In north Australian archaeological discourse, the term “earth mound” refers to a specific archaeological site type. Earth mounds are typically shallow, anthropogenic mounds of soil, sand, and fine sediment that can be found alongside creeks, along the margins of swamplands, and on alluvial plains that experience seasonal flooding. These sites can be oval to circular in plan, range from 10 m to 40 m in diameter, and on average reach 0.8 m at their highest point (see Brockwell 2006). There are essentially two fundamental problems at the heart of north Australian earth mound analysis.

The first problem is that it is difficult to obtain interpretable data from these sites. Large sites can initially appear to be very similar in form to natural features like collapsed termite mounds and megapode bird mounds (*Megapodius reinwardt*), which are common sights in the north Australian landscape. Their soil presents no visually distinctive stratigraphy and often contains few if any identifiable artifacts. While the makers of these mounds were accomplished craftspeople, many of the tools, adornments, and implements they made would have been composed of organic materials as a result of poor local utilitarian stone sources. Such materials do not preserve well, if at all. This soil also preserves few if any faunal remains, with the exception of shell deposits, which can survive when the amount of shell is large enough to affect the pH of the immediate environment to a level that is conducive to preservation. The majority of earth mounds are shallow sites that are difficult to identify and even photograph (Figures 5.1a and 5.1b); few are prominent features in the landscape.

Even in these instances, large shell deposits close to the surface can lead to
The Directions Indigenous Experience Has Taken the Study of Earth Mounds

their miscategorization as shell mounds (Ó Foghlú 2017; see Roberts 1991). Shell mounds are a more prominent Australian archaeological site type that can occur in some of the same areas as earth mounds. In contrast to earth mounds, shell mounds have been a major focus of north Australian archaeological investigation for almost half a century (e.g., Bailey 1977, 1993, 1994, 1999; Brockwell et al. 2017; Holdaway et al. 2017; Larsen et al. 2015; Morrison 2013, 2014; Petchey et al. 2013; Shiner and Morrison 2009; Shiner et al. 2013; Stevenson et al. 2015; Stone 1992). The few anthropogenic signatures that can be detected within earth mounds are almost identical to those left by natural processes. For instance, bushfires, which can bring mature trees to the ground and smoulder within root

Figure 5.1. An example of a prominent earth mound site in Kakadu National Park, NT: (a) unshaded; (b) shaded. Photos by author.
systems for weeks, are seasonal in northern Australia. Many archaeological site types are burned along with their surrounding landscape on an almost yearly basis. The remains of anthropogenic fires therefore can be difficult to differentiate from those left by intense natural fires. Even one of the few artifact types that can survive in abundance is visually identical to the by-products of natural processes. Termite mound clay heat retainers, artifacts of human-engineered firing, can occur all throughout earth mound matrices. However, so, too, can the remains of naturally baked termite mound clay, which can result when an infested tree burns to the ground and smoulders for a number of weeks (Ó Foghlú 2017).

The second problem is that it is difficult to understand and interpret the information that is obtained from these sites. Even when it is possible to obtain interpretable data, earth mounding behavior can be difficult to understand and quantify from the biased lens of Western (i.e., nonlocal) perspectives. Earth mounds do not fit within the Western concept of a complex construction and yet they are not the result of careless, unplanned discard. The past and present landscapes that they are a component of would not meet the criteria of an urban area, although many of these places would have been complex, cosmopolitan hubs of interaction and exchange (see Ó Foghlú et al. 2016).

These two problems lie at the heart of a research project (Ó Foghlú 2019), now nearing completion, investigating the nature of earth mound sites in two important regions in northern Australia: in Weipa, Queensland, and Kakadu National Park, Northern Territory (Map 5.1). This chapter attempts to highlight

Map 5.1. Australia, showing the locations of the two study areas. With permission of Australian National University, © CartoGis CAP.
the important role that archaeologies of listening played in this project: they were imperative in addressing how information from earth mound sites could be obtained, interpreted, and understood.

