical objects that are connected to the internet, through which they are granted some additional functionalities.
An example of a popular smart toy, which is advertised as educational for young children and linked to stories, is Dino by CogniToys (https://cognitoys.com/). This smart toy can tell jokes, play songs, games and riddles and teach children some basic mathematical concepts. In terms of story-related features, Dino can ‘tell a story’ (that is, it can select one of the preloaded audio files stored by the system). It can also repeat what the child has said and define a word. Children can personalise the toy by giving it their own name and attuning the toy to their voice. As with other internet-connected things, the more that the child uses it, the better the toy becomes at producing appropriate answers and the more personal, interesting and motivational it becomes for the child.

Smart toys like Dino work on the same technological principle as the voice-recognition personal assistants widely used in households and in smartphones. Each technology giant has their own version: iPhone has Siri, Android (Google devices) has Google Now, Amazon has Alexa and Windows 10’s assistant is called Cortana. These virtual personal assistants respond to simple questions and commands. For example, they can answer questions such as ‘What’s the weather like in London now?’ or they can order a pizza delivery and create shopping lists. When connected to home devices, personal assistants can also control light settings in your home. The key difference between home and smartphone personal assistants is that whereas, say, Amazon Echo (home assistant) is stationary, Siri is as portable as the smartphone in which it is embedded. While Alexa uses the Bing search engine, Google assistants use the Google search engine. At the time of writing, neither of the two systems is yet fully developed and users regularly report technical glitches. Although home assistants are not advertised for children, it is important that teachers are aware of these technologies, for two reasons. First, the working principle behind these technologies follows the same logic as that in the design of children’s IoT: to execute commands and deliver information. Typical tasks for the home assistant Google Home are to play favourite music from a list of stored tracks, get the latest news from a radio station or inform users about the latest weather forecast. Second, home assistants are available in a child’s home, and so it is very likely that children see them in use or even use them with their adult relatives. As such, they are part of children’s everyday experience at home.

It is also important to note that the technical glitches in adult smart technologies are not dissimilar from the scandals associated with children’s smart toys. It is good for teachers to be aware of them. The most prominent cases relating to smart toys were two high-profile hacking
cases of Hello Barbie and VTech in 2015. The cases showed how easily these toys could be hacked and the data they collected about users could be exposed. The smart toy Hello Barbie was found to pose significant data security and privacy threats, and concerns were raised about the commercial nature of the data the toy collects about young children. In particular, Hello Barbie audio-records what children tell the doll and adults can access this audio-recording and share it on social media. Such functionalities raise important ethical questions about the nature of children’s play and about the privacy of children’s personal stories. The recordings made by an interactive toy are stored by its producer and can be listened back to by anyone who has access to them (and at times by unauthorised users).

Smart toys can only interact with their users if they are connected to the internet and the connection to the internet is not always secure. Moreover, companies producing IoT products have not, at least in the early stages of their production, followed the rules on data security and data protection. This is why Taylor and Michael (2016) labelled smart toys ‘the stuff of nightmares’ and many researchers, including me, have advocated that all smart toys producers follow codes for the protection of children’s data, such as GDPR in the UK and European Union and the Children’s Online Privacy Protection Act (COPPA) in the US, and that national governments enforce the laws and defend the interests of children, not industry.

With increasingly more devices and educational resources produced with algorithmic and ‘smart’ affordances, it is likely that IoT will become more prevalent among young children, requiring an increase in teachers’ input and mediation. Despite many educators’ legitimate concerns, the reality is that smart toys continue to be produced and to be used by young children and that in many households children interact with household assistants such as Amazon Echo. Although young children are often unaware that the toys are recording them, they understand that they can give these toys commands and expect an answer from them. Smart toys’ availability and popularity among young children justify the need for teachers’ involvement in mediating children’s interaction with them. Moreover, smart toys have the advantage of motivating children to take part in certain activities, and it will be important to ensure that these activities are educationally sound. In light of these pragmatic considerations and my firm belief that the future of educational technology should be shaped by educational professionals, I include some strategies for using smart toys in schools.
Strategies for using smart toys to enrich children’s digital stories

I have not come across any independent research that involves teachers’ use of smart toys in schools. In the case of such a novel technology, the teacher may be positioned as a researcher who is exploring the usefulness of the technology together with the children. My suggested strategies are therefore common-sense strategies based on the principles of ethical social research with children.

