Queen of the Lakes
Mark L. Thompson

Published by Wayne State University Press

Thompson, Mark L.
Queen of the Lakes.

For additional information about this book
https://muse.jhu.edu/book/56556
With few exceptions, U.S. ships on the Great Lakes don’t really have home ports. While the freighters are owned by shipping companies with headquarters in port cities like Buffalo, Cleveland, Chicago, or Duluth, the ships themselves are vagabonds. During the operating season, they may never call at the port where their fleet is headquartered. When they are ordered into lay-up at the end of the shipping season, they may spend the winter months at any port around the lakes where their owners can rent suitable dock space. One year they might be tied up in the Maumee River at Toledo, while at the end of the next season they’re sent to a dock at Duluth or Milwaukee. Attached to most ships on the lakes, the term “home port” would clearly be a misnomer. That was not the case in 1927 for ships of the Bradley Transportation Company.

In every respect, Rogers City, Michigan, had been home port for the Bradley boats since the fleet was formed in 1912. Located on the northern shore of Lake Huron, the community of less than four thousand residents was adjacent to U.S. Steel’s Calcite Plant, one of the world’s largest limestone quarries. The “plant,” as it was known locally, was the major employer for residents of Rogers City and the small farming settlements in eastern Presque Isle County, most of whom were of German or Polish descent.

It is well known that during the late nineteenth and early twentieth centuries, millions of rural Americans abandoned their family farms and migrated to the growing industrial cities of the Midwest in search of wage-paying jobs. Young people, in particular, flocked to cities like Chicago, Detroit, Cleveland, and Buffalo to work in steel mills and auto factories. To them, working as a laborer in a mill or factory was a more attractive and exciting prospect than trying to eke out a meager living on a farm.

What many people don’t realize, however, is that the farm-to factory migrations weren’t just limited to the great smokestack cities. In the rural areas around the northern lakes, for example, thousands left farming to take jobs in the growing mining industry. On Michigan’s Keweenaw Peninsula, they were drawn to Houghton, Ishpeming, and Negaunee by jobs in the copper mines and mills. At Marquette, Iron Mountain, and Norway, Michigan, and in Ashland, Wisconsin, they stood in line to apply for jobs in the iron mines or at the ore docks where the big freighters were loaded. In the north woods of Minnesota, young men left their dairy farms and wheat fields and gathered at mine offices “up on the range” north of Duluth. And at Rogers City farm boys from Posen, Hawks, Metz, and Moltke put their names on waiting lists for jobs at the Calcite Plant. Descendants of families that had tilled the soils of Europe and North America for untold centuries became drill op-
According to industry executives, the Hennepin was a scraper, or pan-type, self-unloader. Her conversion involved rebuilding the cargo hold above a box-like tunnel running the length of the hold. The sides of the cargo hold sloped inward toward the top of the tunnel so that cargo in the hold would slide down toward a series of gates, or trap doors, located along the top of the tunnel. When the gates were swung open by crewmembers, cargo would fall from the hold into the tunnel. At each end of the tunnel a large steel scraper, or scoop, could be pulled through the tunnel by a system of chains and cables. The scrapers scooped up cargo that had fallen into the tunnel and carried it to an opening in the tunnel near the middle of the cargo hold. From there a vertical bucket elevator carried the cargo up to the level of the main deck. On the main deck was a skeleton-like conveyor boom housing an endless rubber belt that ran on rollers. The end of the boom over the ship was hinged, and the boom could be raised and swung over the side of the ship by a system of cables. In that way, cargo dumped onto the conveyor belt by the bucket elevator would be carried the length of the boom and spill off the end and onto a dock. While information on the Hennepin is scanty, it is unlikely that the little self-unloader could carry more than a thousand tons of cargo. With her primitive scraper system, cargo would probably not have been unloaded at more than 100-200 tons per hour.

