African Archaeology Without Frontiers

Published by Wits University Press

Sievers, Christine, et al.
African Archaeology Without Frontiers: Papers from the 2014 PanAfrican Archaeological Association Congress.
Project MUSE. muse.jhu.edu/book/51607.

For additional information about this book
https://muse.jhu.edu/book/51607

For content related to this chapter
https://muse.jhu.edu/related_content?type=book&id=1954159
Blurring Boundaries: Forager–Farmer Interactions in the Middle Limpopo Valley

Tim Forssman

Abstract

Increases in farmer social complexity and the development of state-level society in southern Africa appeared first in the middle Limpopo Valley. The various social, political and economic changes that led to the establishment of the Mapungubwe state were witnessed by an incumbent forager community who practised a hunting and gathering way of life. This paper presents new findings indicating that some foragers shifted their lifeways beginning around AD 1000 when they began occupying farmer homesteads and presumably taking part in food production. At two sites, João Shelter (AD 900–1300) and Kambaku Camp (AD 1480–1650), the different phases of forager assimilation into a farmer system are archaeologically observable. Initially, settlement shifts appear to have been limited and foragers may have occupied João alongside farmers on a temporary basis or only performed certain activities at the site. However, at Kambaku it seems that foragers more fully integrated into the farmer system, maintaining only certain parts of their material culture, such as the production of stone tools. Additionally, Kambaku challenges previous findings made in the area that recorded a disappearance of the Later Stone Age material record around AD 1300. The results presented here demonstrate the varied outcomes from forager–farmer interactions and the gradual shift in forager residential patterns and mobility favouring sedentism in the middle Limpopo Valley.

Résumé

L’augmentation des agriculteurs dans une complexité sociale et le développement de la société au niveau de l’état en Afrique australe est apparue d’abord sur la vallée moyenne du Limpopo. Les divers changements sociaux, politiques et économiques qui ont conduit à la mise en place de l’état de Mapungubwe ont été observés par une communauté titulaire de fourrageurs qui a pratiqué, comme mode de vie, la chasse et de cueillette.
L’article présente de nouveaux résultats indiquant que certains fourrageurs ont modifié leurs modes de vie autour de l’an 1000 apres JC quand ils ont commencé à occuper les fermes agricoles et sans doute à prendre part à la production alimentaire. Dans deux sites, João Shelter (900–1300 apres JC) et camp Kambaku (1480–1650 apres JC), les différentes phases d’assimilation des fourrageurs dans un système agricole sont archéologiquement observables. Initialement les mouvements migratoires semblent avoir été limités et les fourrageurs peuvent avoir occupé João aux côtés des agriculteurs sur une base temporaire ou seulement effectué certaines activités sur le site. Cependant, à Kambaku il semble que fourrageurs aient été pleinement intégrés dans le système agricole, en maintenant seulement certaines parties de leur culture matérielle, comme la production d’outils de pierre. En outre, Kambaku défait les résultats antérieurs réalisés dans la région qui a enregistré une disparition de l’enregistrement de matières LSA vers l’an 1300 apres JC. Les résultats présentés ici démontrent les issues variées à partir des interactions fourrageurs-agriculteurs et l’évolution progressive des modèles résidentiels des fourrageurs et de la mobilité favorisant la sédentarité sur la vallée moyenne du Limpopo.

Introduction

Les étapes finales de l’âge classique en Afrique du Sud sont mal comprises (Hobart 2004). Généralement, les archéologues se concentrent sur les niveaux pré-céramiques de l’âge classique, qui sont bien conservés et n’ont pas, comme les niveaux supérieurs dans de nombreux abris rocheux, été perturbés par des animaux domestiqués. Au lieu de ça, les derniers 2 000 ans sont souvent regroupés dans des catégories larges (par exemple, Lombard et al. 2012), homogénéisant le grand degré de diversité enregistré dans de nombreuses études traversant l’Afrique du Sud (comme Mazel 1989; Hall 1994; Walker 1994; Van Doornum 2005; Van der Ryst 2006; Forssman 2014a, b). Beaucoup de cette variabilité a été le résultat de l’interaction entre les chasseurs et les agriculteurs et une conséquence de ces interactions, qui est le sujet de cet article, était un changement dans les patterns de sédentarisation des chasseurs (voir Moore 1985; Hall & Smith 2000). Il semble étrange, alors, que les archéologues utilisent leurs observations d’abris rocheux pour tirer des conclusions sur l’interaction entre les chasseurs et les agriculteurs, tout en acceptant qu’ils ont changé de sites de camp. Pour remédier à ça, des sites d’habitation ouverts, éphémères et de résidences, à la liste pour citer quelques exemples, devraient être étudiés.