The Emergence of Earth Mounds in Weipa, Cape York

Wathayn Country is the first focus of this project. Wathayn Country, an estuarine landscape of mangrove-lined environments, tidal mudflats, and wooded, gently sloping laterite plains, is situated on the northern bank of the Embley River on the Weipa peninsula, Cape York (Map 5.2). To the Aboriginal communities who live here (referred to in the text as Traditional Owners), Wathayn holds deep importance, both as a cultural landscape of deep and long-held meaning and as a place of valued ecological resources (Ó Foghlú 2017; Ó Foghlú et al. 2016).

Wathayn is a rich archaeological landscape. Aboriginal society and presence had established itself as an integral component of this landscape long before the

Map 5.2. The Weipa Region of Northern Australia. With permission of Australian National University, © CartoGis CAP.
emergence of earth mound sites (e.g., Brockwell et al. 2017; Holdaway et al. 2017; Ó Foghlú et al. 2016; Petchey et al. 2013; Shiner et al. 2013; Stevenson et al. 2015). One of the most heavily investigated archaeological site types in both Wathayn and the greater Weipa area consists of distinctive shell mound sites, the largest of which can be over 10 m high and contain over 10,000 metric tons of shell (Bailey 1999:105). Shell mounds are a persistent site type throughout the late Holocene, emerging out of a period of sea-level stabilization and coastal progradation, possibly as early as 4,000–5,000 years ago (Bailey 1977, 1993, 1994, 1999; Holdaway et al. 2017; Larsen et al. 2015; Morrison 2013, 2014; Petchey et al. 2013; Shiner et al. 2013; Stevenson et al. 2015; Stone 1992), clearly dated archaeological evidence also supports “ongoing mound construction” as recently as post 200 cal. BP (Morrison 2014:10).

However, specifically in the Wathayn locality, new work is starting to reveal that the most intensive period of shell mounding clusters around 2,700–2,100 cal. BP (Holdaway et al. 2017; Petchey et al. 2013; Stevenson et al. 2015:17). It is only after this period (i.e., ca. 2100 BP onward) that earth mounds start to appear in Wathayn, in partial response to environmental change (Brockwell et al. 2017; Ó Foghlú 2017; Stevenson et al. 2015).

The Emergence of Earth Mounds in Kakadu National Park

The second area investigated as part of this project is located in Kakadu National Park (declared in 1979; Jones 1985:v–vii) where the Nourlangie Creek floodplains meet those of the winding South Alligator River in the Northern Territory (Map 5.3). This junction, extending up from Ki’na (Giina) in the south to the Goose Camp headland in the northeast, is made up of gently sloping laterite margins that border the floodplains, vast plains of black cracking clays that extend out into the tidal river channel. Again, as at Weipa, Aboriginal society and presence had long established itself as an integral component of this landscape before earth mounds began to emerge from it (e.g., Jones 1985). However, unlike Wathayn Country, here we learn that hypersaline conditions, which would not have supported substantial vegetation, existed from ca. 6000 BP to sometime before ca. 1400 BP in this locality (Hope, Hughes, and Russel-Smith 1985). Close to the latter end of this period, these conditions ceased; clays were stabilized by grasses, salt began to leach from the upper soil horizons, and rich black clay, the product of surface wash and organic decay, started to accumulate. Lagoons became substantial freshwater bodies, which brought large popula-
The Directions Indigenous Experience Has Taken the Study of Earth Mounds

Tions of water birds and vegetation. It is only after this point that conditions for sustained anthropogenic settlement became more favorable. Many earth mounds have been recorded in this rich archaeological landscape (see Hope, Hughes, and Russel-Smith 1985; Meehan et al. 1985).

Listening

To learn about people and communities who were once deeply connected to a landscape, it is helpful to listen to the people and communities who are now deeply connected to that landscape. For this research, it was imperative to consult with Traditional Owners in both regions, people and communities who are the custodians of living bodies of traditional knowledge that have been carried.
down through periods of immense conflict and change. This knowledge is in many cases firmly supported by each region's ethnographic corpus (Ó Foghlú 2017; Ó Foghlú et al. 2016). By consulting with local Traditional Owners, it was possible to obtain the necessary education about what could be investigated, confirmed, or discounted as evidence. Listening introduces us to informed reasoning backed by expert opinions from people who experience these landscapes and their traditions every day. Traditional knowledge is not just extensive in its scope; it comes from a completely different but equally valid place of learning and understanding. Listening does not provide a blueprint of the past; it highlights the questions that need to be asked about the past.

