Rephrasing Heidegger

Sembera, Richard

Published by University of Ottawa Press

For additional information about this book
https://muse.jhu.edu/book/4420

For content related to this chapter
https://muse.jhu.edu/related_content?type=book&id=293494
CHAPTER 1
THE ORIGINS OF PHENOMENOLOGY

1.1 THE HISTORY OF THE TERM "PHENOMENOLOGY"

The term “phenomenology” is a compound word formed from the Greek roots phainomenon and logos. Phainomenon is frequently translated as “appearance,” while the meaning of logos varies depending on the context; typical English renderings are “word,” “argument,” or “reason.” We will discuss the Greek etymology in more detail in Section 2.4. For our present purposes, we can define “phenomenology” as “giving an account of appearances.”

The word “phenomenology” does not belong to the vocabulary of classical Greek. To the best of our knowledge it is a neologism entering common usage in 18th century Germany. It first appears in print in the mystical and philosophical literature of the day. The manner in which the term is introduced suggests that readers were expected to be already familiar with its meaning, so that we may conclude that “phenomenology” was already in current use by the middle of the 18th century at the very latest. Heidegger himself believed that the term originated among the followers of Christian Wolff (1679-1754), an early systematizer of Gottfried Wilhelm Leibniz (1646-1716) and the first important German philosopher to write extensively in German rather than Latin or French.
One of the earliest and best known philosophical works to characterize itself as "phenomenological" is the *Phenomenology of Spirit* by Georg Wilhelm Friedrich Hegel (1770-1831). Here the term "phenomenology" is intended to distinguish Hegel's own "science of the experience of consciousness" from the transcendental idealism of Immanuel Kant (1724-1804). Although Hegel may or may not have been an inspiration behind Husserl's appropriation of the term "phenomenology" as a label for his own philosophical enterprise, it is important to keep in mind that Hegel’s version of phenomenology differs markedly from Husserl’s in many important respects, as we shall soon see. We will begin with a brief outline of Kant's position on the limitations of human knowledge in order to explain why Hegel felt that a "phenomenology," or an account of appearances, was an appropriate methodological response to Kant. This outline will provide the historical background for the discussion of Husserl's phenomenology in the following two sections.

The philosophy presented in Kant’s main work, the *Critique of Pure Reason*, is in essence an early form of what is now termed the philosophy of science. Kant’s main concern is to defend the Newtonian science of his day against the skeptical criticism levelled against it by David Hume (1711-1776), who denied that completely certain and reliable judgements concerning matters of experience were possible. In opposition to Hume, Kant maintained that the mathematics, geometry, and theoretical physics of his day were absolutely true, demonstratively certain, and completely informative concerning matters of experience. These disciplines, according to Kant, are able to arrive at necessary truths about our world despite the fact that they are based on reason alone and not on experience or experiment.

If, for example, I consider the statement that 7 + 5 = 12, its truth is immediately obvious. Known through reason alone, this mathematical truth is also true of the world of experience. It is true of any seven and any five objects in the world regardless of their nature. It is not necessary to actually consult experience to verify the truth of 7 + 5 = 12; in fact, the attempt to verify its truth by experimental means, such as repeatedly adding seven
objects to five objects and then counting the resultant number of objects, is pointless and redundant. This is because we have an immediate intellectual apprehension \([\text{Anschauung}]\) of the truth of such rational or a priori judgements, which obviates the need for any experimental or a posteriori verification.

How are such a priori judgements possible? We might be inclined to believe with the Hume of the *Enquiry Concerning Human Understanding* that the judgement \(7 + 5 = 12\) simply expresses the same concept in two different ways. On this account, such a judgement is tautological because it says the same thing twice: \(7 + 5\) simply is 12, but stated differently. Thus \(7 + 5 = 12\) is true because 12 belongs to the definition of \(7 + 5\), just as the statement “a bachelor is an unmarried man” is true because the predicates “unmarried” and “man” belong to the definition of a bachelor. Kant calls such judgements *analytic* because they represent an analysis, so to speak, of the subject term.

Kant, however, denies that \(7 + 5 = 12\) is in fact an analytic a priori judgement. On Kant’s interpretation, the concept \(7 + 5\) contains nothing beyond the notion that 7 and 5 are to be added together. \(7 + 5\) is merely an instruction to perform the operation of addition on 7 and 5. This, Kant states, is categorically different from the concept 12, which specifies a given number of objects. While it is true that \(7 + 5\) also refers to a number of objects, it says nothing as such about the *specific* number to which it refers, and much less that this number happens to be the number 12. Rather than resembling the statement “a bachelor is an unmarried man,” \(7 + 5 = 12\), on Kant’s account, is much closer to a statement like “bachelors are carefree and jovial” (with the difference that the former is always true without exception whereas the latter is not). In the case of such statements essentially *new* predicates are added to the predicates already specified by the definition of the subject term. Accordingly, Kant calls such statements *synthetic* because they undertake a synthesis or conjunction of several initially unrelated terms.