En fait, les récentes fouilles dans la vallée du Limpopo, Afrique du Sud (figure 8.1), fournissent des preuves indiquant un changement dans les patterns de sédentarisation des chasseurs, y compris leur occupation de fermes d’habitation à partir d’au moins AD 1000. Le timing de ces changements correspond avec une diminution de la densité des artefacts LSA dans la plupart des fouilles de grotte, finalement conduisant à la disparition de l’enregistrement de l’âge classique c. AD 1300 (Van Doornum 2005: 183). Nouveaux résultats suggèrent que les chasseurs ne se seraient pas abandonnées la nature, mais s’intégraient à la société agricole, lâchant des parties de leur propre culture matérielle. L’objectif de cet article est de présenter ces observations et leurs implications diachrones régionales, qui montrent les diverses conséquences de l’interaction chasseur-agriculteur.
Forager settlement change in the last 2 000 years

Southern African foragers responded in many ways to contact with farmers, one being a shift in their mobility and activity patterns. It seems that initially these changes were linked to access to local resources, resulting in foragers using different site types (see Hall 1986, 2000), expanding their resource base (Hall 1994) and performing various activities in farmer homesteads, possibly linked to trade or labour (for example Guenther 1977, 1986; Wadley 1996). At first, contact appears to have been limited and changes in the LSA are usually difficult to identify and are inferred from material remains. Even so, the sudden increase in scrapers recorded throughout southern Africa from the onset of contact (Deacon 1984: 269) can hardly be considered a major shift since the LSA technology remained the same, only the preference for specific tools changed (Deacon 1984: 269; Sadr 2013). However, it is regarded by many as an indication of the beginning of, or immediately predating (such as Wadley 1996), contact with farmers (see for example Walker 1994; Denbow 1999; Hall & Smith 2000; Klatzow 2002; Van Doornum 2005: 44). This is mostly because micro and macro studies have shown
that scrapers were used to prepare hides (Deacon & Deacon 1980), which, along with other activities (Clark & Prince 1978; Bousman 2005), was an integral trade item in forager–farmer exchanges; because of an increasing demand for hides, there was an increase in the number of tools used to prepare them. These are not, however, the only changes.

Increasing numbers of worked bone, ostrich eggshell beads and manufacturing debris, and a broadening of the forager subsistence base, have been recorded in many parts of southern Africa (Hall 1994; Hall & Smith 2000; Sadr 2002; Mitchell 2003). New technologies such as ceramics, glass beads and metal appear in LSA assemblages and subsistence products such as meat, milk and crops were acquired (Wadley 1996; Sadr 1997). Ethnographic accounts suggest the list of trade items might be far more extensive than what is found in the archaeological record (see Sadr 1997: 105). Thus, from the beginning of contact with farmers the composition of LSA assemblages began to change.

It also seems that contact led foragers to shift their settlement patterns. During periods of interaction, exchange or labour, foragers would either live at (Macquarrie 1962: 30) or possibly within one or two kilometres (Guenther 1986: 350) of a homestead. This pattern might have been seasonal, with foragers spending certain times of the year with farmers and at other times reverting back to a ‘traditional lifestyle’, for example, living once again at rock shelters and employing a hunting and gathering economy (Wadley 1996). Wadley (1996) suggests that this may have been the case in the Magaliesberg, North West province, where she believes scrapers identified at Broederstroom, an Early Iron Age (EIA; AD 350–600) farmer settlement, indicate that foragers periodically visited or temporarily occupied the homestead in order to trade. The findings from Broederstroom are not unique. In KwaZulu-Natal stone tools morphologically consistent with local LSA assemblages were found at Msuluzi Confluence (Maggs 1980) and Nanda (Whitelaw 1993; Whitelaw & Moon 1996), both EIA occupations, suggesting that foragers were interacting with farmers, possibly in their homesteads. This resulted in a declining frequency or density of LSA artefacts in rock shelters (Whitelaw 2009) and in the northern Drakensberg. Mazel (1990) interpreted this as foragers now living in closer vicinity to farmers. Outside of South Africa, in Botswana, Campbell et al. (1991) report on an LSA site called Magagarape, which has a close relationship to a nearby farmer settlement in which, like Broederstroom, LSA formal tools were found (also see Walker 1994). While this association has not been fully investigated, it seems entirely possible that foragers were living at or using the site in order to interact with farmers. Denbow (1999) and Reid and Segobye (2000) argue this to be the case at Bosutswe from about AD 700. They suggest foragers moved near to farmer settlements for trade purposes, possibly bringing in exotic goods in return for subsistence items or other resources. Further north at Nqoma (AD 850–1090),
Mosothwane’s (2010) carbon isotope analysis of a female’s skeletal remains suggests the individual had been living a hunting and gathering existence but came to rely on agriculture. She concluded that the woman was a forager who resided in the farmer settlement and may still have produced stone tools based on their presence at the site. Therefore, during the first millennium AD, shifts in forager campsites and activity areas seem to largely relate to forager–farmer relations.