Listening to Experts in Wathayn Country

In Wathayn Country, for instance, it was possible to learn about some of the intricacies of termite mound clay heat retainers from experts who knew how to craft and use them and for whom they held important meaning (Beatrice Gordon, personal communication 2012, 2013; Elisabeth Coconut, personal communication 2013; Graham Peinkina, personal communication 2012, 2013; Rocky Madua, personal communication 2013).

This education enabled an experimental study of local termite mound clay types to be conducted through the adaptation of an existing X-ray diffraction technique (applied in Coutts, Henderson, and Fullagar 1979). This analysis, carried out under the advice and guidance of Dr. Ulrike Troitzsch (Research School of Earth Sciences, Australian National University), demonstrated that, despite being similar on a visual level, termite mound clay heat retainer artifacts are distinct from naturally baked termite mound clay on a crystalline level. As a result of this distinction, it became clear that instead of yielding minimal assemblages of identifiable artifacts, earth mounds in Wathayn can contain many thousands of cultural artifacts (Ó Foghlú 2017, 2019).

Many aspects of material culture do not survive to the present day in artifactual form. It was possible to learn from experts in Wathayn about the manufacture and use of organic compound implements and adornments, such as fishing spears, seed necklaces, artworks painted on living tree bark, and shell tools. Being able to cross-reference this information with information recorded by some of the region's first colonial populations over a century before (i.e., the ethnographic corpus) also allowed for a far greater understanding of how great the absence of evidence could be in this region (Ó Foghlú 2017, 2019; Ó Foghlú et al. 2016).
In November 2012, on the South Alligator floodplains, in Kakadu National Park, a number of modern earth mound sites were identified during a fieldwork trip that sought to identify and survey archaeological earth mounds for future excavation and analysis. These sites were still in active use but remarkably similar to archaeological earth mound sites. The sites are maintained and used by Patsy “Raichiwanga” Raglar. Patsy is an Aboriginal teacher and guide who shares her Traditional Knowledge with guests and tourists through the ecotourism company Animal Tracks. Some of these mound sites are used privately and others are no longer used as a result of environmental changes in those areas. Patsy provided extensive guidance and education about the multifaceted aspects of these sites and all of the activities instrumental in their formation. It was possible to monitor and survey the formation of two sites over the course of three years, with detailed knowledge from Patsy about firing durations, the number of uses, and the number of attendants that contributed to site development (Ó Foghlú 2017, 2019). Patsy uses tools like firesticks that are identical to artifacts uncovered in nearby archaeological investigations (e.g., Clarke 1985) and recorded in the ethnographic corpus (Ó Foghlú 2017). She provided new understanding and experience of what was now understood to be one of the fundamental processes of earth mound formation: human-engineered firing.

Existing analytical techniques were tailored as a result of what was learned and applied in an attempt to understand how soil burned in this complex way was different from soil that had burned naturally in bushfires. An in-depth archaeomagnetic analysis, adapted from groundbreaking techniques applied in Oldfield and Crowther (2007), was conducted under the advice and guidance of Dr. Dave Heslop (Research School of Earth Sciences, Australian National University [ANU] College of Physical & Mathematical Sciences). χ_{lf}, χ_{fd}, and χ_{ARM} readings were taken from soil samples collected on, within, and off earth mound sites and natural features and bilogarithmically plotted χ_{ARM}/χ_{fd} versus χ_{ARM}/χ_{lf}. In combination with this, an in-depth soil chemistry analysis was also conducted in which Munsell coloration, total organic content, pH, particle size analysis, total phosphorus, and total Kjeldahl nitrogen were carefully measured under the advice and guidance of Andrew Higgins (Fenner School, ANU).

The results of these analyses corroborated one another: anthropogenic sig-
natures on and within earth mound sites can be detected and even quantified (Ó Foghlú 2017, 2019). It was only through listening and learning that many of the complexities of earth mound formation could be truly appreciated and questioned. Listening highlighted the questions that needed to be asked.