The central problem of the *Critique of Pure Reason* is: “how are synthetic a priori judgements possible?” In plain English
this problem can be restated as: “how is it possible to make true and informative statements about the world using reason alone, independently of experience?” Kant’s answer is that reason, or the faculty of intellectual apprehension, is like a mould into which the stream of experience is poured. Reason imposes its own structure on the world just as a stamp imposes its own form on soft wax. Our actual experience of the world is thus a hybrid product with two sources, one source being the matter of the experience, provided by the objects which stimulate our senses, and the other source being the form of all possible experience, the framework within which alone experience is possible. Reason is able to provide us with true and certain knowledge concerning matters of experience because reason itself imposes a rational order upon experience. Our minds reshape the world in the image of their own rational structure. Because of this spontaneous imposition of form upon the confused matter of the information we perceive through our senses, events in the world are experienced as happening in conformity with rational principles.

Why, then, is $7 + 5 = 12$ true? Why is it true that any seven objects added to any five objects will result in twelve objects? Because our minds contain a fundamental mathematical structure which they impose upon our experience of the world, rather like a navigator who imposes latitudes and longitudes upon the globe and then finds that any point on the surface can be specified in terms of these parameters. Although in both cases the structure in question is a superimposition upon the world, in the case of the navigator a deliberate and conscious decision is taken to make use of latitudes and longitudes, whereas in the case of our minds and their acts of perception, the structure of reason is superimposed automatically and unconsciously, or as Kant puts it, “spontaneously.”

For Kant, geometry is founded in the pure intellectual apprehension of the rules of space. Similarly, mathematics is founded in the pure intellectual apprehension of the rules of time, because Kant conceives of numbers as the results of sequences
The truths of geometry and mathematics are true of the world because our minds spontaneously superimpose the structure of space and time on our experience of the world. In short, space and time are conceptual overlays through which we interact with a world which is inherently not spatial or temporal, just as, returning to the example of the navigator, the globe is inherently not marked off into latitudes and longitudes. In order to account for other concepts such as cause and effect, Kant proceeds to argue for the existence of further such intellectual overlays which he terms "categories." The further details of this argument do not concern us here. The important point is that in all cases Kant draws a distinction between the object of experience as such and the object of experience insofar as we experience it through a conceptual overlay.

The difference between "the object as we experience it" and "the object as such" is reflected in Kant's distinction between *phenomena* and *noumena.* "Phenomena" or "appearances" are things as we are able to experience them. Phenomena are experienced by us within a spatio-temporal framework which, on Kant's account, is overlaid upon them by our own minds. Thus the laws of space and time, and correlative the truths of geometry and of mathematics, are indeed universally and necessarily valid when speaking of phenomena, just as any point on the earth's surface can be specified by a particular latitude and longitude. However, this universal validity does not extend beyond the boundaries of human experience. Such laws hold true for phenomena and only for phenomena, only for objects as we experience them.

"Noumena," a Greek word literally meaning "thought things" but used by Kant in the sense of "theoretically postulated entities" [*Verstandeswesen*] is Kant's term for "things in themselves," or things as they exist outside of our experience of them. As human beings, we have no other access to objects than through our own human experience. According to Kant, since we do have experiences of objects at all, it is reasonable to assume that they do in fact exist independently of our experiences of them.
However, we can never say more of them than this; and even the assumption that they do exist independently of us can never be more than a theoretical assumption because our limited human faculties can never transcend the sphere of possible experience. Similarly, the navigator cannot use latitude and longitude to specify points which are not found on the surface of the earth.

Accordingly, the world view that emerges from Kant's transcendental idealism is split into two distinct realms: a realm of phenomena, or the sphere of experience; and an utterly unknowable realm of noumena, which in some mysterious fashion—assuming that it even exists—underlies and maintains the existence of the realm of phenomena.

Kant's aim, as he states in the preface to the second edition of the *Critique*, was to abolish knowledge in order to make room for faith; but it is hardly surprising that not every philosopher wished to follow him in this. On a purely theoretical level it is hardly satisfying that Kant, on the one hand, wishes to prevent any speculation that transcends the limits of human experience, and yet on the other hand postulates the existence of a realm of noumena whose defining feature is that it does transcend the limits of experience. The early post-Kantian philosophers Johann Gottlieb Fichte (1762-1814) and Friedrich Wilhelm Josef Schelling (1775-1854) were unanimous in their conviction that this was the weakest point in Kant's system. They dealt with this theoretical problem by evolving alternative Kantian systems in which there was no need to postulate the existence of a "thing in itself" beyond the boundaries of human experience. For these philosophers, the founders of the philosophical movement now generally referred to as German Idealism, there simply was nothing beyond human experience. The world simply was the sum total of phenomena as they were encountered within the entire vista of human experience. We thus see that the immediate reaction of post-Kantian philosophy to the theoretical difficulties of the Kantian scheme consisted in a rejection of the realm of noumena or "things in themselves." This amounts to an identification of reality with phenomena or the spontaneous products of mental activity.
The reduction of reality to phenomena undertaken by Fichte and Schelling does not amount to a claim that all reality is an illusion. Rather, it amounts to a claim that in some non-trivial sense reality is a product of mental activity, or of an activity which is mind-like in nature. The mind, in other words, imposes a form upon its own constituent "stuff," not upon an unknowable noumenon foreign to itself. The phenomena of everyday life, though ultimately mental in nature, are not chaotic images, not disordered dreams or hallucinations. They are appearances with a regular structural pattern that observably follow certain well-defined laws. In modern terminology, we would call such appearances processes.