Compared to traditional straight-deckers, the Hennepin was an odd-looking affair, and it was widely ridiculed. Critics claimed that the self-unloader was just another sea-going aberration that would never catch on within the industry. Shipping executives were quick to point out that in order to make room for the tunnel and sloping sides of the cargo hold, a lot of cargo space had to be sacrificed. As a result of those modifications, the Hennepin could carry far less cargo than straight-deckers of her size. Since shipowners were paid based on the amount of cargo their ships carried, they weren’t about to install equipment that would reduce the carrying capacities of their vessels. Besides, unloading equipment was available at all of the major ports around the lakes.

While many quickly dismissed the Hennepin, her owners were very pleased with their pioneering self-unloader. For the first time, it allowed them to transport cargoes of stone to hundreds of small ports around that lakes that did not have Huletts or other unloading systems. The Hennepin opened vast new markets for Lake Shore Stone.

Despite the utility of the Hennepin, self-unloaders did not catch on rapidly within the Great Lakes shipping industry. A few other small freighters were converted to self-unloaders after the Hennepin went into service, but it was not until the launching of the Str. Wyandotte on July 2, 1908, that many
people in the industry began to take them seriously. The 286-foot, steel-hulled *Wyandotte* was the first ship designed and built as a self-unloader. The 2,095 gross ton vessel was owned by the Wyandotte Chemical Company, which had built a major manufacturing plant on the Detroit River. Company officials were looking for a way to bring shiploads of raw materials into the plant, primarily limestone, without going to the expense of installing expensive seaside unloading rigs. George Palmer, head of engineering at Wyandotte, spent a great deal of time studying the efficiency of the few crude self-unloaders then in service. He also held extensive discussions with a firm that specialized in building conveying systems. With all of the data he gathered in hand, Palmer recommended to Wyandotte executives that the company commission a self-unloading freighter. Built at Great Lakes Engineering Works in nearby Ecorse, Michigan, the *Wyandotte* could carry 2,000 tons of cargo. The unloading equipment, an updated version of the system used on the *Hennepin*, could discharge cargo at a rate of about 500 tons per hour.3

By the time the first of the Bradley self-unloaders was launched in 1912, naval architects and conveyor system designers had decided to abandon the midship-mounted vertical elevator and unloading boom. On the *Calcite*, the boom and elevator apparatus were installed at the forward end of the cargo hold, directly behind the forward deckhouse. It was raised and lowered by means of cables running to it from a massive steel A-frame that towered above the forward end of the boom. The practice of placing the boom and elevator at the forward end of the cargo hold became quite universal on self-unloaders on the lakes after 1912, and the basic layout continued to be followed until the 1970s.

By the time the *Str. Charles C. West* was built for the Rockport Steamship Company of Sheboygan, Wisconsin, in 1925, self-unloading equipment had gone through a dramatic metamorphosis. Instead of a scraper-type conveying system, the 470-foot *West* had two forty-inch-wide rubber conveyor belts in the tunnels beneath her cargo hold. They carried cargo to the forward end of the hold where two inclined rubber belts replaced the previously used bucket elevators to move the cargo up and out of the hold to a hopper that fed the boom on deck. The *West* could carry 8,000 tons of cargo, and with its updated unloading system, it could discharge that cargo at the impressive rate of 1,800 tons per hour.4

While it was a state-of-the-art vessel, the *West* was not the largest self-unloader on the lakes in 1925. Honors for having the largest self-unloaders went to the Bradley fleet of Rogers City. All of the Bradley ships except the *Calcite* were bigger than the *West*. The newest Bradley boat, the 588-foot *Str. T. W. Robinson* launched the same year as the *West*, was more than a hundred feet longer than the Rockport self-unloader. Although the Bradley freighters were not suited to the important iron ore trade, fleet executives were from the very beginning committed to building boats that could, in every other respect, operate in the mainstream of shipping on the Great Lakes.5 If the proud residents of Rogers City found it at all necessary to be defensive about their boats, it was only because their size still lagged behind that of the big straight-deckers then in operation.