One of the first key measures that teachers (and parents and other adults interested in using smart toys with children) will need to evaluate is whether recordings of children’s voices are stored by the provider and if so where. If children’s interactions with the smart toys are stored on the provider’s servers, the provider needs to ensure their protection. For smart toys used in the UK and Europe, there should be a clear and concise statement about the manufacturer’s commitment to GDPR.

It is also important that teachers check whether children’s audio-recordings can be shared and if so whether the sharing mechanism requires an adult’s input. There should be password-protected access to sharing mechanisms such as the activation of access to social media. Given that many young children are unaware of the fact that they are being recorded by the toy they play with, it is also important that teachers explain to children that their conversations with the toy are not fully private. The best way to explain this to young children is to show them, step by step, how the toy works. Teachers can audio-record the child’s voice and then play it back to them. They need to show children the individual buttons and explain how the recording works. Children’s ongoing consent and understanding about being recorded in this way should be sought throughout their interaction with the toy. Teachers who decide to mediate children’s use of smart toys in the classroom will also need to monitor how the children’s relationship with the toy affects their relationships with their friends and other, non-digital, toys. This again is best mediated through conversation, perhaps in a small-group setting where children can ask questions and try out the technology.

Community digital/physical projects

The connection between digital stories and physical objects does not need to be digitally mediated: it can also be embedded in a community of people. This principle is at the heart of various community projects
that connect personal stories with artefacts (mostly photographs and personal objects) and bring together digital technologies and communities of readers and storytellers. Such projects can foster intergenerational dialogue, multi-organisational collaboration and story-mediated models of conversation. Given the community orientation of these projects, they are closely aligned with the agency/reciprocity framework. I shall describe the ways in which they were carried out in hopes of inspiring some strategies of your own.

Rachel Heydon, from Western University in Canada, is a key scholar of intergenerational literature, with a fascinating profile of projects that document and manifest the connections between intergenerational traditions and technological innovations. Dr Heydon experienced the benefits of growing up in an intergenerational family and has conducted several studies that show the positive influence of intergenerational dialogue upon children as well as the elderly. The focus in Heydon’s work is particularly on intergenerational centres in Canada, in which young children and elderly community members interact and learn from each other. In 2005, Heydon showed how the joint creation of picture-based books and booklets with personal story content positively shaped feelings of belonging and identity for both children and the elderly. In 2007, Heydon documented how children and adults’ co-creation of visual artefacts such as drawings and artwork contributed to increased communication among them. The projects took place in intergenerational children’s centres in Canada, which are daycare centres for children where multiple generations (parents, grandparents, aunties, uncles, elders) interact with and learn from each other. Although the intergenerational centres are primarily geared towards Aboriginal families, bringing families back together is sorely needed in almost all urban communities. Stories are a wonderful intergenerational glue that can be brought into use with technology, as illustrated in Heydon and colleagues’ projects.

Similar findings were obtained in one of my intergenerational projects with Karen Littleton, in which we explored the usefulness of digital story-making with children in a local school and with elderly community members. In Kucirkova (2016a) I describe the ‘Remember’ Community Project, in which a team of researchers from the Open University partnered up with two technology companies (AirWatch and Aerohive), a local parish network and two Year 4 classrooms in a local lower school to creatively explore intergenerational technology-mediated collaboration. The theme guiding the project was Remembrance, which is an important part of British life and the school curriculum. The school designed
activities that would link the topic to History, English and Citizenship curriculum areas and welcomed the opportunity to combine a multi-media approach with efforts to remember and honour victims and survivors of the world wars.

Over the course of six months, the participating children collected personal stories about the Second World War from elderly members of the community who had volunteered to participate in the project. These volunteers were recruited through the local community organisation Love Woburn Sands and their visit to the school was facilitated through the organisation’s leader. The volunteers talked to the children about their memories of the war, which the children audio-recorded and made notes about. The children then used the Our Story app to make multimedia stories about individuals’ memories of the war. They used pictures from the internet to accompany the stories and excerpts from voice-recordings of the elderly sharing their experiences. For example, children took a photograph of a banana and inserted it into a story page that described the lack of fruit during wartime, as recounted by one of the elderly visitors. Overall, the project contributed to a deeper understanding of technology-mediated education and community relationships but also provided distinct benefits for the individual project partners: the technology companies facilitated secure and efficient storage and transfer of personal digital content; the school innovated its practice through participation in a research-informed approach to digitally mediated learning; the local parish network benefited from enhanced community engagement with the wider public and older generations. For the teachers, the project yielded a large amount of new information around creative exploration of traditional themes (Remembrance) and ways in which teachers can enrich extant teaching resources with digital materials and foster intergenerational dialogue in a local community.