Kant's mistake, according to the post-Kantians, was to believe that phenomena required an existential anchor in an unknown and unknowable world of noumena. For post-Kantian philosophy, however, and for Hegel in particular, phenomena require no support outside of their own structural constitution. The attempt to grasp and articulate this structural constitution within a comprehensive system of philosophy is what Hegel terms phenomenology, or the science of the experience of consciousness. It is an attempt to give an all-embracing account of the mind-like laws that determine the essentially mind-like structure of phenomena. These laws, pertaining as they do to activity that is fundamentally mental or mind-like, are the principles of logic in the Hegelian sense.

In the dual forms of phenomenology and logic, which Hegel eventually combined and further developed in his Encyclopedia of the Philosophical Sciences, for much of the 19th century the phenomenal-oriented approach of Hegel's absolute idealism became the dominant philosophical current in Germany and a large part of the English-speaking world.

1.2 THE "CRISIS" OF EUROPEAN SCIENCE

By the beginning of the 20th century the influence of Hegelianism in Germany had waned significantly, and many dominant forms
of philosophy in Germany were variants of Neo-Kantianism. The renewed interest in Kant's attempt to secure a theoretical foundation for the sciences of his day was triggered by what Husserl was later to call a "crisis of European science." The most obvious crisis and its resolution, namely the collapse of the Newtonian world view and its replacement with the physical theories developed from the work of Einstein, is a matter of common knowledge, in outline at least. However, the "crisis" to which Husserl refers occurred on a much broader front than that of the physical sciences. For the purpose of a brief introduction to phenomenology and the problems with which it was originally created to deal, it is sufficient to concentrate on the effects of this general crisis in a few main areas: geometry, mathematics, logic, and of course philosophy.

For several decades, it had been a common view among philosophers of science that Kant had secured a theoretically adequate—indeed, in Kant's own estimation, absolutely certain—justification of Newtonian science and the traditional mathematics and geometry on which it was based. As later history has shown, however, the Newtonian scheme does not actually fit the observable facts about our universe. The practical application of a modern relativistic model, which fits the observable facts rather better, demands the use of non-traditional forms of physics, geometry, and mathematics. Unfortunately for Kant, whose philosophy apparently demonstrates that Newtonian physics, Euclidean geometry, Aristotelian logic, and traditional mathematics are absolutely certain and incapable of improvement, the obvious implication is that Kant's theory is wrong in at least some important respects.

The weaknesses in Kant's basic assumptions begin to come to light with theoretical developments in geometry and mathematics. Kant, as we pointed out, had assumed that traditional Euclidean geometry was the sole possible geometry and therefore the only true geometry. Towards the end of the 19th century it was discovered that alternate forms of geometry were possible, the so-called non-Euclidean or curved geometries,
which describe curved surfaces rather than rectilinear Euclidean planes. It is possible to formalize such geometries in such a manner that no serious problem due to lack of internal self-consistency arises. Accordingly, we are faced with the problem of determining which of the many possible geometries is in fact the true system of geometry.

Since the various geometries are internally coherent, it seems that we are forced to rely on external criteria in order to decide which geometry best fits the facts about our world. When we do so, however, yet another problem emerges. Euclidean geometry in fact provides a much closer description of space at the level of medium sized objects such as rabbits, people, and tables than any non-Euclidean geometry, while non-Euclidean geometry is a much better model of space at the level of large sized objects such as comets, planets, and galaxies. It would, in other words, be as absurd to expect an astronomer to rely on Euclid as it would be to force a carpenter to build a table according to Lobachevsky. The apparent necessity for there to be one authoritative system of geometry has disappeared. The concept of “local” geometries, specific systems applicable to specific tasks or situations, replaces that of “global” geometries, or universally valid descriptive systems.¹⁰

In mathematics the situation is similar. On the one hand, Kant was able to preserve the absolutely certain character of mathematics—an ideal which was to be the chief inspiration of the founders of all important streams of 20th century philosophy—but at the cost of reducing mathematics to a quirk (though an objective and universally valid quirk) of the structure of the human mind. In Kant’s system, mathematics is true primarily of the human mind, and true of the empirical world only in a secondary, derivative sense. As we have seen, it was precisely this feature of Kant’s system that allowed Hegel to formulate a “logic,” or system of ontological categories, that was wholly based on a theory of the behaviour of mental and mind-like processes. In Hegel, however, these processes are still considered to be “objective” in the sense that they are independent of
specifically human minds, being existentially anchored in the omnipresent thought of a universal mind, which Hegel terms \textit{Geist} or "spirit."

Under the influence of John Stuart Mill (1806-1873) and the newly-developing experimental psychology, and in some variant approaches in alliance with Hegel, a movement began whose ambition was to create a theoretical foundation for mathematics in the psychological laws of specifically human thought. For the mathematicians of the time, however, such an attempt had the effect of compromising the clarity and certainty that, in their opinion, characterized their subject in contrast to all others. In this theoretical approach, mathematics becomes a quirk of the human mind; but now it is a purely psychological and thus purely subjective quirk in contradistinction to the purely objective quirk described in the Kantian system.

