3.0

R=T in action

Making connections to support transitions and develop identities

Alex Standen and Mina Sotiriou

In this final section of the volume we present a series of eight short case studies on research-based education through student–staff partnership. In the true spirit of our initiative, the case studies are all co-authored (and in the majority of cases were projects that were co-designed and co-implemented) by academics and students, underlining the importance of working in a consortium setting (see Introduction). The eight projects are diverse in aims and approaches, from digital innovations in research dissemination (3.1) to exploiting students’ linguistic diversity to foster an inclusive learning community (3.6). The case studies extol the many and varied benefits of participating in such projects. We learn, for example, of a project in science communication that seeks to provide students with an immediate connection to research and researchers, and increase their sense of belonging to a department (3.7). We also see how student feedback can be elicited, which draws on the benefit of hindsight for reflection and evaluation (3.2). Read together, the case studies offer a compelling portrait of how research-based education through student–staff partnership can be taken forward by individuals, teams and departments to help shape higher education.

In this short introductory chapter we highlight two particular ways in which these examples of R=T ‘in action’ present a persuasive argument for the relevance of research-based education through student–staff partnership in the contemporary higher education landscape: how it can be employed to enhance the student experience during challenging
transitionary phases, and how it can foster the formation of communities of practice and new ‘researcher’ identities.

Navigating the transitions into higher education, between phases of study, and out of study into the workplace are inherently challenging. Students undertaking any one of these shifts may find themselves in a ‘liminal state’, or requiring ‘transformations, ontological and epistemological’ (Barkess and Tierney 2015, 1). The challenges facing the newly arrived undergraduate have been well documented (see, for example, Briggs et al. 2012; Leese 2010). But so too must the student moving from undergraduate to postgraduate education (or from the relative safety net of the university into the professional world) cross thresholds in understanding, knowledge and skills, autonomy, self-perception and social and cultural integration.

Modules, programmes of study, departments and institutions can do much to support students as they negotiate their way through these states of liminality. For students moving into higher education for the first time, gaining experience of its realities via summer schools, for example, or presenting school curriculum topics in the style of higher education, can help to prepare students for independent learning (Rowley et al. 2008, 410). The development of a higher education ‘learner identity’ is essential to student achievement and is initially encouraged where schools, colleges and universities adopt integrated systems of transition (Brigg et al. 2012). Likewise, institutional support, tailored supervisory interventions and an inclusive research culture are all proposed as strategies to support learners in their transition to postgraduate education (Kiley 2009).

What place does R=T hold in this landscape? Crisan et al (3.3) interrogate the ways in which targeted student–staff partnership projects can enhance transitionary phases in mathematics and engineering, in particular that of undergraduate to postgraduate education. As one of the student authors explains, as an undergraduate what is often felt to be missing is learning how to see the discipline as a ‘unified field of interconnected knowledge’, rather than a set of discrete skills and topic areas. The authors thus advocate close and early collaboration between students and academics, both to raise awareness of what it is that researchers do, and what research in the discipline indeed means.

For Marjanovic-Halburd and Bobrova (3.4) it is support from students in the next phase of study that can similarly enrich transitionary phases (and indeed be mutually beneficial to the student at that next level). While the case study focuses specifically on student–student supervision, it is a model which can be adapted to numerous contexts
and to foster a learning environment that is inherently ‘collegial’ and ‘relaxed’ – fertile terrain, in other words, for the requisite shifts in learner identity and autonomy.

In their exploration of the role of digital tools in the transition into university-level mathematics, Geraniou, Mavrikis and Margeti (3.5) comment that, ‘the transition from school to university requires a shift from an external locus of control to an internal one’. To a certain extent this is true of all such transitions: after all, as a student moves from one phase to another – both within education and beyond – there is an ever-greater call for independence and self-motivation. For Evans et al. (3.8), whose project also targets first-year undergraduates, learning communities underpin a successful academic experience for students – and certainly strengthen transitionary phases. The authors emphasise that learning communities should encompass both academic staff and students from all years of the programme, and that there is a method for sharing knowledge within that learning community.

All eight case studies bring together groups of people who share a common interest to learn by research and engage with each other to create a shared output to promote learning. Such social participation in learning echoes Lave and Wenger’s (1991) communities of practice, defined as groups of people with shared concerns, interests or passions for something they do, who learn collaboratively how to do it better.

Miller et al.’s chapter (3.1) clearly demonstrates the development of such a community of practice in which students and staff, over a period of time, actively interact, participate, collaborate and share ideas to build a shared repertoire of resources – in this instance books and a MOOC (Massive Online Open Course).

The concept of social participation, however, does not exist by itself. It also affects the way in which participants think and experience learning as the production of social structure, which as a result affects their identity. Identity, as Wenger defines it, is ‘a way of talking about how learning changes who we are and creates personal histories of becoming in the context of our communities’ (1999, 5).

Learning can be viewed as a journey that results in the production of a new identity. Such journeys are evident both in Crisan et al. (3.3) and in Gombrich et al.’s (3.2) chapters. The evolution of students’ identity – from school-leaver to undergraduate to researcher – shapes their experience of themselves and it also shapes the way they see learning.

In such a view, communities of practice can be seen as the nexus of implementing R=T, referring to a process in which learners are not only
participating (student–staff partnership) in learning (research-based education) but also shaping and defining their identity.

The words ‘collaboration’ and ‘community’ recur repeatedly in the eight case studies (1.0). To varying extents, all of the projects are born of the concept of learning as a social experience. Already, Fung’s UCL Connected Curriculum (2017) foregrounds the importance of students connecting with both researchers (Dimension One) and each other, across phases and with alumni (Dimension Six) to enhance their sense of belonging and to ensure they feel part of a learning community. Through the R=T initiative, we can see how such projects can be transformative for both students and their academic partners. At the same time we see the development of communities of practice and, potentially, the formation of new identities.

References