From the mid-first and into the second millennium AD, forager visits to farmer homesteads increased and their stays lengthened (Hall 1990: 246–247). Accompanying this is the abandonment of the LSA material record. The density of LSA stone tools in the Eastern Cape (Hall 1986), Thukela Basin (Mazel 1989), Thamaga (Sadr 2002) and also in the middle Limpopo Valley (Van Doornum 2005: 183) all decreased considerably, regardless of forager–farmer proximity. However, LSA materials did not disappear altogether, as Hall (2000) shows in the Madikwe region of North West province where he found a cache of stone tools in a Moloko homestead dating to between the fifteenth and eighteenth centuries AD. There are also homesteads in KwaZulu-Natal, which were occupied from the mid-second millennium AD that contain LSA stone tools, such as Clarke’s Shelter, Diamond 1 and Mhlwazini (Mazel 1989, 1990). Here, Mazel (1990) believes that foragers at first moved towards the central Thukela Basin in order to interact with incoming farmers but when these groups settled closer to the escarpment, foragers possibly began occupying homesteads and even producing food. As with the beginning of forager–farmer interactions, this period also seems to contain a great degree of variability regarding the outcomes of these relationships. By the twentieth century, however, most of the remaining foragers were incorporated into farmer communities as subjects (Van der Ryst 1998), ritual specialists (Guenther 1977; Schoeman 2009) or through intermarriage (Vierich & Hitchcock 1996; Mitchell 2009), to list a few examples, but some chose to only periodically depend on farmers (Brooks 2002) or to persist with a traditional lifestyle (see Barnard’s 1992 review).

At present, shifts in forager settlement patterns in the middle Limpopo Valley have not been fully explored. This is largely because most of the excavated sites are rock shelters, not ideal for assessing shifts in forager campsites. In this respect, the findings from João and Kambaku provide worthwhile contributions to better understanding mobility changes in forager lifeways within the region and the local persistence of the LSA record.

New contributions from eastern Botswana

João Shelter

João consists of two distinguishable zones: a rock shelter and a homestead (figure 8.2). The rock shelter contains dry-packed stonewalling, rock art including grooves and cupules, and various artefacts on the surface but notably LSA stone tools, earthenware
ceramics and glass beads. In the homestead there are various rock grain bin foundations, packed rock cairns, a midden, stonewalling and a kraal. Four trenches excavated in 30 mm spits within stratigraphic layers were set up with the goal of determining the relationship between the site’s two residential zones. Trench 1 was placed inside the rock shelter behind the dry-packed stone wall found along the rock shelter’s dripline. Initially three squares were excavated here but it was later decided to excavate a fourth square placed on the northern wall of the trench where the deposit was deeper. The trench consisted of two distinct stratigraphic units: pale brown soil (24–36 cm) and a pebbled stony layer (6–15 cm). Also near the rock shelter but on the outside of the dry-packed stonewalling was trench 3, composed of a shallow grey/brown soil (9 cm). Trenches 2 and 4 were established in the homestead zone near to a grain bin foundation and a midden, respectively, and each contained a single stratigraphic unit: brown soil in trench 2 (30 cm) and midden grey in trench 4 (35 cm). The deposit is deeper in the eastern portion of the site and becomes shallower towards the west where, soon after trench 4, bedrock is exposed.
Chronology