Along with the perceived need to defend the formal validity of mathematics against the conceptual assault of \textit{psychologism}, traditionally puzzling features of mathematics, such as the existence of irrational numbers and the nature of number itself, began to be taken more seriously and to cause a certain disquiet among philosophers of mathematics. How could mathematics claim to be a perfectly certain and perfectly transparent conceptual system if, on the one hand, a serious attempt to reduce it to psychological thought was even possible? Was not the proliferation of psychologism ultimately based on an omission of mathematicians themselves, namely their failure to secure an absolutely certain theoretical basis for mathematics? How could the traditional dignity of mathematics be maintained if traditionally puzzling features of mathematics had still not been dealt with, indeed had simply been let lie for centuries? Surely this must mean that the theoretical foundations of mathematics had in fact \textit{never} at any point in its own history attained the desired level of clarity and transparency?

History shows us that the two main streams of 20th century philosophy, Anglo-American or Analytic philosophy so-called and Continental philosophy so-called, trace their origins back
to the manner in which two German philosophers, Gottlob Frege (1848-1925) and Edmund Husserl, dealt with this crisis in European science. Frege's approach to the problem is simple to understand even if its concrete execution is not. Logic is the foundation of truth. It is the very science of truth itself. If, then, we are puzzled by the features of mathematics, the solution is straightforward: we reduce mathematics to a form of logic. In Kantian terms: we prove that every proposition of mathematics ultimately has an analytic a priori form, that is, is true by definition. This has the advantage of making the conceptual foundations of mathematics absolutely transparent. Nor is an existential anchoring of the truth of mathematics in subjectivity, whether human or superhuman, required in this case. Should we succeed in this undertaking and bring the programme of logicism to a successful conclusion, mathematics becomes a branch of the one absolute canon of truth, namely logic.

As promising and as auspicious as this ambition seems, it turned out in the course of time that Frege, and along with him the entire logicist movement, was to be deeply unsettled and bitterly disappointed. The further details of this intriguing story are not, however, relevant for our present purposes.

The mathematician Edmund Husserl (1859-1938) began his philosophical career under the influence of Franz Brentano (1838-1917). For Brentano, the ultimate theoretical foundations of all formal disciplines, of mathematics as well as philosophy, were to be sought in the principles of psychology. In order for a theoretical justification of a particular discipline to be adequately effected, however, a fundamental discipline was required; the aim of this fundamental discipline was to provide the theoretical basis for the reduction of any and every discipline to its own individual theoretical foundation. Accordingly, Brentano’s aim was to develop just such a “universal science.” For Brentano, this universal science took the form of a “descriptive” or “phenomenological” psychology whose aim it was to restrict itself exclusively to empirically accessible “phenomena” and
to adequately describe these “phenomena.” As a proponent of psychologism, Brentano thought it clear that the sought-after phenomena were ultimately structural features of consciousness.

Under Brentano’s influence, Husserl began as a supporter of psychologism. His first book, the *Philosophie der Arithmetik* (1891), undertakes a psychologistic derivation of the main concepts of arithmetic. Husserl’s flirtation with psychologism quickly ended in disillusionment; by the time he published his groundbreaking *Logische Untersuchungen* (1900/01), Husserl had become a vitriolic opponent of psychologism and its intellectual ideals. So complete and so thorough was this conversion, and so influential was its theoretical justification in the first volume of the *Logische Untersuchungen*, that scholars are generally agreed that this groundbreaking work dealt psychologism the death blow in Germany.

What caused such a dramatic change in Husserl’s estimation of the theoretical status of mathematics? It seems that Husserl was an admirer of and greatly influenced by Frege’s early work, in particular the small book *Die Grundlagen der Arithmetik* (1884). The precise intellectual relationship between Frege and Husserl is a matter for continuing investigation, but it is reasonably clear that while Husserl shared Frege’s ideals, he was utterly at odds with Frege concerning the means by which these ideals were to be attained:

> A founding of arithmetic on a series of formal definitions from which all the propositions of this science could be deduced in a purely syllogistic manner is Frege’s ideal.

It will thus not be necessary to discuss at length why I cannot share this view [...]. One can only define the logically compound. As soon as we hit upon the final elementary concepts, all defining comes to an end. [...] The goal that Frege has set himself is thus to be regarded as chimerical. It is thus also no wonder that his work, despite its perspicaciousness,
strays into unfruitful hypersubtilities and ends without a positive result.17

It was rather more Frege's attitude towards psychologism that seems to have influenced Husserl;18 although there is evidence that Husserl did study Ludwig Wittgenstein's (1889–1951) \textit{Tractatus}, like many mathematicians he generally seems to have taken little interest in the specifically logical argumentative apparatus of Frege and Russell.

