Digital Spatial Infrastructures and Worldviews in Pre-Modern Societies

Skovgaard Boeck, Simon, Petrulevich, Alexandra

Published by Arc Humanities Press

Skovgaard Boeck, Simon and Alexandra Petrulevich.
Digital Spatial Infrastructures and Worldviews in Pre-Modern Societies.
Project MUSE. muse.jhu.edu/book/103193.

For additional information about this book
https://muse.jhu.edu/book/103193

For content related to this chapter
https://muse.jhu.edu/related_content?type=book&id=3430767
LIST OF ILLUSTRATIONS

Figures

1.1. The Norse World system overview. 17

1.2. Database model of Mapping Saints (simplified). “PK” denotes primary key and “FK” denotes foreign key. 38

1.3. “PlaceID” 5483, the chapel of the “Holy maid” in Västergötland. 46

1.4. “Cult manifestation” #581, illustrating the votive practice associated with a sculpture of St. Lawrence in Landón chapel. 47

1.5. “Cult manifestation” #2582, a miracle of the Blessed Catherine of Vadstena... 50

1.6. Entity relationship diagram of Icelandic Saga Map backend. 62

1.7. Screenshots of Landmælingar Íslands maps showing the locations of Kjartansstein, Bollalág, and Hafragil according to data in the Landmælingar Íslands database.. 64

1.8. Entity relationship diagram of Naðnð.is backend. 69

1.9. Screenshot of Icelandic Saga Map showing geographical places named in Grettis saga... 70

1.10. Screenshot of Google MyMaps interface showing geographical places associated with Grettis saga manuscripts, organized by manuscript shelfmark... 76

1.11. Screenshot of Google MyMaps interface showing geographical places associated with Grettis saga manuscripts, organized by date of manuscript... 76

1.12. Screenshot of Google MyMaps interface showing geographical places associated with Grettis saga manuscripts, organized by date of manuscript and showing manuscript locations outside Iceland. 77
3.8. Screenshot of Google MyMaps interface showing geographical places associated with *Grettis saga* manuscripts, organized by place of origin (true/false)................................. 77

3.9. Screenshot of Google MyMaps interface showing geographical places associated with *Grettis saga* manuscripts and geographical places named in *Grettis saga*. .. 78

3.10 (a) Screenshots of Nafnið.is interface showing the place-name record for Staðarhraun and location of toponyms in the record (e.g., Grettisoddi) that have been given geographical coordinates....... 79

4.1 Östra Älgsjö, Bjälbo parish. The image to the left shows a map by Johan Larsson made around 1635–1637. The map to the right, dated 1638–1639, depicts the same hamlet and is made by the same surveyor..... 98

4.2. The extent of large-scale maps in Sweden during the seventeenth century. ... 100

4.3. Data model or graph in RDF used to describe relations (triples) in TORA... 109

4.4. Architecture and data flows in TORA................................. 110

5.1. The structure of the Swedish place-name collection in the archive of Isof. ... 117

5.2. Search results in the old version of the Swedish digital place-name register. ... 118

5.3. The new Swedish digital place-name register, displaying the results of the simple search for “Uppsala.” 121

5.4. System description... 123

5.5. The design of the Swedish digital place-name register............. 124

5.6. The simple search entry function in the Swedish digital place-name register... 127

6.1. Schematic overview of indirect location as used in place-name research. The place-name expression is here used as the name attribute for three different locations. .. 141

6.2. Example of direct location with multiple place-names in different languages. Direct location is here represented by a point location of a named feature. This direct location is known by multiple names, which is typical of multilingual areas. .. 143
6.3. Schematic example of current and previous spellings of a place-name. .. 146
6.4. Map showing result of not stating a same-origin place-name relationship between localities/feature types. 147
8.1. Overview map (1:20,000), 1836, based on enclosure maps and cadastral maps (1:4,000), ca. 1792–1816, showing each landowner’s plot in the parish of Villersø in eastern Jutland. 188
8.2. Land unit versions per land unit, 1660–2012. 189
8.3. Simplified data model of the DigDag project. Text items such as “Administrative units” stand for tabular data. 191
8.4. Graphical illustration of two administrative units and their four geographical versions, shown with different colours with both precise dating, interval dating (marked with two colour stripes and “?”), and “open-start”/“open-end” dating (marked with “<?” and “?>” respectively). ... 193
8.5. Dating of administrative units and their versions shown in Figure 8.4. .. 193
8.6. Percentages of areas affected by interval dating over time for land units (dashed line) and the parishes (solid line), 1660–2012. 194
8.7. Schematic illustration of geographical changes in seven land units, 1682–2012. .. 196
8.8. Schematic illustration of geographical changes in seven land units and the mapping method of the DigDag project, 1682–2012. 197
8.9. Data underlying the DigDag mapping method in Figure 8.8, 1682–2012. .. 198
8.10. Schematic illustration of geographical changes in seven land units and the mapping method of the DigDag project, 1682–2012. 199
8.11. Data underlying the DigDag mapping method in Figure 8.10 for LUs 3 and 4. .. 199
8.12. DigDag interface in which the municipalities (“Kommunal”) filter has been selected and the date April 13, 1887 chosen. 200
8.13. DigDag interface in which two types of administrative units in the Copenhagen area, the present-day municipalities (black lines) and the parishes, dated February 2, 1665 (dark grey lines), have been chosen. .. 201

8.14. Map based on the combination of two parish maps from 1801 and 1870 showing population growth (%) per parish. 202

9.1. A map of regions numbered as Pausanias’s volumes of the Periegesis Hellados. .. 208

9.2 (a) Passages of Pausanias as they appear in the Scaife Digital Library Viewer Interface, including format options for exporting the passage, word list, morphology, and commentary. 214

9.3. The Recogito user interface, including example of a regional name, its location on the map by Pleiades gazetteer alignment, and comment box. .. 217

10.1. Countries mentioned in Hertig Fredrik av Normandie and Flores och Blanzeflor in D 4a. .. 231

10.2. Cities mentioned in Hertig Fredrik av Normandie and Flores och Blanzeflor in D 4a. .. 232

11.1. The place-name data structure employed by the Norse World infrastructure. .. 252

Tables

1.1. Types of non-names in Norse World. 23

1.2. Types of localities in Norse World. 24

2.1. Medieval parish churches and origin of data in cultural heritage collections. .. 39

2.2. In the database structure, “Type of evidence” for “Cult manifestations” is divided into five categories. These are further divided into a number of more specific subcategories. 45

6.1. Examples of toponyms from Frøya, Norway, with similar place-name expressions across different feature types. 150

6.2. Concept table featuring “LocalityID” and “NameID.” 151
6.3. Concept table showing how "NameID" can be managed with toponyms compounded with place-name concepts of other toponyms.. 152

6.4. Concept showing historical forms in the dataset. The different direct locations are represented by individual "LocalityIDs," whereas different indirect locations are represented by individual "NameIDs." .. 154

10.1. Place-names in the three manuscripts that all contain Hertig Fredrik av Normandie and Flores och Blanze flor... 230

11.1 Overview of Old Swedish and Old Danish variant forms associated with the standard form "France" from the most frequent to the least in the Norse World resource... 259