Four charcoal samples were submitted to the Oxford Radiocarbon Accelerator Unit and all dated to within the last 400 years (see Forssman 2014a). A large sample of the glass bead assemblage was identified by Marilee Wood to be within the European period, roughly corresponding with the radiocarbon results. In addition, on the surface and in the upper levels, some European items were found, including fragments of a glass bottle dating to possibly the nineteenth century or later (see Jones & Sullivan 1989), a button, safety pin, bullet casing and a few sherds of modern glass. The extent to which the site was used in the European period is unknown but the Bobirwa people lived in the vicinity of the site until the 1950s, when the Northern Tuli Game Reserve was formed (Hall 2003). However, there is evidence of an earlier occupation and it is this that is of interest to this paper. The ceramic and glass bead assemblages include Toutswe, K2 and TK2 sherds and Zhizo, K2, K2 Indo-Pacific and Mapungubwe beads, indicating an occupation of between AD 900 and 1300 (see Huffman 2007 for dates). Based on these findings and indicated by the dominance of K2-period ceramics and glass beads, the site was likely occupied between AD 1000 and 1200 and then used again during the European period.

Rock shelter

The greatest volume of deposit excavated was from trenches 1 and 3 in the rock shelter, as well as the largest stone tool assemblage and greatest density (number of artefacts divided by volume of deposit) thereof (table 8.1). Crypto-crystalline silicates (CCS) dominate the stone tool assemblage, followed by quartz, with low frequencies of quartzite, agate and dolerite. A large number of chips and cores came from this zone, suggesting that some degree of primary stone tool production was occurring here. Formal tools also mostly came from inside the rock shelter (see figure 8.3) but made up proportionately less of the assemblage than in nearby excavations (2.2 %) such as Balerno Main Shelter (4.4 %; Van Doornum 2005: 231), Tshisiku Shelter (3.4 %; Van Doornum 2005: 211) and Balerno Shelter 2 (2.9 %; Van Doornum 2005: 250). Glass beads are noticeably more frequent than shell and bone beads (organic), which is unusual for forager assemblages, and the ceramic frequency is low despite being close to a homestead (see figure 8.4 for diagnostic finds). Lastly, there is a small faunal assemblage which is also at a low density, discussed separately below. In summary, the assemblage is similar to those identified in northern South Africa (Van Doornum 2005) and elsewhere in eastern Botswana (Forssman 2014a, b) but contains a large glass bead assemblage (figure 8.5), a small faunal assemblage and is adjacent to a homestead occupation.
Table 8.1 Rock shelter (trenches 1 & 3) and homestead (trenches 2 & 4) assemblages; bold indicates maximum in each category, where applicable.

Source: T. Forssman

<table>
<thead>
<tr>
<th></th>
<th>Trenches 1 & 3</th>
<th>Trenches 2 & 4</th>
<th>Totals</th>
<th>Trenches 1 & 3</th>
<th>Trenches 2 & 4</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>M³</td>
<td>1.1</td>
<td>0.48</td>
<td></td>
<td>1.1</td>
<td>0.48</td>
<td>1.59</td>
</tr>
<tr>
<td>Stone tools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>5405</td>
<td>1,112</td>
<td>6,517</td>
<td>69</td>
<td>19</td>
<td>88</td>
</tr>
<tr>
<td>% of total</td>
<td>82.9</td>
<td>17.1</td>
<td></td>
<td>78.4</td>
<td>21.6</td>
<td></td>
</tr>
<tr>
<td>/m³</td>
<td>4,904.2</td>
<td>2,315</td>
<td></td>
<td>3,916.2</td>
<td>2,315</td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td>1,910</td>
<td>515</td>
<td></td>
<td>1,910</td>
<td>515</td>
<td>1,910</td>
</tr>
<tr>
<td>%</td>
<td>35.3</td>
<td>46.3</td>
<td></td>
<td>35.3</td>
<td>46.3</td>
<td></td>
</tr>
<tr>
<td>Quartzite</td>
<td>536</td>
<td>69</td>
<td></td>
<td>536</td>
<td>69</td>
<td>536</td>
</tr>
<tr>
<td>%</td>
<td>9.9</td>
<td>6.2</td>
<td></td>
<td>9.9</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>CCS</td>
<td>2,350</td>
<td>424</td>
<td>2,774</td>
<td>78</td>
<td>9</td>
<td>87</td>
</tr>
<tr>
<td>Agate</td>
<td>379</td>
<td>75</td>
<td></td>
<td>379</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>7.5</td>
<td>6.7</td>
<td></td>
<td>7.5</td>
<td>6.7</td>
<td></td>
</tr>
<tr>
<td>Glass beads</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolerite</td>
<td>230</td>
<td>29</td>
<td>259</td>
<td>132</td>
<td>18</td>
<td>150</td>
</tr>
<tr>
<td>%</td>
<td>4.3</td>
<td>2.6</td>
<td></td>
<td>4.3</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>Chips</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>2,853</td>
<td>498</td>
<td>3,351</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of total chips</td>
<td>85.1</td>
<td>14.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of area tools</td>
<td>52.8</td>
<td>44.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/m³</td>
<td>2,588.7</td>
<td>1,036.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faunal remains</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formal tools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>57</td>
<td>11</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of total</td>
<td>1.1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% exc. chips</td>
<td>2.2</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/m³</td>
<td>51.7</td>
<td>22.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scrapers</td>
<td>24</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backed tools</td>
<td>23</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scrapers/backed tools</td>
<td>1</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 8.3 Formal tools and cores: A, single platform core; B, segmented backed bladelet; C & D, broken segment; E, broken backed bladelet; F, small side scraper; and G & H, segment. Source: W. Voorvelt. Copyright: T. Forssman