Turning to Hume, Kant, and René Descartes (1596–1650) for inspiration, Husserl developed a new philosophical approach which he was later to call \textit{transcendental phenomenology}. Phenomenology in Husserl's sense is a purely descriptive discipline, which seeks a comprehensive and accurate description of \textit{acts of consciousness}. Unlike the empirical sciences (including psychology), it is concerned not with experience per se but with the structures of consciousness that underlie all experience and thus make experience as such possible. Unlike the formal deductive disciplines of logic, mathematics, and geometry, phenomenology is concerned not with abstract definitions, implications, and deductions per se but with the foundational acts of consciousness that underlie all abstract thought and thus make abstract thought possible. For Husserl, then, "phenomenology" is the \textit{descriptive study of foundational structures of consciousness}.

Yet the question remains to be asked: why did Husserl think this would shed light on the formal problems of mathematics at all? What was fundamentally \textit{wrong}, in Husserl's opinion, with the Fregean approach to resolving the theoretical problems of mathematics?

1.3 \textbf{HUSSELR'S PHENOMENOLOGICAL FOUNDATION}

Husserl's solution to the theoretical problems of mathematics was to return "to the things themselves." For Husserl, this amounts to: "let us return to the original facts upon which the
fundamental concepts of mathematics are based, to these facts as they are experienced in consciousness. By studying the foundational notions of mathematics within the structures of consciousness necessary for their apprehension, we will be in a position to clear up the experiential basis from which our theoretical formalizations of mathematics proceed. By clearing up this basis—namely the experience of mathematical facts as facts of consciousness—we have secured a proper foundation for our further theoretical enterprises. Having secured a firm and certain foundation, we should then be able to build a lasting and satisfying theoretical edifice upon this foundation. The phenomena of which our Husserlian phenomenology is an account are accordingly logical-mathematical objects in their relation to consciousness.

In order to make this approach plausible I would like to use an illustration of my own invention. This particular example is also intended to emphasize the features of Husserl's phenomenology that Heidegger found particularly appealing and valuable in a philosophical context. The illustration involves a very ancient, and as yet unsolved, \(^\text{19}\) problem put forth by the philosopher Zeno of Elea, who was born early in the \(^{5}\text{th}\) century BCE.

Zeno was a close associate—according to some ancient sources, the lover—of the Presocratic philosopher Parmenides, who argued that change, motion, and plurality were illusions. \(^\text{20}\) According to Parmenides, the universe is in fact one infinite, unchanging, and homogeneous mass, which is falsely perceived by human beings as a manifold and changing world. Parmenides’ argument, in short, is that nothing can properly be said to exist but Being itself; any process of change is a process of Becoming, which is not Being; therefore Being itself is utterly free of change. What is free of change can never be give rise to difference; accordingly, nothing exists that can properly be said to be different from Being.

To support this claim, Zeno formulated a number of paradoxes intended to show that the concepts of space, motion, and plurality were incoherent. The paradox that we shall use as an illustration is generally known as the “Dichotomy” or the
"Stadium," probably the best-known Zenonian paradox. The ancient Greeks believed, and we have all been taught in geometry class, that any line is infinitely divisible. That is to say: any line can be repeatedly divided into smaller parts, and these smaller parts can themselves be subdivided into yet smaller parts, and so ad infinitum. The smallest possible part, since it results from an infinite process of division and subdivision, is infinitely small. Such an infinitely small part is termed a "point." Thus any and every line in fact consists of an infinite number of points.

Supposing, then, I find myself within the precincts of a stadium, and within this stadium I wish to move a certain distance along a given line AB (hence the first name of the paradox, the Stadium). It follows from the general proposition that any and every line is infinitely divisible that before I move the entire distance, I must first move half the distance, namely AB'. However, thanks to the concept of infinite divisibility, it also follows that before I can move half the distance, I must first move half that distance as well, or one-quarter of the whole distance I wish to move, which is indicated on the diagram by the line segment AB''. In turn, before I move this distance I must first move half this distance as well, namely one eighth of the whole distance, or AB'''. (It is from its reliance on the procedure of continually halving the remaining distance that the paradox derives its other name, the Dichotomy.)

Now since the line is infinitely divisible, this situation, namely always having to move half any given distance before I move the whole distance, will always be present. The conclusion: since there is always something I have to do before I can complete the desired motion, namely move half the distance, I will never move at all.
How can we deal with this apparently inescapable paradox? Can we refute the paradox at all, and if so, how? How do we deal with it in real life? By directing our attention to any given instance of motion in our immediate environment. How convinced are we that such a procedure truly refutes the paradox? Not convinced at all, somewhat convinced, or absolutely convinced? Most of us would probably agree that (for practical purposes at least) we were absolutely convinced. If we accept this, there are three obvious consequences for the manner in which we approach mathematical and geometrical paradoxes.

1. The first consequence is that we can use sight (in the widest sense of apprehension, whether “physical” or “mental”) to decide, with absolute certainty, what is and is not the case. It is by means of “sight” in this sense that we were able to decisively refute the paradoxical conclusion that, on the assumption of the infinite divisibility of any and all distances, motion is impossible. If we so desired, we could presumably go on to give a perfectly accurate and theoretically satisfying account of motion, even on a formal level.