STR. CARL D. BRADLEY

640’x65’2”x30’2”
Queen of the Lakes
April 9, 1927 to June 28, 1949

Any inferiority the people of Rogers City might have felt vanished completely at eight o’clock in the morning on July 28, 1927, when the *Str. Carl D. Bradley* first poked its nose around Adams Point and steamed grandly into the harbor at Calcite. Built at Lorain, Ohio, by American Ship Building, the mammoth self-unloader was a record-breaking 640 feet long. In the stillness of that warm summer morning, hundreds of plant workers and local residents joined with officials of the Bradley fleet to welcome the new Queen of the Lakes to her home port.

Few ships in the history of the lakes have been greeted with such enthusiasm. Quarry operations were suspended for several hours so that all of the employees could attend the gala welcoming ceremonies. “Hundreds of flags placed on the numerous buildings, locomotives, trucks, etc., fluttered in the morning breeze and the whole affair presented a holiday appearance.” The new harbor tug *Rogers City* carried the community band and Mrs. Carl D. Bradley and her guests out to meet the *Bradley* “and escorted her into the loading slip amid the shrieking of whistles and the waving of flags by spectators.” Once the massive grey-hulled freighter had been docked, the village president formally greeted the *Bradley* and its crew on behalf of the citizens of Rogers City, stressing “the warm interest of the community in the [fleet] and its welfare.” Carl D. Bradley, the president of Bradley Transportation and namesake of the new ship, also addressed the exuberant crowd. He thanked them for the warm welcome they had given the new freighter and described in detail its many attributes. The new Queen was, according to Bradley, “the last word in freighter construction.”

Seven feet longer than the Canadian *Lemoyne* and eighteen feet longer than Columbia’s *John A. Topping*, the next
largest U.S. ship on the lakes, the Bradley had a beam of just over sixty-five feet and a hull depth of more than thirty feet. She was measured at 10,028 gross tons, just a few hundred tons less than the wider Lemoyne. She was also one of the most powerful bulk freighters ever built. Her turbo-electric engine was rated at an impressive 4,800 horsepower, almost twice that of the standard triple-expansion engines that were then being installed on most freighters. The bottom line for shipowners, though, is carrying capacity, and during her early seasons on the lakes the Bradley set a number of new records for the stone trade. She carried her largest cargo during the summer of 1929, when she loaded 18,114 tons of limestone at Calcite for shipment to the U.S. Steel mills at Gary, Indiana.

When the U.S. entered the Great Depression following the “Black Tuesday” stock market crash on October 29, 1929, the Bradley was one of 410 U.S. freighters owned by forty-two fleets. Together, the ships had a combined single-trip carrying capacity of just over three million tons. As the U.S. economy ground to a virtual standstill, tonnages shipped on the lakes plummeted. After transporting more than 138 million tons during the 1929 season, less than 42 million tons was hauled in 1932 during the depths of the Depression. If all of the U.S. ships had been in operation that year, they could have hauled the total tonnage by making just fourteen trips each. By comparison, they would have been expected to make forty-five or fifty trips in a normal season. Of the forty-nine freighters...
owned by Interlake Steamship Company, second only to Pittsburgh Steamship among the U.S. fleets, only thirty vessels operated in 1932. Together, they carried just over three million tons of cargo, mainly coal. During a normal season, that tonnage could have been carried by just eleven ships operating full-time.

Needless to say, most of the thirty Interlake boats that saw service during 1932 did not operate for the full season. Some were, in fact, in commission for as little as twelve days, just long enough to insure that their equipment received minimal maintenance attention. Fleet employees with enough seniority to hold a job were shifted from one boat to another. Most of the crewmembers holding unlicensed jobs aboard the Interlake boats were actually licensed officers. In better years they had sailed as mates and assistant engineers, but during the 1932 season they were glad to have work as deckhands or wipers in the engine room.12