Figure 8.4 Decorated and rimmed ceramics: from the rock shelter: A & F, unknown; and H, Transitional K2; and from the homestead: B & E, unknown; C–E, I–J & M–N, Transitional K2; G, K & O, K2 or Transitional K2; L & P, K2; and Q, Toutswe. Source/Copyright: T. Forssman
Homestead
The homestead's LSA assemblage is far smaller than the rock shelter's and is dominated by quartz, followed by CCS, agate, quartzite and dolerite. The number of chips is lower than in the rock shelter, comprising less than 45% of the homestead’s assemblage, and combined with a decrease in core frequency and density, could indicate that this zone was not used as intensely for primary tool production. Formal tools are less common than in the rock shelter and appear in a low density but are also dominated by scrapers and backed tools mostly made on CCS. There is a large decrease in the organic and glass bead categories while there is an increase in the ceramic and faunal assemblages, which nevertheless remain relatively low in terms of density.

Fauna
Unfortunately, not many faunal specimens were identifiable (from 667 g). Of the samples that are diagnostic, tortoise is the most common (n = 24) but the only specimens
found are carapace. Medium-sized bovids \((n = 21)\) are also frequent but 18 of those pieces are tooth enamel. Of interest is the lack of domesticates in the assemblage. A single very large bovid tibia was found (see Plug 2000), which could be from a cow \((Bos\ sp.)\) but might equally be from an eland \((Taurotragus\ oryx)\) or buffalo \((Syncerus\ caffer)\). Perhaps this constitutes the most interesting find regarding the faunal record; one would expect there to have been a greater emphasis on domesticates had farmers occupied the outside homestead.

Kambaku Camp

Kambaku is 2.8 km south-east from João and is composed of two areas: a lower homestead and an upper kraal (figure 8.6). Both areas were excavated in order to determine their association as well as the relationship between the farmer settlement of the site and the LSA stone tools found in each of these zones. Trench 1 extended from the homestead's kraal into a small overhang at the back of the site behind stonewalling in what appeared to be a midden deposit. The trench consisted of four squares: A, inside the rock shelter's midden deposit; E and G, in the zone between the rock shelter and the kraal, both composed of a grey/brown stratigraphic unit (26 cm), and T, inside the

![Figure 8.6 Kambaku Camp's homestead (left); note the walling inside the rock shelter (too small an area for occupation and with an uneven surface), and upper kraal (right) with a natural dolerite barrier and smaller, possibly calves' kraal. Source: W. Voorvelt. Copyright: T. Forssman](image-url)
African Archaeology Without Frontiers

kraal. It was hoped that in the rock shelter-to-kraal zone features associated with huts would be identified, including flooring, ceramics and beads as well as possibly stone tools. The goal of the excavations in the upper kraal was to recover a large ceramic sample in order to associate the occupation with a ceramic facies and thus relatively date the site. Two squares in trench 2 (±30 cm) were excavated but due to the fact that not many artefacts were recovered, trench 3 (21–36 cm) with three squares was established to increase the sample size. Both trenches were composed of a dung deposit, likely from cattle, and a compacted base about 15 cm in thickness.

