Landscape Archaeology between Art and Science

Guttmann-Bond, Erika, Kluiving, Sjoerd J.

Published by Amsterdam University Press

Guttmann-Bond, Erika and Sjoerd J. Kluiving.
Landscape Archaeology between Art and Science: From a Multi- to an Interdisciplinary Approach.

Amsterdam University Press, 2012.
Project MUSE. muse.jhu.edu/book/66303.

For additional information about this book
https://muse.jhu.edu/book/66303

For content related to this chapter
https://muse.jhu.edu/related_content?type=book&id=2321058
1.1 Figure 5. The Cist with the Engraved Circled Cross

1.2 Figure 6. Simplified canal system

1.2 Figure 7. Relative certainty of water delivery
1.3 Figure 5. Analysis of visual and perceptive characteristics – panorama: South-eastern view from the reference point no. 17. (Hájek et al. 2009). Corel Draw X4: Matáková 2009.

1.3 Figure 6. Register of historical and cultural values, register of road system based on analysis of old maps and archive materials. Part of the Map of the historical communication network and minor landmarks (Hájek et al. 2009), ArcGIS map: Matáková 2009.
1.4 Figure 2. Map with the monuments located in areas where remnants of vine and wheat cultures and pastures were spotted (red= cultivated areas, purple= pastures). North is directed towards the top of the map.

1.4 Figure 3. Vegetation map showing the location of the Byzantine monuments, the monastic centres located near water springs and streams and the afforested areas. Source: The Research Program Pythagoras II – Environment.
Figure 2. Map of Ekrem Hakkı Ayverdi. Produced by using Ekrem Hakkı Ayverdi maps.
Figure 3. Map of Necip. Produced by using Necip map.

Figure 4. Produced by using present maps (1965).
Figure 5. Produced by using Conservation Plan of Historical Peninsula with the scale of 1/5000 (2004).

Figure 5. Definition of the survey area.
Figure 1. Plan of Palmse manor centre (1753). Source: Pahlen, G.F. 1753. Plan der Hoflage von dem Guthe Palms.
Figure 3: Schematic map of spatial composition of Vasta manor centre. Source: Nurme 2007.

Figure 1: Location of the Conventus Asturum and its gold deposits.

Figure 3: Forest evolution as attested by pollen records.
1.8 Figure 4: Absence/presence of cultivated species as attested by pollen records.

1.9 Figure 4. On the South Common, Lincoln, the route of the Roman Ermine Street is delimited by earthworks. At right angles to this are fragments of an extensive field system and the boundary of a medieval hospital, The Malandry (© English Heritage).
1.10 Figure 5. Example of one of the maps made in Archis, showing pingo scars as water-filled depressions on the geomorphological map. Archaeological finds present in the Archis database are shown on the map as red dots. One square on the map represents one hectare (100 x 100m). Created in Archis, Rijksdienst voor Cultureel Erfgoed.

2.1 Figure 3. Aerial photograph of the apron of the opencast pit Jänschwalde with archaeological longitudinal sections and ground plans of charcoal piles (photo: H. Rösler).
2.2 Figure 4. Coltano and Portus Pisanus area shown in the lower Arno Valley in a detail of the geomorphological map of Mazzanti (1994). The numbers identify geomorphological units (Mazzanti, 1994) and the colored symbols identify archaeological sites (Pasquinucci, 1994) dated to prehistory (black), archaic and classical period (red), middle ages (violet), and modern times (green).
2.3 Figure 5. High resolution pollen diagram KRM 0.30 – 2.24 m (simplified, only selected pollen types/taxa).

2.4 Figure 1. Overview study area with geoarchaeological and archaeological sites entered so far.
2.5 Figure 2. Cartographic analysis of the 16th-century town plan of Brussels by Jacob of Deventer, realized in a scale of approximately 1:8600 (© Royal Library of Belgium, Brussels).

From left to right are shown respectively the open spaces (36%), the road network, watercourses and green spaces (34%) and buildings (30%).