Shipbuilding ground to a halt on the lakes by 1930. It wasn’t until 1937 that a new U.S. ship came off the ways at a Great Lakes shipyard, that being the tanker Amoco Indiana. It was followed later that year by three new dry bulk freighters built for Pittsburgh Steamship, while a fourth Pittsburgh freighter was launched on January 8, 1938. The William S. Irvin, Ralph H. Watson, Governor Miller, and John Hulst were 610–611 feet long and measured at 8,200–8,300 gross tons. Smaller than the Bradley, they are best remembered as the first ships to have direct-drive, steam turbine engines and enclosed passageways, or “tunnels.” The tunnels ran down each side of the ship, sandwiched between the sidetanks and the main deck in an otherwise unusable area of the cargo hold. The tunnels connected the engine room at the stern with the forepeak area at the bow and provided a way for crewmembers to travel between the fore and aft cabin areas and work spaces without going out on deck during inclement weather.
When caught out on the lakes in a storm, crewmembers often found it impossible to move between the bow and stern areas of their ships. That was a particular annoyance for members of the deck department. While they were housed at the bow, the galley was at the stern. In a bad storm, the galley might as well have been on the moon, for there was no way for deck crewmembers to get aft to eat. During the November 1926 storm in which the Str. Peter A. B. Widener lost its rudder, deck crewmembers couldn’t get aft to the galley for three days. It’s likely that they had some food stashed forward, but nothing to compare with the generous quantities of delicious hot food turned out by the galley crew. The tunnels that first appeared on the Irvin, Watson, Miller, and Huist proved to be very popular with crewmembers, especially those in the deck department. Almost immediately, these tunnels became standard features on lake freighters.

The four new Pittsburgh Steamship vessels joined a Great Lakes fleet that had been decimated by the Depression. Only twenty-one fleets, with just over three hundred ships, were still operating in 1938. Between 1929 and 1938, twenty-one U.S. fleets had disappeared from the lakes, along with over a hundred ships. The owners of low-capacity steamers and sailing vessels that had hung on at the periphery of the industry for decades failed to survive the depression years. The ships still in operation averaged a very respectable 8,572 gross tons, slightly larger than the Schoonmaker and Snyder, Jr., that had been launched in 1911–12. For the Great Lakes shipping industry, the Great Depression was sort of an unplanned “urban renewal” program. Small, inefficient vessels were forced out of business, making room for the construction of big new ships like the Irvin, Watson, Miller, and Huist that began to appear in the post-Depression years.

The next notable class of ships to make their appearance after the Depression were the five “supers” of World War II that were launched in 1942 for Pittsburgh Steamship. The latest post-Depression years. The ships still in operation averaged a very respectable 8,572 gross tons, slightly larger than the Schoonmaker and Snyder, Jr., that had been launched in 1911–12. For the Great Lakes shipping industry, the Great Depression was sort of an unplanned “urban renewal” program. Small, inefficient vessels were forced out of business, making room for the construction of big new ships like the Irvin, Watson, Miller, and Huist that began to appear in the post-Depression years.

The next notable class of ships to make their appearance after the Depression were the five “supers” of World War II that were launched in 1942 for Pittsburgh Steamship. The latest post-Depression years. The ships still in operation averaged a very respectable 8,572 gross tons, slightly larger than the Schoonmaker and Snyder, Jr., that had been launched in 1911–12. For the Great Lakes shipping industry, the Great Depression was sort of an unplanned “urban renewal” program. Small, inefficient vessels were forced out of business, making room for the construction of big new ships like the Irvin, Watson, Miller, and Huist that began to appear in the post-Depression years.

The first of the “supers” was the Str. Leon Fraser, launched on February 28, 1942, at the River Rouge, Michigan, shipyard of Great Lakes Engineering Works. In April, two more of the big freighters went into the water, the Enders Voorhees at River Rouge and the Benjamin Fairless at AmShip’s Lorain, Ohio, yard. The fourth and fifth ships were both launched on May 22. The Irving S. Olds came off the ways at Lorain, while the A. H. Ferbert went into the water at River Rouge. In design, the Fraser-class ships were very similar to the earlier Irvin-class boats, and they were also powered by steam turbine engines.

The Fraser-class freighters were the last privately-built ships launched on the lakes during World War II. In the 1940s, the government took control of the vital shipyards and redirected their efforts to support the U.S. war machine. During the war years, U.S. yards on the lakes turned out cargo ships, submarines, frigates, landing craft, motor torpedo boats, and minesweepers. To meet the heavy wartime demand for iron ore and other raw materials needed by the steel industry, the U.S. Maritime Commission also contracted for the construction of sixteen new bulk freighters for service on the lakes.