Chronology
A single charcoal sample was submitted to Beta Analytic for radiocarbon dating. The sample was taken from trench 1, square A, spit III and calibrates to AD 1480 to 1650 (310 ± 30 BP). Diagnostic ceramic sherds found in trenches 1 and 3 are from the Icon (AD 1300–1450) and Khami (AD 1450–1800s) periods corresponding with the charcoal date. A possible K2 sherd was found at the site but does not by itself provide sufficient evidence to indicate that the site was occupied between AD 1000 and 1200, and could have arrived through the recycling of ceramic pots or sherds or incidentally.

Stone tools
Very few stone tools were recovered from the site (n = 285). Most were found in the upper kraal, trenches 2 and 3, but also in trench 1 located in the homestead (table 8.2). The majority of the stone tools were produced using CCS materials, followed by quartz, quartzite, agate and dolerite. There is a difference in the raw material distribution between the homestead and the upper kraal. In the former, CCS is more frequent than quartz by more than 5 %, whereas in the upper kraal, CCS clearly dominates over quartz, and quartzite is more frequent here than it is in the homestead. The meaning of this cannot be determined due to the assemblage’s size. Only five formal tools were recovered from the excavations, representing 1.8 % of the entire assemblage and 2.3 % when chips are excluded. The formal assemblage is composed of two end scrapers.

Table 8.2 Distribution of stone tools between the homestead and upper kraal. Source: T. Forssman

<table>
<thead>
<tr>
<th>Zone</th>
<th>Quartz</th>
<th>%</th>
<th>Quartzite</th>
<th>%</th>
<th>CCS</th>
<th>%</th>
<th>Agate</th>
<th>%</th>
<th>Dolerite</th>
<th>%</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homestead</td>
<td>51</td>
<td>44.3</td>
<td>5</td>
<td>4.3</td>
<td>58</td>
<td>50.4</td>
<td>1</td>
<td>0.9</td>
<td>0</td>
<td>0</td>
<td>115</td>
</tr>
<tr>
<td>Upper kraal</td>
<td>52</td>
<td>30.6</td>
<td>22</td>
<td>12.9</td>
<td>92</td>
<td>54.1</td>
<td>3</td>
<td>1.8</td>
<td>1</td>
<td>0.6</td>
<td>170</td>
</tr>
<tr>
<td>Total</td>
<td>103</td>
<td>36.1</td>
<td>27</td>
<td>9.5</td>
<td>150</td>
<td>52.6</td>
<td>4</td>
<td>1.4</td>
<td>1</td>
<td>0.4</td>
<td>285</td>
</tr>
</tbody>
</table>
Ceramics and beads
An assemblage of 571 ceramic sherds was recovered from Kambaku. Most are undiagnostic (94.4 %), followed by plain rims (4 %), decorated sherds (1.4 %) and a single decorated rim (0.2 %). The majority of the pottery was found in the homestead ($n = 351$; 61.5 %) and is mostly undiagnostic, with a smaller number of plain rims and decorated pieces. In the upper kraal, 220 ceramic sherds were found (38.5 %), of which 205 are undiagnostic. A greater frequency of rims and decorated pieces was recovered from the upper kraal than in the homestead. Identified ceramics from the homestead include a possible K2 sherd and a Khami rim in square E, while in the upper kraal an Icon and possible Icon sherd were identified in square F. Rims found here are also consistent with Khami sherds containing rolled lips, a diagnostic feature of the facies (figure 8.8; see Huffman 2007 for typology).

One white bead approximately 1.6 x 1.5 mm with an unusually large perforation was found at square A in the homestead midden. It is possibly European in origin.

Figure 8.7 Formal tools and cores from Kambaku Camp: A, preliminary flaked core; B, broken backed bladelet; C, bladelet core and small end scraper; D, segment; and E, broken bladelet. Source: W. Voorvelt.
Copyright: T. Forssman
(Wood, pers. comm. 2012), and, if so, dates to within the last three centuries and within the latter portion of the Khami phase. Also found on the surface was a Dutch bead made in Germany in the nineteenth century and a Bohemian bead that appeared in southern Africa at a similar time but which was used into the beginning of the twentieth century (Wood 2000). The radiocarbon date range, however, does not suggest a European period occupation and either the beads were introduced to the site after the homestead was abandoned or the radiocarbon dates are incorrect. However, the overlap between the radiocarbon dates and the ceramic assemblage suggests this is unlikely.