2.5 Figure 3: a) Soil profile of Dark Earth on the site of Hôtel de Lalaing-Hoogstraeten; b) Graph showing enhanced phosphorus levels for the Dark Earth units (US 7338 and US 7321); c) Granulometric data showing the high similarity between the units US 7338 and US 7321 and the natural soil (US 7340), suggesting they share the same matrix; d) Thin section micrograph showing phosphorus-rich excrement proving the addition of manure (plain polarised light); e) Thin section micrograph showing a textural pedofeature enabling its identification as former at least temporary unprotected topsoil (plain polarised light); f) Thin section micrograph showing dendritic phytoliths (plain polarised light).
3.1 Figure 1. Map showing the location of the Palpa Valley. The two valleys reaching the Palpa Valley from the east are the valleys of Rio Palpa and Rio Vizcas.

3.2 Figure 5. View of the mountainous zone of Monte Novu in the south-eastern part of the village territory of Fonni with Cuile su Seragu visible in the centre of the photograph.
3.3 Figure 2. A GIS reconstruction of palaeogeographical settings of Grosseto Plain during 10,000 BP (after Bellotti 2004).

3.3 Figure 3. A GIS reconstruction of palaeogeographical settings of Grosseto Plain during 6,000 BP (after Bellotti 2004).

3.3 Figure 5. Distribution of off-site evidence in the Grosseto area.
Figure 7. An example of data integration: off-site distribution and Pleistocene deposits overlaid on the historical topographical maps (1930) which show a variety of morphologies.

Figure 8. An example of data integration: off-site distribution and Pleistocene deposits overlaid on the historical aerial photograph. The contour lines derived by the historical topographical maps (1930) allow us to appreciate the little hillock and to imagine the inlet when the sea level was 6 metres above the present-day level. We can also appreciate damp-marks and soil marks.
Figure 4. Rutherfords Creek, western NSW, showing the location of scalds (i), hearths (ii) and analysed stone artefact assemblages from randomly selected scalds (iii).
5.1 Figure 3. Example of least cost path calculations using different specifications of movement costs, in a study area in Cappadocia, Turkey. Adapted from Verhagen & Polia (2010).

5.2 Figure 6. Localisation of sites in relation with ecological floors, extracted from GIS.

5.2 Figure 7. Example of visibility analyses between two or more sites, extracted from GIS.
The schematic drawing above shows the different floors of the Andes and their ecological resources. It also indicates the barter system in which llamas or mule caravans are used to transport products between zones. Archaeological sites of the Formative period are located in the lowlands and the fertile ecological floor (Yunga). Villages of the Late Intermediate are located in the highlands (Suni, Puna and top of the Quechua zone).
5.2 Figure 8. Visibility map based on a DTM, extracted from GIS.

5.3 Figure 2. Example of viewshed: shade indicates the non-visible areas within the fifteen km radius around the analysed site, in this case Singilia Barba. Similar visibility analyses were carried out for each of the sites included in the project, as well as for a random distribution of sites, in order to compare them statistically.
5.3 Figure 4. Map showing both the random and archaeological distributions of sites during the Middle Iberian period, combined with a table showing the different categories of visible areas, and the number of sites counted in each classification. Both distributions were employed for investigating the randomness/relationship of the Iberian settlement pattern with regard to visibility and relative height.

5.3 Figure 5. Map showing both the random and archaeological distributions of sites during the Roman Republican period in the Antequera Depression, combined with a table showing the different categories of relative height, and the number of sites counted in each category. Both distributions were employed for investigating the randomness/relationship of the Republican settlement pattern with regard to visibility and relative height.
Figure 1. Data processing steps for the generation of the Local Relief Model (LRM). See text for the description of data processing. The image series shows a group of burial mounds in the Schönbuch area.

Figure 3. Probability map for the study area, with upper and lower values (at different scales) corresponding to the 95% confidence interval.
Figure 3. LRM colour maps showing (a) ridge and furrow, (b) kiln podia, (c) sunken roads and (d) mining traces.
Figure 4. Znióvárálja, location of the old layout and uses of land. The photos display remaining elements: walls, fences, ruins of an edifice, a meadow and some old trees.

Figure 5. Bratislava, the digitalised map of the original layout of the former Jesuit garden, mid-18th century (Hungarian National Archives, T2 No. 1495.), stretched on the aerial photograph: 1. previous garden 2. formal buildings. The area is partly a green space today as well. The terrain levels and the location of the buttress are the same.
5.6 Figure 7. Szécsény, Franciscan cloister. Digitalised drawing of the garden of 1777 (*Historia Domus, Szécsény*), compared to the present state seen with red lines. 1. vegetable garden 2. fruit garden 3. fish ponds 4. canals. The cross section shows the presumed height difference of the embankment after 1950.