Information from Earth Mounds

A more comprehensive model of earth mound formation can be put forward as a result of obtaining more interpretable data from these sites. Formation commences when people gather in an area to construct an earth oven site with the intention of reusing it many times after the event. Earth oven cooking involves firing heat retainers in an intense open fire within a small hole, until most of the fuel has combusted. Heat retainers can be made from stone, tempered clay, termite mound clay, or other heat-retentive materials (e.g., shell). Layers of protective organic material, like paperbark and/or aromatic vegetation, are laid over these heat retainers and glowing embers, along with the food that is to be baked, followed by more layers of organic material. The oven is then completely covered and sealed with soil and left to bake until the food is ready to eat (Ó Foghlú 2019; Beatrice Gordon, personal communication 2012, 2013; Elisabeth Coconut, personal communication 2013; Graham Peinkina, personal communication 2012, 2013; Patsy “Raichiwanga” Raglar, personal communication 2012, 2013, 2014; Rocky Madua, personal communication 2013).

Using this site over and over instigates the mass buildup of dark charcoal-rich soil, which both surrounds and becomes the site. This buildup makes the soil softer to dig and more heat retentive after every use. Multiple earth ovens can be employed on the mound as it develops, and surface fires become easier to ignite and manage in this charcoal-rich environment. The active site becomes a raised clearing in a landscape often dominated by concealing bushland, with a surface ideal for erecting complex shelters. The more an earth mound is used, the more efficient it becomes, through mindful curation and mounding of the charcoal as it forms. The site becomes an activity place in the landscape.

These are just the fundamental processes of earth mound formation. Listening to local Traditional Owners is not just imperative in increasing the scope of how information can be obtained, it is also imperative in increasing the scope of how this information can be interpreted and understood so that the best explanation can be reached.
Interpreting the Past through Local Realities

Many aspects of earth-mounding activities can be difficult to understand and appreciate through the constrained lens of Western perspectives. Interpreting these sites, their landscapes, and the societies that they are a product of through local realities can increase the interpreters’ scope of understanding and explanatory standards as they work toward the inference to the best explanation. To Peter Lipton (2004:124), philosopher of science and epistemology, “some possible worlds make more sense than others.” Therefore, to draw from Lipton (2004:56, 209), the explanatory considerations and standards of the interpreters must be malleable if they are to evolve to track the truth. A number of concepts can be put forward to illustrate this.

Country

Monchamp (2014:3) explains how the word “Country” is a proper noun in Aboriginal English, a collective of human and nonhuman actors “acting in the world with will and intention” (Monchamp 2014:120). Country is a landscape concept that “is not a static, bounded parcel of space but rather a lived-in place within which one has a relationship with (rather than to) the land” (Monchamp 2014:3). Relationships with Country must be maintained and “are manifold and intrinsic to people’s identities and ways of being in the world” (Monchamp 2014:127, 135).

Understanding Country as a concept is key to understanding the sites, people, and places that make up some of its components.

Movements throughout and off Country can be dictated by many factors that can range from utilitarian to deeply important, including violent weather seasons, management and curation of resources, important rites and rituals, and special events. Sometimes movement can occur as part of a greater collective or in smaller familial groups. Country as a concept does not fit squarely within the Western conceptions of territories, borders, and boundaries; it comes from a different but equally valid place of understanding. When trying to assess whether an earth mound’s position and purpose in the landscape was dictated by everyday considerations or by deeply significant events, there is much to consider.

Similarly, when attempting to interpret dates obtained from earth mound matrices and understand why certain sites have been abandoned at a time when other sites nearby have not, interpreting the past through local realities can provide deeper understanding. The landscapes and societies from which earth
mounds developed would not meet any Western criteria of an urban area or indeed fit squarely anywhere along a spectrum that set Western culture as the standard against which to make judgments about other cultures.

Yet many of these places would have been cosmopolitan and multilingual hubs of interaction and exchange and centers of innovative craft production, art, music, and established seasonally specialist harvesting (Ó Foghlú 2017, 2019; Ó Foghlú et al. 2016). Even if definitive explanations cannot be reached, it is important as archaeologists that we know how little we know to better appreciate the complexity of what we are trying to investigate and interpret.