Fauna
A small faunal assemblage of 346 g was recovered from the excavations with most of the identifiable specimens found in the upper kraal and only four unknown bovid specimens from the homestead. The upper kraal contained a number of medium bovid specimens and an unclassified and large bovid. Other identified specimens included steenbok, tortoise and a small bovid, possible impala, and vervet monkey. Due to the lack of identifiable specimens, little can be said about the subsistence base of those occupying Kambaku.

Discussion
João Shelter: living with farmers?
There are two occupation phases or uses of João: a European period use and, of interest here, an earlier occupation of the homestead and rock shelter between AD 900 and 1300. It appears that the spatial distinction between the rock shelter and
homestead portions of the site is of importance. The obvious distinction in the mate-
rial remains is the dominance of CCS and quartz in the rock shelter and homestead re-
spectively, and a higher frequency of formal tools in the former with a greater fre-
quency of ceramics in the latter. The clear restriction of the quartz assemblage to the

homestead also appears to be concentrated in what would have been the back of the

settlement, as in Hall's (2000) findings. In quartz assemblages, the formal tool com-
ponent is typically low, probably due to the irregular and unpredictable fracturing of

the material, hence it being used in informal tool assemblages (Orton 2004: 38, 112).

João's homestead, however, contains formal tools, which may have been produced

in and brought from the rock shelter. Foragers living in João's homestead may have

used these artefacts but relied on farmer tools, hence only needing an expedient

quartz-dominated technology. It may be that the rock shelter was reserved for forager

activities or that foragers themselves were restricted to this area when performing

daily tasks. If so, the link between foragers, rock art and the rock shelter may have

been a symbolic one since farmers often viewed foragers and places such as rock shel-

ters as a part of nature and thus dangerous or spiritually charged (Hall & Smith 2000;

Ingold 2000; Schoeman 2006a).

Kambaku Camp: living as farmers?
To assess whether foragers lived at Kambaku with farmers, the association between LSA
and farmer items must be established. The homestead is typically agriculturalist in plan,

with a central kraal surrounded by a midden to the north and south, grain bin foun-
dations, dry-packed stonewalling and what appears to be human burials based on the

presence of packed stone. Artefacts found on the surface and in the excavations include

ceramic sherds, glass beads and grinding stones. All of these features and artefacts are

typically associated with farmers (see Huffman 2007). The next question is whether

foragers were sharing Kambaku with farmers during its occupation; the stone tools may

have been from a preference for the same place or, as Hall (2000) cautions, introduced
to the site through agriculturalist constructions and activities. The tools were primarily

restricted to two zones: the midden in trench 1 and the upper kraal. The midden is

situated at the edge of the rock shelter near the stonewalling and in the ‘back’ of the set-
tlement. Farmers would place ash on the midden to ritually ‘cool’ the deposit (Comaroff

1985), and the deposition of stone tools here could have a ritual purpose. It is also

possible that the tools were swept up and discarded in the midden, in which case either

the settlement is on top of an earlier LSA occupation or the tools were produced in the

homestead and the debris was cleaned afterwards; the latter would explain the appear-
ance of stone tools throughout the midden and not at a single level. Similarly, the kraal

contained stone tools throughout the deposit and not only at the base, which would

be expected if the kraal was placed on top of an earlier LSA occupation. Therefore, the
presence of stone tools in two culturally formed areas makes it reasonable to conclude that the stone tools are associated with the farmer use of the site.

Thus, it appears that at Kambaku foragers partially assimilated with agriculturalists and continued living on the landscape after AD 1300, indicating an increased reliance on farmers to the point that they could not or did not continue with their own economy. If they did continue living as hunter-gatherers, we would expect to find evidence of this in rock shelters, yet at present there is no conclusive evidence indicating this to have taken place in the middle Limpopo Valley (but see Forssman 2014b). It may be that foragers either left the area, resulting in a smaller local population, or chose to live as those at Kambaku did; alongside farmers and, depending on the degree of integration, as farmers from a technological point of view. In such cases, distinguishing between foragers who have been completely assimilated into a farmer economy and agriculturalists might at times be difficult. Whether these patterns are present across the region cannot be said at this stage but it may be worth pursuing along with the possibility that foragers were alternating between a settled and a mobile lifestyle.