5.7 Figure 4. Areas with concentrations of stone piles and the remains of stone, rock-cut, or ditch and mound field boundaries in the forest are outlined in red. Almost a quarter of the modern forest contains evidence of organised field systems predating the current, and long established, system of parcels. *Image: R. Opitz, C. Fruchart, Lieppec / MSHE C.N. Ledoux*
5.7 Figure 8. The ‘feature set’ of limekiln, quarry, claypit and charcoal burning platform, grouped together inside a doline, occurs frequently in the Forêt de Chailluz. a: limekiln; b: claypit; c: charcoal burning platform; d: quarry. Image: R. Opitz, C. Fruchart, Lieppec / MSHE C.N. Ledoux.

5.7 Figure 11. Multiple visualisations of the same data are used to explore relationships between feature, site, landscape and distribution. (a) Air photo of the forested location of the limekiln. (b) Hillshaded DTM of the limekiln. (c) Photo of the remains of the limekiln taken from about 4M away. (d) Yellow dots show the distribution of lime kilns in the local area. (e) The limekiln’s appearance in the point cloud, with points coloured by elevation. (f) A profile section through a limekiln situated in the bottom of a doline. Image: R. Opitz, C. Fruchart, Lieppec / MSHE C.N. Ledoux.
5.8 Figure 7. Soil classification in the area around the 'Fürstensitz' Heuneburg (Baden-Württemberg). – Fischer et al. 2010.

5.8 Figure 8. Slope classification in the area around the 'Fürstensitz' Heuneburg (Baden-Württemberg). The dark brown slopes indicate areas with more than 10 degrees of slope which are not suitable for ploughing. – DEM D-25 (25 m grid), © German Federal Office for Cartography and Geodesy 2004.
5.8 Figure 9. Combined classification of soil and slope values in the area around the 'Fürstensitz' Heuneburg (Baden-Württemberg). – Fischer et al. 2010.

5.8 Figure 10. Bronze Age and Iron Age settlement sites with archaeobotanical investigations in Baden-Württemberg. The steadiness of types of carbonised grain is represented in the diagrams for different periods: BZ = Bronze Age, BZ3 = Late Bronze Age/Urnel period, HA = Early Iron Age/Hallstatt Period, HaLa = Early Iron Age/Hallstatt-Latène Period, L1 = Early Iron Age/Early Latène Period, La2/3 = Late Iron Age/Middle & Late Latène Period. – Fischer et al. 2010.
Figure 4. Ammaia. 3D reconstruction of the 'buried' structures of the forum detected with the GPR survey (elaboration by L. Verdonck).

Figure 5. Ammaia. Interpretation of geophysics survey and excavated areas with reconstruction of the street network: 1. forum, 2. baths, 4. area of the southern gate.
Figure 5. A DEM of a dunefield in the valley of the river IJssel. Note that the relief is exaggerated by a factor 5.4 and illuminated from the north-west.

Figure 6. Comparing the soil map of the same area with a DEM, a strong relationship between topographical height and soil type can be recognised. The brown areas represent soils heightened by sods, which are characteristic for cultivated cover sand dunes.
Figure 13. A DEM of the IJsselinie. Note that the relief is exaggerated by a factor 5.4 and illuminated from the north-west.

Figure 14. The IJsselinie on a topographical map from 1976.
Figure 2. One of several late medieval carvings on the wooden rood screen at Sancreed church, west Cornwall, that depict individuals facing, like the Roman god Janus, and like increasing numbers of landscape archaeologists, both forward and back, looking into the past and the future. In this case the figure, a triciput, is also in the present looking out and thus, like us, responsible for bridging the two.

Figure 4. The Cornwall and Devon HLCs combined and simplified to create a regionalised characterisation. Patterns in and relationships between the several phases of enclosed land, rough ground and settlement suggest numerous regional and more local landscape archaeology research issues. Closer examination of the detail of each parent HLC would identify many more. (Derived from material that is the copyright of Cornwall Council and Devon County Council.)