Constructions

Many types of traditional structures documented in the research areas of this project (e.g., Leichhardt 1845–1846:399–422; Roth 1900:1–63) and throughout Australia (e.g., Memmott 2007) would fit into the Western concept of a complex construction. Earth mounds do not easily fit within this concept. They are not the result of unplanned, careless discard; they are the product of mindful, long-term site curation and development. Earth mounds become more efficient and sustainable after every use and are complex, in spite of an apparent minimalism that masks their complexity (Ó Foghlú 2017, 2019). It can be difficult to understand this type of multifaceted, long-term, allocentric development if every construction in interpreters’ (nonlocal) reality is the product of a direct, sought-out objective. Understanding these sites through local realities can demonstrate that they are an alternate but equally valid and important class of complex construction.

Mnemohistory, Weaving Multiple Realities to Form a Coherent Narrative

The difference between collective memory and history can be viewed as a difference based on the relevance of the past to the present (Olick 1999, 2007, 2008; Olick and Robbins 1998). History is an inscribed past with which we no longer have an organic connection, whereas collective memory is “an active past that forms our identities,” to which we are connected in the present (Olick and Robbins 1998:111). Collective or social memory is a connective structure involving forms and processes such as tradition, myth, commemoration, and monument building where remembering individuals remember together (Olick and Robbins 1998:105–106).

Assmann (1997:9) uses the term “mnemohistory” to describe this active
process of meaning-making through time. Unlike history, mnemohistory is concerned not with the factuality and original significance of the past (which in history is highly important) but with the actuality of the past as it is remembered in the present (Assmann 1997:8–9). We position ourselves and are positioned by the narratives of this past (Olick and Robbins 1998:122), and our communities are constituted by this past—a real community is a community of memory (Olick 2007:20). Different communities remember different things. As an archaeologist, I have found that interpreting the past through one’s own mnemohistory, through one’s own reality, is not enough. Local mnemohistories must be drawn on by listening to local communities.

The colonial conquest of the Alligator Rivers region in the nineteenth century caused local populations to crash to approximately 4 percent compared to the population at the time of colonial contact (Keen 1981; Reid 1990). In Cape York, the invasion of colonial populations in Queensland claimed over 90 percent of the Aboriginal population by the beginning of the twentieth century (Bottoms 2013; Loos 1982). Enslavement, kidnapping, mass deportations, autocratic control, theocratic control, and the spread of numerous introduced diseases brought these cataclysms to Aboriginal communities in these regions. Many of these occurred well into the twentieth century (Blake 1998; Bottoms 2013; Frankland 1994; Gillet 1986; Keen 1981; Loos 1982; Meston 1895, 1896; Ó Foghlú et al. 2016; Reid 1990; Scambary 2013; Sharp 1992; Taylor 2003).

Nonlocal interpreters often find it difficult to escape their own mnemohistories, when they must also interpret the past through local mnemohistories. There are great disparities in many nonlocal mnemohistories that can be very detrimental to the interpretation of the local past. Bottoms (2013) describes Queensland’s killing times as a “conspiracy of silence,” a collective consciousness for which the Aboriginal past is not part of an active past for the non-Aboriginal community. Yet for the Aboriginal communities in these regions, these times are very much a part of collective memory, an active past and mnemohistory: different but equally valid and important parts of the past inform the present.

Country is an archive of material memory in the form of archaeological sites and artifacts. Archaeological discoveries and interpretations can affect the mnemohistories of places being investigated, how communities perceive the places they live in, how they connect with the past. So, too, must nonlocal archaeologists be affected by local mnemohistories, so that multiple realities can be woven together to form an interconnected, coherent narrative. This begins through listening.
What Is Important? Why Is It Important?