Shifting forager settlement patterns in the middle Limpopo Valley

It should be asked: why would foragers move into a homestead in the first place? Two possible reasons are considered. In the middle Limpopo Valley, unlike anywhere else in Africa, foragers were part of, or at the very least witnessed, state formation between AD 900 and c. 1250. Those working closely with farmers or occupying sites such as João would possibly have gained access to political, social and economic developments. By taking part in elephant hunting (Forssman et al. 2014), rain-control rituals (Schoeman 2006b; Brunton et al. 2013) or metal working such as at Mafunyane (Forssman 2014a), foragers may have been included in state society, becoming direct beneficiaries. Living as or with farmers afforded foragers various opportunities, including subsistence goods, iron implements, protection from the natural elements as well as marriage (for example, see Wadley 1996) and political assistance (see Denbow 1984; Yellen 1984; Moore 1985).

However, did foragers need to live with farmers in order to access these resources? Prior to their occupation of homesteads, foragers were already receiving some of the goods mentioned above and returning them to their rock shelter campsites. The decision to live within homesteads, therefore, does not seem to be one based on resource access alone. Instead, it may have been linked to a diminishing resource base making it difficult to continue with a foraging economy (for example, see Tanaka 1976; Cashdan 1984). Farmers occupied the middle Limpopo Valley in large numbers and by AD 1000 there were probably about 3 500 farmers living in the area, which grew to more than 11 000 during the Mapungubwe period (Huffman 2008; we do not have forager population numbers). The farmer population required plentiful food resources, which meant large-scale cultivation and stock keeping. Both of these practices would have
impacted on the forager food base, possibly leading to a decline in natural resources, forcing foragers to rely increasingly on an agricultural economy and, along with social and political developments associated with state formation, led to a progressively sedentary lifestyle (see Cashdan 1977). It may be that not all foragers underwent such change and some may have held onto their own cultural practices longer than others.

There is, therefore, evidence indicating that in the middle Limpopo Valley forager or Stone Age people began living in agriculturalist homesteads. At first this may have been only for parts of their yearly cycle but by the mid-second millennium AD the only known evidence in the region of an LSA material culture is in a homestead. Are we seeing an intentional adoption of herding and farming practices, as hypothesised in the two cases discussed here, or did foragers do so simply because the opportunity arose? Either way, why were no definitive domestic remains found in either of the sites? Perhaps through additional studies in the region and across southern Africa (such as Sadr 2003; Hobart 2004) we will be able to answer this question and understand why foragers began living in homesteads and possibly began producing food.

Conclusions

Changes in the forager way of life led to, at some sites across southern Africa, a close relationship between foragers and local farmer communities. These changes fundamentally affected the LSA over the last 2 000 years, and in the middle Limpopo Valley this led to the widespread abandonment of rock shelters by AD 1300. Previously it was suggested that this may have been due to foragers migrating and settling in other regions or assimilating with farmers. Based on new evidence, it seems that at least some foragers shifted their settlement pattern and began living in fixed homesteads. We see this shift by AD 1000 at João when foragers occupied certain spaces within the farmer homestead but by the time Kambaku was occupied, probably in the mid-second millennium AD, foragers were entrenched in the farmer economy, producing a limited stone tool assemblage. Identifying this shift in the archaeological record is notoriously difficult but in the examples presented above there is evidence indicating this to have been the case. While it seems that some foragers assimilated into farmer societies, possibly producing food and practising animal husbandry, the extent to which they abandoned their own behaviour, beliefs and practices cannot be determined at this point. Future work may yet identify more sites like João and Kambaku, contributing to our understanding of local assimilation, which would be strengthened by performing a genetic study on Bantu-speaking people from the region. For now, we must rely on the archaeological evidence that shows a close-knit relationship between foragers and farmers, and, as with other parts of southern Africa, this appears to have been a developmental process leading to assimilation rather than a sudden abandonment of the LSA way of life.
Acknowledgements

I thank the Paleontological Scientific Trust, Scatterlings of Africa, the National Research Foundation and the Meyerstein Trust for funding and the Mashatu Game Reserve for support. I especially thank Peter Mitchell for his help throughout this project and those who assisted me in the field. I would also like to thank Debra Corsten, Darden Hood, Wendy Voorvelt, Marilee Wood and the Oxford Radiocarbon Accelerator Unit. Karim Sadr is thanked for his comments on an earlier draft.

References