The first of the sixteen virtually identical Maritime-class boats was launched on September 19, 1942, at Great Lakes Engineering Works’ shipyard in River Rouge. Christened the Adirondack at her launching, the new freighter was 620 feet long, with a 60-foot beam. Between September of 1942 and the end of 1943, fifteen other Maritime boats were built at yards around the lakes. The Adirondack and five other boats were built at the Great Lakes Engineering Works at River Rouge, while three more boats were turned out at their facility in Ash-tabula, Ohio. American Ship Building constructed a total of six Maritime boats, four at Lorain, Ohio, and two at Cleveland. After launching, the new freighters were turned over to Great Lakes fleets. By the end of 1943, Maritime-class boats were being operated by Bethlehem, Boland and Cornelius, Columbia, Interlake, Reiss, Wilson, and Pittsburgh Steamship.

Smaller than the Bradley and the ships of the Irvin and Fraser classes, the Adirondack and the Maritime boats that followed could carry only 16–17,000 tons at maximum draft. Their propulsion systems were also slightly out-of-date. Since all of the diesels and steam turbine engines built in the U.S. during the war years were earmarked for use on military vessels, the Adirondack and her sisters were outfitted with 2,500-horsepower, triple-expansion steam engines. While they weren’t exactly state-of-the-art vessels, the sixteen Maritime boats added greatly to the carrying capacity of the fleet during the war years.

By the time the war ended in 1945, the U.S. fleet on the lakes stood at 404 ships, with a combined single-trip carrying capacity of 3,352,000 tons. By comparison, in 1945 the Canadian fleet was made up of 212 ships with a total single-trip carrying capacity of only 842,000 tons.

Tonnages levelled off after the war, and there was little new U.S. construction at yards on the lakes. The few ships that came out were smaller than the Bradley; and she would retain her title as Queen of the Lakes for a record twenty-two years, until the launching of the Wilfred Sykes in 1949. She continued

ROGERS CITY’S BIG SELF-UNLOADER
to be the longest self-unloader on the lakes until the Str. John G. Munson joined the Bradley fleet in 1952. Unfortunately, the Carl D. Bradley is most often remembered today not for having been the longest reigning Queen of the Lakes, but as the tragic victim of a vicious storm that raged across the inland seas on November 18, 1958.

There’s a special telephone number you can call in Rogers City to hear a tape-recorded report of scheduled boat arrivals and departures at the Calcite Plant. Had you called the tape on the morning of Tuesday, November 18, 1958, as family members of many of the Bradley’s crew did, you would have heard that the big self-unloader was scheduled to arrive at Calcite at 2 a.m. on Wednesday and go into lay-up. In Rogers City and the nearby communities of Onaway and Posen, many wives of Bradley crewmembers set about cleaning house and making shopping lists for the trips they would make to the grocery store later in the day. A few made babysitting arrangements so they could meet the boat when it arrived during the night, while others planned to drop their cars off at Calcite in the evening so their husbands could drive themselves home. The Bradley had been into its home port more than forty times during the season. While crewmembers were usually able to run home to see their families for at least a couple of hours while the boat was being loaded, this trip into Calcite would be different. For the crew of the Bradley, the 1958 shipping season would end when the boat arrived at Calcite on November 19. For the next four months, the sailors on the Bradley would be reunited with their families and friends.

The Bradley finished unloading a cargo of limestone at Gary, Indiana, and departed the dock at 10 p.m. on Monday, November 17, 1958, bound for Rogers City. Moderate southerly winds were blowing, but the latest weather forecast called for winds to increase to gale force and shift around to the southwest, so fifty-two-year-old Captain Roland Bryan set a course up the west shore of Lake Michigan, to stay in the lee of the land. Winds increased steadily after the Bradley passed Milwaukee at 4 a.m. on Tuesday, and Captain Bryan instructed engineering personnel to take on the maximum amount of water ballast so the ship would ride better in the growing seas. After hugging the Wisconsin shoreline all day, the Bradley altered course late in the afternoon to angle across northern Lake Michigan toward the Straits of Mackinac at the top of the lake.