Archaeologists do not get to decide what is and what is not archaeologically important for the communities connected to archaeological sites or what contributes to collective histories and identities. Archaeologists need to listen to what is important and understand why it is important. Archaeology has often, in its antiquarian past, been dominated by an obsession with artifacts and sites that are perhaps the oldest or the most aesthetically pleasing (and perhaps understandable) from a Western perspective (e.g., Hammerich 1893; Walker 1786; Wilde 1857, 1861). The terms “Stone Age,” “Bronze Age,” and “Iron Age” originally developed from disproportionate fascinations with particular artifact types and are now recognized as unsuitable terms (see Bradley 2007, 25).

In Wathayn Country, despite the local paucity of utilitarian stone sources and the correspondingly small role of stone materials in local material culture, stone tools dot the landscape. Some are quite large, like adze/axe heads, and some can even be found in datable earth mound contexts, although this is rare (Ó Foghlú 2017, 2019). These pieces are highly technical in their artisanship and are, of course, highly important in the interpretation of Wathayn’s past material culture. Furthermore, it is reasonable to assume that the oldest artifact types that can survive in Wathayn’s archaeological record are those rare examples made from stone. Conventionally, archaeologists have always focused on such artifact types, holding them to be, perhaps, the most archaeologically important. Traditional Owners in Wathayn know a lot about many of these stone pieces from their oral history, and much of this is reinforced by ethnographic accounts recorded over 120 years. Locally, however, these artifacts represent important relics of a somewhat distant past. In contrast, the discovery of a post-colonial contact glass artifact, on an earth mound site in Wathayn, meant a great deal to Traditional Owners. Glass tools are seen as a relic of more recent generations. These artifacts represent a connection to living memories, an active past, and a more immediate time (see Ó Foghlú et al. 2016). The discovery of this artifact in Wathayn in an earth mound context demonstrated that these sites and the practices from which they developed were still being utilized (or reutilized) after colonial populations arrived in Weipa. Being able to confirm this archaeologically was important for Traditional Owners in Wathayn. Archaeologists must listen and understand why this is important.

Interpretation of archaeological sites in general has, in the past, also been subject to disproportionate focus. Conventionally, archaeologists have often
focused on the original uses and purposes of sites, again holding them to be perhaps the most archaeologically important. This has often overshadowed the interpretation of later uses or reuses of sites. To draw from Bradley (1993) and Holtorf (1998), later use or reuse of an archaeological site can be as important as its original function in interpreting the entire life history of a site and the culture that shaped it. In Wathayn and the Alligator River floodplains, it meant a great deal to Traditional Owners to know that archaeological evidence confirmed that many of the practices and traditions that are part of their cultural identity today have been part of these landscapes for millennia (Beatrice Gordon, personal communication 2012, 2013; Elisabeth Coconut, personal communication 2013; Graham Peinkina, personal communication 2012, 2013; Ó Foghlú 2017, 2019; Ó Foghlú et al. 2016; Patsy “Raichiwanga” Raglar, personal communication 2012, 2013, 2014; Rocky Madua, personal communication 2013).

While the initial uses of earth mound sites are important, so, too, is their utilization (or possible reutilization) after colonial contact. Again, it is the connection to living memories, an active past, and a more immediate time. Being able to understand not just the history but the mnemohistory of Country means that archaeologists can help contribute to a recent past with which the Traditional Owners still have an organic connection, a past that is a shaper of cultural identity and collective memory today. Archaeologists alone cannot decide what is archaeologically important, but they can listen and understand why something is archaeologically important to the communities connected to archaeological sites.

Conclusion

Listening is imperative from both strategic and moral standpoints. Listening made it possible to obtain interpretable information from archaeological earth mound sites and gain the necessary education about how to interpret and understand this information. Many parts of this research project would not have been achievable without an archaeology of listening (Ó Foghlú 2019).

Archaeologists will find it advantageous to recognize and draw from local knowledge as well as their own realities to work toward inference to the best explanation. To learn about people who were once deeply connected to a landscape, archaeologists should listen to the living people who are deeply connected to that landscape. Listening can introduce us to informed reasoning backed by expert opinions from people who experience these landscapes and
their traditions every day. Archaeologists will also find it beneficial to draw from local mnemohistories, because different parts of the past inform the present for different communities. These multiple realities can be woven together to form an interconnected, coherent narrative. Archaeologists do not get to decide what is archaeologically important for communities connected to archaeological sites; they must listen and understand why something is important.