2. The second consequence concerns the general significance of theory, that is, of our ability to conceptualize mathematical relations involving such concepts as motion, divisibility, and time. We are faced with a centuries-old paradox that is based on apparently sound reasoning. It follows naturally from our usual conceptions of distance and motion. Either movement is truly impossible—which we believe not to be the case—or there is something wrong with the manner in which we conceptualize movement when we use concepts such as infinite divisibility.

3. The third consequence concerns the structure of consciousness as the foundation of theory. Note that to resolve the paradox, we do not need to actually observe real motion in the real world; it is sufficient to consider...
what is involved in the consciousness of motion as such, whether real or imaginary. In this the peculiar “sight” of the phenomenological approach consists. When we consider real movement in the real world in this way, motion does not appear as a constant “hopping” from point to point in space. Motion, such as walking from one end to the other of a stadium, seems rather to “flow” or in some sense to be continuous rather than composed of real discrete units. Of course, we do experience “hopping” motions from time to time, but within each “hop” motion is as we have described it: continuous rather than “broken” into an infinite number of infinitely small “hops” through an infinite series of infinitely small points. (The clumsiness of description alone should give us pause.) Thus by invoking no agencies other than sight (in the above-mentioned sense) and our experience, we can conclude that the paradox arises as a result of the theoretically inadequate expression of real movement as movement through an infinite number of infinitely small points.22

To sum up our conclusions with a few words, it seems that whenever we come across a paradox, whether in mathematics or geometry, the fault seems to lie in our concepts, in our conceptual scheme, rather than in reality itself. Clearly motion is possible. If we are able to derive a paradox from a formal conceptualization of motion, then the conceptualization, not the structure of reality itself, must be the source of the paradoxical conclusion. Accordingly, if we call the direct experience of reality the pre-theoretical level of consciousness and the formulation and use of conceptual systems the theoretical level of consciousness, we seem entitled to conclude that conceptual problems arise at the theoretical rather than the pre-theoretical level.

If, when we encounter paradoxes, the fault lies in our theoretical conceptual scheme, our first task as philosophers—as phenomenologists—must be to gain direct access to the pre-
theoretical reality underlying our conceptual schemes. In the case of our refutation of the Dichotomy or Stadium, we proceeded by abandoning the conceptual scheme that puzzled us—by quitting the theoretical level—and turned to the phenomena which this conceptual scheme was supposed to express, that is, we returned to the pre-theoretical “things themselves” of which the theoretical formalization is a model or expression. In the terminology of the later Husserl, the aim of phenomenology is to undertake a methodologically secured return to the pre-theoretical life-world [Lebenswelt]: the fundamental phenomena of experience as they exist in consciousness before we attempt to grasp them in terms of formal theoretical systems.

Let us pause to reformulate our conclusions in more precise and more familiarly Husserlian terms. For Husserl, the essence of the phenomenological method lies in a particular modification of our “natural attitude” [naturliche Einstellung]. This natural attitude is the level at which we go about our business in daily life. A chief characteristic of this natural attitude is our “naive belief in existence” [naiver Seinsglaube], that is, in the existence of external objects in an external world. Husserl also calls this belief in the reality of the external world the “general thesis of the natural attitude.” For the purposes of philosophical reflection, this natural attitude can, however, be radically modified; it can become what Husserl calls the “phenomenological attitude” [phänomenologische Einstellung]. This phenomenological attitude is the sine qua non of a methodologically secured return to the experiential basis of all theory.

The phenomenological attitude is characterized by the adoption of the Husserlian epoché. Epoché is a Greek term meaning “the act of holding back or refraining,” or more simply “restraint.” It was originally a Skeptic technical term meaning “suspension of judgement.” In Husserl’s sense, exercising the epoché means disabling (exercising restraint towards) the general thesis of the natural attitude. In other words, insofar as we are practising phenomenological thought, we are utterly indifferent to the question as to the objective reality of our experiences. This
has to be correctly understood. “If I do so, as I am fully free to do, then I do not negate this ‘world’ as if I were a Sophist, I do not doubt its existence, as if I were a Skeptic; but I exercise the ‘phenomenological’ epoche, which fully closes off every judgement concerning spatio-temporal existence to me.” In so doing we completely eliminate the changeable external world as a possible source of error and restrict ourselves to a realm in which complete certainty is possible because this realm is the transcendental foundation of all further experience.

A remarkable fact, according to Husserl, is that consciousness has its own peculiar “stream,” which is not affected by the phenomenological epoche. This stream of consciousness Husserl calls the “phenomenological residue” [phanomenologisches Residuum] of the “bracketing out” [Ausklammerung] of the world. This transcendental consciousness is a type of experiencing that is prior both to the experience of the world and to the act of conceptualization, and so lacking any feature which could introduce the possibility of error. It is the wellspring from which all truth is ultimately derived. Yet how are we to make use of this phenomenological residue in a philosophical context? A further modification of consciousness produces a self-reflexive act whose aim is to explicitly grasp and describe the structures of transcendental consciousness involved in experience as such. The act of self-reflection permits us to undertake a methodical and systematic description of transcendental consciousness in its entirety. In this way the transcendental consciousness exposed by the epoche serves as the basis of a completely new and fundamentally descriptive science—the science of phenomenology.

