I carried out a regression analysis in order to explore the impact of several factors on the monthly wages paid to servants. These factors were: ethnic/national background of the employer; the employer’s work; rather the employment sector he/she was occupationally engaged in; the length of time he/she had lived in Zambia; the servant’s sex; and his or her age. I first ran separate regressions for each of these factors, that is, for each of the independent variables, using dummy variables in the first two regressions (to code for the qualitative ethnicity and type of the employer’s work). Dummy variables are simply 1, 0 type variables that code for the presence/absence of the qualitative factor of interest. If a qualitative variable has, say, 5 categories, as in the employer’s ethnicity variable discussed below, then the variable is coded using five 1, 0 variables, leaving one category to serve as the “reference” category for that variable, against which the other dummy variables are compared. The coefficient for the dummy variables indicates the size of the difference between each category and the category to which each is compared, that is, the omitted “reference” category. I then ran a multiple regression to show the impact of all the variables considered together.

The ethnicity/national background variable was coded using dummy variables for each of the following categories: Zambians; Asians; Coloureds; others (Africans). The omitted “reference” category was the white employers category. The employer’s occupation variable was coded using the following set of categories after first omitting the category of persons

---

I am grateful to Malcolm Dow for his advice in setting up this regression analysis and for his help in interpreting the results.
who were employed in international organizations, foreign government offices, and foreign development agencies: (1) employees of the Government of the Republic of Zambia (employees in present company) or self-employed; and (2) other and non-specified. 

The square brackets placed around the sets of ethnicity and employer’s work dummies signify that these variables should be seen together as coding for these two qualitative variables. The numbers in parentheses beneath each regression coefficient refer to the corresponding statistical significance level associated with each coefficient. 

The adjusted R square (0.387) for this multiple regression equation indicates that close to 40 percent variance in monthly salary is explained by this set of independent variables. The analysis shows the employer’s ethnic/national background to be the variable that most significantly influences the servant’s monthly wage level. That is, the magnitude of this set of coefficients is considerably greater than for the other variables in the equation. Compared with the omitted category of white employers, Asians pay lower wages (significance level 0.000); the rest of the employers pay slightly more than Asians, although still less than whites. The type of work the employer has (occupation) does not influence the wage paid to the servant in any statistically significant way. The servant’s age is statistically significant (0.015), and the positive sign of the regression coefficient shows, perhaps not surprisingly, that the older the servant is, the higher is his/her wage. Comparing men with women servants, that is, looking at the coefficient of the sex variable, reveals that women tend to be paid less, and although the significance level (0.8) is not significant at conventional levels (that is, 0.05), it indicates a nontrivial trend. The analysis also shows that even when the ethnicity/nationality variable is held constant, age and sex still have significant effects on wage levels.

The total sample size of the survey discussed in Chapter 6 is 187. In the regression analysis I excluded 21 interviews undertaken in servant-employing households living in flats. The sample size used in the regression is thus 168.