There wasn’t much traffic out on the lake that afternoon. As the wind and seas had intensified, most freighters had sought out sheltered anchorages where they could safely ride out the storm. Captain Bryan, who had been sailing since he was a lad of fourteen and a captain for the past seven seasons, was apparently undaunted by the storm. We have no way of knowing what went on in his head that afternoon—why he chose to take his ship out onto the northern reaches of Lake Michigan when so many others were going to anchor. Earlier the bachelor captain had written a letter to his girlfriend in Port Huron, Michigan, in which he said that the thirty-one-year-old Bradley was “pretty ripe for too much weather.” To another friend in Port Huron, Bryan wrote that “the hull is not good,” adding that he had to “nurse her along.”16 Maybe he underestimated the severity of the storm, or maybe he was just in a hurry to get back to Rogers City and lay-up the boat. Sailors have a tendency to be very impatient at the end of the season, and Bryan knew that in just a few hours his ship would pass through the Straits and into Lake Huron. From there they could safely beachcomb their way down the shore to Rogers City in the shelter of the lee of the land. There are no rules that help a captain to decide whether to sail or go to anchor. The captains alone make those decisions.

At 5:31 p.m., as the Bradley was being buffeted by 20–25 foot waves, Captain Bryan and the mate and wheelsman on watch in the pilothouse heard a loud thud. The ship shuddered, like ships often do when pounding in heavy seas, but there was something different about it this time, and the three men in the pilothouse instinctively realized that their vessel was in trouble. Looking aft, they saw that the stern of the Bradley was sagging. Without hesitation, Captain Bryan sounded the general alarm. Throughout the ship, loud bells rang, alerting crewmembers that they should don their lifejackets and hurry to the two lifeboats located on top of the stern cabin. Bryan immediately began to blow the steam whistle, seven short blasts and one long one, the terrifying signal for crewmembers to abandon ship.

“Mayday, mayday, mayday,” First Mate Elmer Fleming spoke into the microphone on the ship’s radio set. “Mayday, mayday, mayday! This is the Carl D. Bradley, about twelve miles southwest of Gull Island. The ship is breaking up in heavy seas. We’re breaking up. We’re going to sink. We’re going down!”17 The mayday message was heard by many ships and Coast Guard stations in the area that maintained a radio watch on the international distress channel.

In the conveyor room, deep inside the bow of the ship,
watchman Frank Mayes heard the disturbing thud. He, too, realized that the vessel was in serious trouble. Even before the general alarm bells sounded, Mayes ran for the ladder leading topside.

There was yet another loud thud, and crewmembers in the pilothouse stared in shock as they saw a crack appear across the deck of the Bradley. Simultaneously, the lights went off and the radio went dead as the power cables running the length of the ship were torn apart. As crewmembers hurried toward the lifeboats at the stern or the life raft behind the pilothouse, the bow section lurched and settled deeply into the water, the main deck awash in the furious seas. In an instant, the bow listed to port, rolled over, and sank. The stern settled on an even keel until it too lost buoyancy and plunged beneath the storm-tossed surface.

A German cargo ship, the M/V Christian Sartori, was downbound on Lake Michigan at the time, about four miles from the Bradley’s location. Struggling almost directly into the high seas, the little Sartori was making forward progress of only about two miles an hour. Crewmembers in the pilothouse had picked up the approaching Bradley on the radar scope and were able to see her lights across the water. Just after 5:30 p.m., they noticed that the lights on the bow of the Bradley had gone out. Several minutes later, they were startled when the sky in the vicinity of the Bradley was illuminated by what appeared to be a massive explosion. Checking their radar, they found that the “blip” indicating the Bradley’s position had disappeared from the screen. Although he had not heard the Bradley’s mayday call, the master of the Sartori knew the freighter was in serious trouble. He immediately altered his ship’s course and headed for the location of the explosion.