Listening cannot provide a blueprint of the past; rather, it highlights the questions that need to be asked about the past.

Acknowledgments

I would like to give utmost thanks to the Traditional Owners of Wathayn and Kakadu for granting access to their Country, and in particular to Beatrice Gordon, Elisabeth Coconut, Graham Peinkina, and Patsy “Raichiwanga” Raglar for all of their invaluable assistance, guidance, advice, and education. I would also like to give heartfelt thanks to Rocky Madua, Jason Wipa, Dave Lindner, and Sean Arnold for their invaluable assistance, guidance, advice, and education. Heartfelt thanks, too, to Dr. Sally Brockwell and Dr. Janelle Stevenson for their continuing supervision, guidance, and help. And to Andrew Higgins, Fenner School, ANU, for his tireless help; to Dr. Dave Heslop, Research School of Earth Sciences, ANU College of Physical and Mathematical Sciences; and to Dr. Ulrike Troitzsch, Research School of Earth Sciences, ANU. Industry Partner Rio Tinto Alcan (RTA) gave generous financial support in Weipa; thanks to the RTA staff—Siobhan Walker and Eloise Hoffman. Fieldwork was supported by Australian Research Council (ARC)–funded Linkage Project: Enhancing Cultural Heritage Management for Mining Operations: A Multi-Disciplinary Approach (LP110100180) with Industry Partner Rio Tinto Alcan; ARC-funded Discovery Project: Earth Mounds in Northern Australia: Archaeological and Environmental Archives of the Mid to Late Holocene (DP120100512); ARC Linkage project From Prehistory to History: Landscape and Cultural Change on the South Alligator River Kakadu National Park (LP110201128); and the Australian National University. Dr. Jack Fenner (ANU) contributed significantly with mapping, surveying, guidance, and help. Dr. Justin Shiner and Rio Tinto Alcan, cultural heritage management staff, and Gabrielle O’Loughlin and Mary Blyth (Cultural Programs, Kakadu National Park) supported me greatly. Many thanks also to Kristie Martin and Haylee Martin for proofreading the manuscript.
References Cited

Assmann, J.

Bailey, G.

Blake, T.

Bottoms, T.

Bradley, R.

Brockwell, S.

Clarke, A.

Coutts, P., P. Henderson, and R. Fullagar

Frankland, K.
Gillet, A.

Hammerich, A.

Holdaway, S., P. C. Fanning, F. Petchey, K. Allely, J. I. Shiner, and G. Bailey

Holtorf, C.

Hope, G., P. Hughes, and J. Russel-Smith

Jones, R. (editor)

Keen, I.

Larsen, B., S. Holdaway, P. Fanning, T. Mackrell, and J. Shiner

Leichhardt, L.
1845–1846 Continuation of My Log from the Abel Tasman to Pt Essington, the 8 September 1845. Manuscript C 155, Safe 1/292, Mitchell Library, Sydney, New South Wales.

Lipton, P.

Loos, N.

Meehan, B., S. Brockwell, J. Allen, and R. Jones

Meston, A.

Monchamp, A. M.

Morrison, M.

Ó Foghlú, B.

Ó Foghlú, B. D. Wesley, S. Brockwell, and H. Cooke

Oldfield, F., and J. Crowther

Olick, J.

Olick, J., and J. Robbins

Petchey, F., P. Fanning, S. Holdaway, J. Shiner, and C. Beresford

Reid, G.

Roberts, A.

Roth, W.
1900 Report [to the Commissioner of Police, Queensland] on the Aboriginals of the Pennefather (Coen) River District and Other Coastal Tribes Occupying the Country between the Batavia and Embley Rivers [Visited by the Minister during His Last Trip]; with Vocabularies and Anthropometric Charts. Cooktown, 8 January 1900. Manuscript [Microfilm CY 208], Mitchell Library, Sydney, New South Wales.

Scambary, B.

Sharp, N.

Shiner, J., and M. Morrison

Stevenson, J., S. Brockwell, C., Rowe, U., Proske, and J. Shiner

Stone, T.

Taylor, C.

Walker, J.

Wilde, W.