The diamond, as we know it, is a unique example of marketing and monetization of a geological resource. Through careful supply-control, advertising, and cultural massaging, the industry has managed to mythologize a geological material in cultures around the world. Throughout the 20th century, rituals, expectation, and meaning have been intentionally crafted around the diamond through tales of rarity and carat-value. A complete mythology, ranging from sparkling wedding rings to shady deals and overworked mines, surrounds each of these stones and furthers the mystery as well as desire.

As a counterpoint to this aesthetic industry, a new functional aspect is emerging as diamonds are grown in the lab with ever increasing control and huge promises for technological applications. The unique properties of diamond as a super-material open up potentially revolutionary breakthroughs in fields as varied as quantum computing, electronics, biosensors, and clean energy.

As lab-grown diamonds become more recognised and enable further progress, will they also achieve a new cultural status? Until now, the aesthetic and the technological are carefully kept separate to preserve market value and cultural narratives. We can easily imagine that gemstone dealers have no interest in promoting the fact that chemically perfect diamonds are now routinely grown in laboratories. Synthetic diamonds have become recognised for enabling further technological advances and while doing so achieve a new cultural status to rival their natural counterparts.

As synthetics become more important and celebrated as agents of our technological progress, how will this impact their place in society? And, functionally, is the eternal promise of diamond about to deliver very tangible results?

All artefacts, images, and texts presented in this essay are purely fictional. Any resemblance to real persons, situations, or products is purely coincidental.

1 A visual essay that presents fictional devices that enable the celebration, transport and valuation of diamond super-materials. These devices are staged as the supporting characters in the true, currently unfolding story of man-made geology.
#053 Attaché-Case
Patent 3492834

Abstract title:
Expandable, divided attaché case to support Chemical Vapour Deposition diamond wafers (<0.2mm thk) securely and discreetly masking dimensions.

Description:
An attaché case with an outer enclosing case and a protective insert within to hold specifically engineered materials. The inner case may be visually impregnable. A scalable clip system secures engineered wafers within separate dividers numbering up to 20, each pivoting on secure fixing along a single edge. ([Clipping mechanism and secure handle subject to separate cited patent documents.](#))
#072 Drill Bit Replica
Policy #3290098

Value Assessment for Item #0387
Category: Fine Art and Jewellery

Described for valuation is a unique, one-off piece, part of the Oppenheimer family’s private collection. The item is believed to be a decorative replica of an industrial diamond coated drilling bit, used for oil drilling. The origin of the item is unclear, and there is no manufacturer’s stamp to be found.

The item is believed to have been received as a gift to the late P. Oppenheimer as part of an informal transaction.

cast formed 22K rose "crown" gold alloy body with 18K gold details and 408 0.03 carat micro-machined D-VVS1 diamonds

Estimated Value: circa $300,000
#038 Boron Test

Instructions: Testing for traces of Boron doping & superconductivity growth modification

1. Swab or enclose sample of object to be tested.
2. Screw swabbing device into the clear plastic tube until airtight.
3. Pull plunger upwards to break seal.
4. Allow air to circulate for minimum 30 seconds.
5. Check swatch indicator and refer to colour chart on reverse of packet.
6. Red = traces of doping superconductor level (check spectrum chart).
7. Blue = confirmation of negative reading.

This test checks for Boron traces and particles assuming typical CH₄ mixing ratio ~1-2vol%. Test has been lab tested to accuracy of 95%.

The manufacturers of any part of this equipment take no liability for the results under field conditions.