Despite the angry seas, the Coast Guard Cutter Sundew and a thirty-six-foot lifeboat got underway from their moorings at Charlevoix, Michigan, shortly after they monitored the Bradley’s distress call. A forty-foot lifeboat from the Coast Guard station at Plum Island and the Hollyhock, a cutter stationed at Sturgeon Bay, Wisconsin, were also ordered to go to the assistance of the freighter. Because of the severity of the storm, the two smaller boats were recalled about an hour after they set out. The Pittsburgh Steamship Maritime-class steamer Robert C. Stanley, anchored in the lee of Garden Island near the top of Lake Michigan, heard the distress call from the Bradley and got underway about an hour later.

The Christian Sartori was the first vessel to arrive at the scene. Battered by brutal seas, the German freighter began to crisscross the area, searching for survivors. At about 10:30 p.m., it was joined by the Sundew. The Stanley joined the search at midnight, while the Hollyhock arrived on the scene several hours later. Throughout the night, crewmembers aboard the search vessels maintained a constant vigil as they put themselves and their ships at risk to run search patterns in the turbulent waters where the Bradley had gone down. It was a terrifying night for those aboard the search vessels, but no one complained. They were seamen, and they knew that out there among the towering black seas other seamen were fighting for their lives in the frigid waters of Lake Michigan.

After searching in vain throughout the long night, the Sundew recovered the Bradley’s life raft at 8:25 a.m. on November 19. Clinging to the raft, battered, bruised, and suffering from exposure . . . but alive, were First Mate Elmer Fleming and watchman Frank Mayes.

Word that two survivors had been found was flashed to the waiting world. In Rogers City, Bradley fleet officials and the friends and family members of the Bradley crewmembers—virtually everyone in the small community—had maintained their own vigils through the agonizingly long night. Even before word came that Fleming and Mayes had been picked up by the Sundew, the people of Rogers City were confident that their loved ones would survive the tragedy. They believed that the sailors would be found in the ship’s lifeboats, or on one of the many islands dotting the northern stretches of Lake Michigan.

The Bradley sank during the late afternoon hours of November 18, 1958, while trying to cross the northern reaches of Lake Michigan in a violent storm. Most of the thirty-three crewmembers who died in the disaster were from the Bradley’s home port of Rogers City, Michigan, a small community on the north shore of Lake Huron. (Author’s collection)
They refused to give up hope. When word came that two survivors had been picked up, it merely reinforced their belief that all of the Bradley crewmembers would eventually be found.

An hour after recovering Fleming and Mayes, searchers found one of the Bradley’s two lifeboats, but it was empty. As the day progressed, searchers began to find the lifejacket-clad bodies of crewmembers who had not survived the sinking. As the bodies were recovered and identified, teams of management personnel from the Calcite Plant had the onerous task of notifying family members that their loved ones were dead. Surprisingly, many of the children of the Bradley crewmembers had gone to school that morning. It was almost as if they believed that to break their normal routine would be bad luck. By going to school, as they would on any other day, they demonstrated their confidence that their fathers would be found safe. Their optimism was buoyed that morning when the school principal enthusiastically announced over the intercom system that two survivors had been found. As the day wore on, however, one child after another was called out of class by the principal. From the look on his face, it was obvious to all that he was not delivering good news.

During the day, searchers recovered a total of eighteen bodies from the waters north of where the Bradley had gone down. Elmer Fleming and Frank Mayes were the only survivors from the crew of thirty-five. Fifteen bodies, including that of Captain Roland Bryan, were never recovered. Rogers City went into mourning.

Twenty-three of the thirty-three seamen who died on the Bradley were from Rogers City, while five others were from the nearby communities of Posen and Onaway. The recovered bodies of the dead seamen were returned to their home port, and a mass wake was held in the gym at Rogers City High School, the only facility in town large enough to hold the caskets of the dead and accommodate the thousands who wanted to pay their respects. Funeral services for most of the sailors were held at noon on Saturday, November 22. The town virtually closed down while the services were going on.