Along with the bracketing out of the world, we also eliminate any recourse to existing sciences and scientific theories as a possible source of explanation. Thus in beginning from the level of transcendental consciousness exposed by our adoption of the phenomenological attitude, we have undertaken a complete destruction of our previously held opinions, opinions that were founded in the naive belief in existence of the natural
attitude. In so doing we commit ourselves to a fundamentally new philosophical enterprise: the re-construction of a completely self-evident system of beliefs, theories, and sciences on the basis of our own ultimate self-borne responsibility [aus letzter Selbstverantwortung].

1.4 HEIDEGGER’S HERMENEUTICS OF FACTICITY

In his earliest phenomenological work, the Logische Untersuchungen (1900/01), Husserl made use of the term “phenomenology” to denote an approach or methodology as opposed to a fully-developed system of philosophy with its own set body of dogmas and doctrines. By the time he published the first volume of his Ideen zu einer reinen Phänomenologie und phänomenologischen Philosophie (1913), however, Husserl was hard at work systematically reshaping his phenomenology into a form of transcendental idealism. This development partially reflected the enduring influence of Kant’s epistemology on Husserl’s thought, but also shows Husserl’s developing admiration of Cartesianism and its skeptical considerations.

In establishing and fortifying his fundamentally idealist position, Husserl continued to remain strongly oriented towards the formal problems of mathematics and geometry. Throughout his life, he continued to produce works in which he applied the results of his ongoing phenomenological investigations to the task of securing an adequate theoretical foundation for logic and mathematics. Husserl’s ultimate aim, like Descartes’, was to rebuild the conceptual edifices of logic, mathematics, and geometry upon an absolutely unshakeable theoretical foundation—the sphere of the ego cogito or of transcendental subjectivity.

Many philosophers who appreciated Husserl’s fundamentally descriptive methodology and its way of handling philosophical problems were dismayed at Husserl’s emphatic introduction of idealistic premises into his phenomenological technique of analysis. To these philosophers, the greatness of
Husserl’s innovation lay precisely in his introduction of a new method of description, which remained, or should have remained, neutral towards traditional epistemological and metaphysical positions. The original contribution of phenomenology, on this view, was that one could concern oneself with the "things themselves" and not bother about the historical accretion of theoretical problems, especially those associated with the debate of Idealism versus Realism. Was not Husserl, in effect, compromising his own supposedly pre-theoretical methodology by committing it to a particular theoretical stance concerning the dependence of the real world on consciousness? Did this not contradict the very nature of the phenomenological *epoché*, which was supposed to prevent *every* judgement concerning spatio-temporal existence and its dependency (or lack thereof) upon the sphere of transcendental consciousness?

Other critics of this enterprise were unsettled by Husserl’s evident admiration of the formal sciences. Husserl’s phenomenology ostensibly presented itself as a foundation on which other disciplines, such as psychology and ethics, could build. Yet Husserl had a strong inclination to emphasize those structures of consciousness that he felt were intimately connected with logical, mathematical, and geometrical thinking. This was taken by some critics as evidence of Husserl’s own bias in favour of mathematics and geometry as models of philosophical thinking. And if it was indeed a bias, to what extent could Husserl claim to have formulated a truly objective phenomenological methodology?

There are further problems with the notion of using a method to gain access to a pre-theoretical sphere of consciousness. Husserl, or so he claimed, was concerned with developing a methodologically secured approach to the phenomena or “things themselves.” However, it seems that every method must be based on a theory concerning what is to be approached and how to approach it. Since Husserl clearly has such a theory, how can the theory claim to permit access to a pre-theoretical level at all? The realm that Husserl’s phenomenological *epoché* allows
us to access cannot, it seems, be truly pre-theoretical because it is conditioned by Husserl's own theoretical assumptions. And these assumptions are geared towards one specific goal: that of an absolutely certain foundation of logic, mathematics, geometry, and other formal scientific disciplines. In short: who is to say that the "things themselves" are in fact transcendental structures of consciousness?

The development of Heidegger's own version of Husserl's phenomenology was the result of a theoretical reassessment of the meaning and significance of the phenomenological method. It was motivated and supported by the above-mentioned lines of criticism in conjunction with Heidegger's own extracurricular philosophical interests. This development in Heidegger's thought is complex and manysided, and its various aspects must be considered carefully if it is not to be misinterpreted, as it sometimes is, as a wilful and violent appropriation of Husserl's phenomenology for essentially alien purposes.26

It may surprise some of us to know that Heidegger began his career as a specialist in traditional philosophical logic. An early summary of recent developments in logic, written and published in 1912, shows that Heidegger was acquainted not only with Russell's Principles of Mathematics but also with Russell and Whitehead's Principia Mathematica and Louis Couturat's Les Principes des Mathématiques.27 His dissertation dealt with psychologism and its theory of logical judgement. His Habilitationsschrift28 addressed Duns Scotus' theory of categories and meaning. Interestingly, a footnote to the lecture Metaphysische Anfangsgründe der Logik im Ausgang von Leibniz (1928) indicates that Heidegger was also acquainted with the work of Russell and Couturat on the philosophy of Leibniz.29 This is, of course, not to say that Heidegger was in a position to follow the intimate details of 20th century innovations in mathematical logic—nor, for that matter, were most of the philosophers and mathematicians of his time. However, he was certainly able to appreciate their wide-ranging originality and significance.30 If Heidegger rejected the notion that logic as such should be a central concern of his version
of phenomenology, it certainly was not, as some commentators have proposed, due to a global ignorance of logical issues.