There are some inspirational examples of online platforms that facilitate story exchanges on a daily basis and within international communities. Visiting the sites and exploring the stories they feature may help teachers contextualise these ideas in their own classroom. These platforms can be described as digital book-related platforms that offer the possibility for users to upload their own content. They act as sites of convergence, or ‘hubs’, that not only collate digital stories but also encourage their creation, valuation and distribution. I have selected a few that I have come across in my work with teachers and children in the UK.
Digital story hubs for children

The PopUpHub

The PopUpHub funded by the Paul Hamlyn Foundation is a UK site dedicated to creating and sharing digital stories. The site is designed in the style of a story-making factory, with an Engine Room, Factory, Showroom and Control Centre areas. In the Engine Room, users can search for books using the following search criteria: book title, book's author, UK school that participates in PopUpHub, UK region (where the participating schools are based) and children’s age range. If you select a specific school, you will be directed to this school’s review of the book, along with stories inspired by the book. There is also a profile section dedicated to the author of the original book and an interactive map showing other schools near you reading the same book. In the Factory, children can get inspired with various activities based on particular books. Users can choose from a menu of options relating to the book’s title, author and the activity they want to participate in. The activity may be to draw or make or write a story. If users select ‘draw’, they will be taken to a page with colouring sheets and drawing challenges relating to the book. If they select ‘make’, they are taken to a page full of activity sheets and multimedia activity resources relating to the book. For example, for the book Pirates! by Deborah Allwright there is a video on ‘how to create your own pirate adventure’. The Showroom is a collection of digital stories put together by individual children who have participated in the project. When you search by book title, you will find different children’s interpretations of that book. The stories are presented in the form of texts and pictures or pictures only and are grouped by the book title so as to provide an at-a-glance overview of diverse students’ responses to individual books.

http://www.pop-up-hub.com/

Storyweaver

I mentioned Storyweaver in relation to its existing bank of resources in Chapter 9. The platform has grown into a database of some 2,000 books contributed by professional authors, as well as of illustrators and the online community members. The books are all richly illustrated and can be accessed on any device. In addition to fiction, there are non-fiction books on science and mathematics topics. Given that all the books are available under the Creative Commons licence, users can modify them
and create new stories based on existing illustrations or text. Users can add their own translations to the original text and create completely new stories using the ‘create’ engine: they can add their own text to one of the Storyweaver illustrations or they can use pre-established templates. Finished stories can be printed out on A4 paper or saved as a digital story in the EPUB format. Moreover, users can submit their story to the community bank of stories and through the user dashboard authors can monitor how much their stories are liked and read by others. There are also video-based tutorials to help you create a story:

https://storyweaver.org.in/tutorials

Magic Blox

Magic Blox is an example of a digital library system that includes digital books written by award-winning authors as well as contributed by small independent publishers and the users themselves. The e-books on the site can be read on any device. This is a great example of how a community of readers and writers can come together in one virtual story space.

The site offers a special pricing programme for schools interested in using the digital library and also a revenue-share model for users who contribute their own content to the site. The latter is based on the number of times a book is read, and employs transparent reporting tools.

http://magicblox.com/

KidPub

KidPub started in 1995, which makes it one of the oldest ongoing reading platforms for young children. The site is both a library and a publishing site for digital books created by children for children. The platform claims to receive over a thousand new stories by children every month. Although the reading of the digital books is free, the contribution of titles requires a small fee (mostly for age verification purposes). Schools can subscribe to the site using the KidPub Press and parents can sign up their children by paying a nominal membership fee. Community elements include the facility to comment on stories, leave notes for other users or participate in writing contests. There is also the option to add to a ‘never-ending story’ that is unfolding with members’ contributions. The platform works best on PCs and is heavily text based, so more suitable for older primary-school children.