At ports around the lakes, the other eight Bradley freighters broke with tradition by halting operations. From fitout in the spring until they reach the lay-up docks at the end of the season, ships in the Great Lakes fleets normally never stop operating. Not even on Easter Sunday, the Fourth of July, Thanksgiving, or Christmas do they take a break. The big ships operate twenty-four hours a day, seven days a week. But at noon on November 22, 1958, the remaining eight, grey-hulled freighters of the fleet were tied up out of respect for those who had died on the Bradley. Four ships were docked at Calcite, while the others were at ports around the lakes. The Myron C. Taylor was at Conneaut, Ohio, the T. W. Robinson was at Buffalo, New York, the Rogers City was in South Chicago, Illinois, and the Cedarville docked at Port Huron. Local clergymen went aboard each of the four ships to conduct memorial services at the same time that services were being held in Rogers City. While far distant from their home port, the crewmembers aboard the four ships had an opportunity to pay their final respects to their colleagues.

Even before the Bradley dead were buried, the Coast Guard had launched a massive inquiry into the sinking. Their findings, released the following summer, concluded that the casualty had been due to excessive hogging stress that the vessel had endured during the storm. The unrelenting pounding the ship took in the hours before her sinking may have aggravated a structural weakness existing prior to the storm. In her thirty-first season on the lakes, the Bradley was no more than middle-aged as lake freighters go. All freighters take a beating during the operating season, though, and it’s common for them to undergo extensive repairs at least every five years. The Carl D. Bradley was scheduled for such repairs during the winter of 1958–59. As a result of the wear and tear she had suffered during the previous seasons, the Bradley was scheduled to have many loose or broken rivets replaced and her cargo hold almost completely rebuilt at the end of the 1958 season. Unfortunately, the former Queen of the Lakes would never keep that appointment at the shipyard.
Notes

1. And don’t be misled by the hailing port painted on the stern below the vessel’s name. Most U.S. ships on the lakes claim distant Wilmington, Delaware, as their hailing port. They are documented there so they can qualify for tax breaks. Of all the ships in the U.S. Great Lakes fleet, the M/V Presque Isle has the distinction of having the hailing port farthest from the lakes. It uses Los Angeles, California, headquarters for its owners, Litton Industries.

2. Originally known as the Calcite Transportation Company, its name was changed to Bradley Transportation Company in 1923.

5. The early self-unloaders operated only in the stone, coal, and salt trades. Natural iron ore tended to hang up in the cargo hold, so it was generally not carried by self-unloaders until after the development of pelletizing processes in the 1950s. Grain, on the other hand, flowed too fast and could not be elevated out of the cargo hold by inclined conveyor elevators. The lightweight grains would simply spill off the elevators. In the 1970s, some Canadian fleets began carrying grain on self-unloaders with modern bucket elevator systems.

6. The first Carl D. Bradley had been launched in 1917 for the Bradley fleet. Named for the firm’s president, it was renamed as the Irvin L. Clymer in 1927 when the new Bradley came out. The Clymer operated on the lakes until it was retired during the 1991 season.

9. The Bradley’s sister ship, the T. W. Robinson, built in 1925, was the first vessel on the lakes equipped with a turbo-electric engine. In both the Bradley and Robinson a steam turbine generator produced electricity to drive electric motors that actually propelled the ship. Few ships were equipped with the complicated propulsion systems.

10. Dana Thomas Bowen, *Lore of the Lakes* (Daytona Beach: Dana Thomas Bowen, 1940), 229.

11. Pittsburgh Steamship was the largest fleet on the lakes, with eighty-four vessels, followed by Interlake Steamship, which owned forty-nine.

14. Pittsburgh Steamship, with seventy-nine boats, was still the largest of the U.S. fleets, followed by Interlake Steamship, with forty-five.

17. Ibid., 24.

18. While they didn’t know it at the time, the crewmembers in the pilothouse of the Sartori had witnessed the explosion of the steam boilers aboard the Bradley. The boilers exploded when cold water from the lake flooded into the engine room.
