34

Instrumental Reason
I want to make an image of society’s instruments and substrates of visualization, to see them seeing us, but it’s not us that they see, but simply edges and colors, patterns and hues, likes and clicks, border crossings, credit card transactions, all of it numerical encodings in vast tables of databases. If camera vision and images were once seen and ordered through human agency, they are now seen and retrieved by machines. As such we mustn’t look at images as indexical of human affect but of machine processing and “seeing,” turning the realm of human sensibility and action into something strangely abject and the human into a very new kind of object. This vast realm of everyday recording, of computerized seeing, sensing, tracking, aggregating and permissioning, makes of us, the messy and emotional, a signal, an index, of dissolute and atomized data at a time when we are wont of discourse and sociality.

(http://cargocollective.com/marclafia/Concatenations)
A specific note on the Corot work, *All Watched Over by Corot*.

For these new prints I’ve been working on creating a new print substrate. The substrate is more of a topology than the flat surface we always see prints on. Ordinarily with prints, the material surface, except for the finish, is thought of as a non-thing. We’re suppose to see past it, to the image, the print surface is something we aren’t really seeing. I want to see this material, and I want it to announce itself performatively. I want it to be part and parcel of the image, a body and thought, a substance, in and of itself and part of the image. Something that speaks to seeing and sight but more precisely, touch and sight and different kinds of seeing.

The print sheet is sewn together from paper sheets that come in packages for IKEA paper lamps. I like the idea of the paper being industrial, everyday, and whose purpose is to be a light and in this case the light bulb missing.
Photography is light but today’s image is stored as data. It is impossible to touch data. Machine sight and computational information increasingly eclipses the somatic and empathic, skin and flesh, sight and touch, and the data body politic becomes a biopolitic, an atomized swarm. Jean-Baptiste-Camille Corot, a harmonist of color, in his paintings imbues in nature a beneficence, a beauty, life, and grace. To us, this may seem overly romantic, an effusion of pathos. But you can touch his painting and see it. I want to touch the image. I want it to be palpable. I want to feel it, its ripples, folds and contours, its cracks and creaks, its impermanence, its body. Paint does have a body that print doesn’t. By rethinking print paper and using this paper that folds and deforms I want bring body to the image and embodied sense to the viewer.

In the image, Corot’s landscape painting, Ville-d’Avray (17.2” × 29.3”) is printed 4 times the size of its original, and is seen overlaid, on top smaller images of the same painting “read” or scanned in sections by Pinterest’s “visually similar” algorithms, and on top of that a country side landscape being surveilled by an Aerostat blimp equipped with radar that can “look” in 360-degree circles. Corot’s landscape is seen and imagined—he made many preparatory sketches outdoors on location—by a closely felt and observed world, and environ. He wrote, “Beauty in art is truth bathed in an impression received from nature. I am struck upon seeing a certain place. While I strive for conscientious imitation, I yet never for an instant lose the emotion that has taken hold of me.”

In contrast the other two “seeings” in the picture are machine and algorithmic seeing, each transposing what is seen of datasets of billions of pins or other data. In the case of the Pinterest image search, by specifying a part of the image using the cropping tool, one can scan the Corot reproduction, just as the JLens Aerostat scans the landscape, in real time. In both cases, and in “search,” “exact,” as well as “unexpected” results, along lines of what is similar in style, pattern, shape or coordinates are interpolated and delivered. What fascinates me here is the disjunction between my sense of pattern recognition and the rule sets of these visual engines and what they retrieve along this spectrum of “exact.” Machine rules-based seeing and human affective, socially constructed seeing, are of very different orders and registers. They are different patterns or programs of recognition. In this picture I want to see each of these “seeings” simultaneously, from the most romantic to the most indifferent, from human to machine, effectively transposed and most of all, not flat. I want my image to be touched, not simply by a flat indifferent surface or a screen, but a body, a topology, ever changing, vulnerable and impermanent.

What you are seeing here on the web site is not yet the print image on the sewn paper, that’s in production now, so what you are seeing here is flat as. I will update as we move through the print production in the next few weeks.

(http://cargocollective.com/marclafia/Concatenations)
Asafir bila Ajniha, Wingless Birds

2017 69” x 92” lamp paper, white thread, C-print
Al-Kindi (c. 801–873) was one of the earliest important optical writers in the Islamic world. In a work known in the west as De radiis stellarum, al-Kindi developed a theory “that everything in the world ... emits rays in every direction, which fill the whole world.”[8]

This theory of the active power of rays had an influence on later scholars such as Ibn al-Haytham, Robert Grosseteste and Roger Bacon.[9]

Ibn Sahl (c. 940–1000) was a mathematician[10] associated with the court of Baghdad. About 984 he wrote a treatise On Burning Mirrors and Lenses in which he set out his understanding of how curved mirrors and lenses bend and focus light. In his work he discovered a law of refraction mathematically equivalent to Snell’s law.[11] He used his law of refraction to compute the shapes of lenses and mirrors that focus light at a single point on the axis.

Ibn al-Haytham (known in as Alhacen or Alhazen in Western Europe) (965–1040) produced a comprehensive and systematic analysis of Greek optical theories.[12] Ibn al-Haytham’s key achievement was twofold: first, to insist that vision occurred because of rays entering the eye; the second was to define the physical nature of the rays discussed by earlier geometrical optical writers, considering them as the forms of light and color. He then analyzed these physical rays according to the principles of geometrical optics. He wrote many books on optics, most significantly the Book of Optics (Kitab al Manazir in Arabic), translated into Latin as the De aspectibus or Perspectiva, which disseminated his ideas to Western Europe and had great influence on the later developments of optics.[13][6]

كوكبة الجليد

النجم والعشرين كوكب الموت وملحوظ بالآلوس في آسماء الجمجمة ودائرتها في النجمة المروية، وتظهر في السماء ترقبًا من الأشخاص الشاهدة على النجوم في القرن اللدري والقرن الثاني من الهجرة.

عندما وردت نبة على الكوكب في الليل، بلغت الكوكب المروية على النجوم في السماء ترقبًا من الأشخاص الشاهدة على النجوم في القرن اللدري والقرن الثاني من الهجرة.

من الأشياء المروية على الكوكب في الليل، بلغت الكوكب المروية على النجوم في سماء الأرض.

هكذا يوجد لها
I Can Hear You 2017 69" x 92" lamp paper, white thread, print