https://www.kidpub.com/
Writing.com

Writing.com is a large online community of writers who can add their own multimedia stories to the site and read those contributed by other members. The site has been around since 2000 and is steadily growing its membership base. A lot of guidance is provided for the creation process, which encourages independent authorship. Children can choose what type of content they want to contribute to the site, with basic templates available for short stories but also for novels, essays, poems or even crossword puzzles. Users typically create their stories in text with one or two illustrations. Reviews of existing content are rewarded and crowdsourced within the online community with a system of ‘gift points’. The site is moderated (according to the website it has 80 moderators) and is primarily used by older children (lower secondary school).

https://www.writing.com/

Stories of a Lifetime

Stories of a Lifetime is a project set up by two UK teachers from Nottingham. They host and curate a website to which teachers from anywhere in the world can submit digital stories created with children in their classes. The site is particularly oriented towards video-based stories with minimal text.

http://jmilnereducation.wixsite.com/storiesofalifetime

Physical story places

In addition to projects that connect digital stories to physical objects, or that join up digital stories with living communities, there are organisations that link stories with physical places – rare and special places conducive to nurturing children’s stories. Teachers, parents and librarians can participate in professional development training offered by these organisations or they can organise trips to visit the places with their classes. My favourite ‘story places’ are briefly described below.

The Ministry of Stories

The Ministry of Stories is ‘a writing and mentoring space for young people aged 8–18’, located in east London. The space offers programmes of story-writing workshops and one-to-one mentoring sessions with
volunteer writing mentors. Besides its physical presence in London and diverse activities, the website of the Ministry of Stories contains a database of teaching resources relating to poetry, letter writing and other story-inspiring activities. The programme of the writing workshops is linked to the England and Wales national curriculum and is strongly oriented towards supporting children’s creativity, confidence and authorship through the process of producing written and illustrated physical books. Although the core of workshopping activities happens face to face in London, the website can be inspirational worldwide. Similar places can be found across the world; indeed the Ministry of Stories was inspired by 826 Valencia in San Francisco.

http://www.ministryofstories.org/

The Story Museum

The Story Museum is an international centre celebrating stories with events, workshops and exhibitions, based in Oxford. UK schools may be interested in participating in professional development training and outreach activities offered by the Story Museum. Its website hosts a database of audio-based stories, which can be searched by theme, origin, age group or keywords. The story text is available with the audio version of each story. The database is available from this link and can be listened to via any device with an internet connection:

http://www.storymuseum.org.uk/1001stories/

UK literacy charities

In addition to these unique story-related organisations, the UK has four fantastic literacy-related charities that work in close partnership with schools and parents to support children’s story-making and story creation. The charities offer professional development training to teachers and librarians and their websites are packed with useful resources for anyone interested in literacy, including regular competitions for children and schools, story reviews, tips for parents and resources for educators. There are several literacy charities in the UK but these four have a strong digital presence with useful information for any English-speaking community.

Book Trust
https://www.booktrust.org.uk/
The Empathy Lab

It is also worth checking the work of and resources recommended by the Empathy Lab, which focuses on stories linked to empathy and on encouraging empathy among children and story authors.

http://www.empathylab.uk/

Chapter summary

This chapter has provided some insights into the latest developments in the field of children’s digital stories, with the aim of raising awareness about children’s smart toys and tangibles. Examples of how these smart learning resources can be harnessed for educational use in the classroom were provided by drawing on some recent university-led innovation research projects. Digital story hubs and physical story spaces provide exciting and inspirational ideas for ways in which stories can connect to local and international communities. There is something in the future-gazing potential of these developments, particularly if the future gazing is put into the agency/reciprocity framework discussed in this book.

Reflection point

There is no greater agony than bearing an untold story inside you.  
(Maya Angelou)

I hope that as you reach the end of this book and read this quote you will feel an urgency to share your story with the children and adults around you. Whether you decide to share your story in a multimedia or a print format does not matter. What matters is that you are aware of the possibilities of creating and sharing stories in the digital age and make discerned choices about how you support others to share their stories and how you share the ‘untold story inside you’.
Further reading

Given that this is the last box of further reading in this book, I recommend here some books that touch on the broader topic of stories and technologies in children’s lives and include ideas about important future developments in the area of children’s digital literacies.