Heidegger was well able to appreciate the strengths of Husserl’s phenomenological methodology and its significance for a theoretical justification of mathematics and logic. However, as he began to examine Husserl’s phenomenology more closely in the light of existing criticisms, he began to agree that Husserl’s orientation towards a philosophy of consciousness and towards a traditional conception of science—in other words, his focus on the theoretical problems of logic and mathematics—was misplaced. Where, at the pre-theoretical level, do we ever encounter anything like a “phenomenological residue”? Clearly this “sphere of transcendental consciousness” was a theoretical construction of Husserl’s insufficiently radical theoretical assumptions. Husserl, rather than discovering the foundation of the formal sciences in consciousness, had imposed a theoretical foundation upon consciousness for the sake of justifying the ultimate validity of logic and mathematics. It seems that the “lived” world around us as we encounter it at an everyday level, the truly pre-theoretical life-world, bears only a faint and distant resemblance to the world as it is described in logic, mathematics, and geometry.

The question then arises: if the true pre-theoretical life-world bears only a faint resemblance to the formal worlds of the formal disciplines, what is the true world actually like? And how was it at all possible for Husserl to confuse the formal “worlds” of the theoretical sciences with the actual pre-theoretical life-world of everyday experience?

Heidegger’s philosophy developed as a direct response to these questions. One of Heidegger’s early names for his revamped and expanded phenomenology was the hermeneutics of facticity. By “facticity” Heidegger means the lived world of everyday existence, the truly pre-theoretical level, which Husserl’s phenomenology overlooked owing to its emphasis on science. Heidegger’s phenomenology is thus an attempt to put forth an interpretative description of the lived world as it is experienced before any theoretical modification of this experience.
Heidegger found a rich account of the true phenomena of everyday life, lived life rather than a “phenomenological residuum” exposed by an artificial theoretical “reduction,” in the writings of the Lebensphilosophen (proponents of “life-philosophy”) of his day. These writings are supplemented by Heidegger’s readings of prominent figures of late 19th century philosophy, such as Søren Kierkegaard (1813–1855) and Friedrich Nietzsche (1844–1900), who are frequently, if inaccurately, assimilated to the so-called existentialist movement. This constitutes the source material that Heidegger employs as a basis for his own phenomenological account of the foundational structural constitution of human life. Heidegger further bases his revised understanding of the phenomenological method on central themes of hermeneutics, the theory of interpretation. There are, of course, many other important influences upon Heidegger during this early developmental period, but as these are of lesser significance for the comprehension of Being and Time, which will form the subject material of Chapters 2 and 3, we will leave these influences aside for the moment.

The Heidegger of Being and Time reacts to philosophical influences in three ways: rejection, appropriation, and critical revision:

(1) Rejection. Although Karl Jaspers (1883–1969) is very much a background figure in Being and Time, it is clear that Heidegger rejected the philosophical approach of Jaspers’ Psychologie der Weltanschauungen (1919) and wished to distance himself from it. This is particularly ironic in that Jaspers, influenced by his reading of Being and Time, later went on to write a three-volume work entitled Philosophie (1932), the founding work of Existenzphilosophie (“existence-philosophy”) in Germany. This work, more than any other, is the source of the approach and ideology of the later “existentialism.” Popular in tone and more accessible than Being and Time, Jaspers’ work provided many early commentators the means to approach Heidegger, leading to the misconception that Heidegger was a proponent of existence-philosophy in Jaspers’ sense. It is highly likely that Jean-Paul
Sartre's (1905-1980) understanding of Heidegger and his version of "existentialism" originate with Jaspers.36

Heidegger also categorically rejects the philosophy of Descartes and, in direct opposition to Husserl, denies his importance as a philosophical role model. §§ 12-24 of *Being and Time* should be understood as an attempt to undermine the Cartesian foundations of Husserlian phenomenology. We will discuss these topics more fully in Sections 2.5 and 2.10.

(2) *Appropriation.* The most obvious direct influence on Heidegger's philosophy in *Being and Time* is Kierkegaard, whose chief philosophical concerns are reflected in much of the subject matter of *Being and Time*. Heidegger incorporates much of Kierkegaard with little or no significant change into the conceptual framework of *Being and Time*, his main goal being to accurately describe the complex structural constitution of anxiety, death, and the conscience. In so doing, Heidegger hopes to demonstrate that these topics are essential structural features of the truly pre-theoretical level of human existence and are amenable to serious methodical philosophical treatment.37

Heidegger was also directly influenced by Wilhelm Dilthey (1813-1911), the best known proponent of life-philosophy in Germany. Concerned with grasping the vital and fundamentally irrational nature of human life, Dilthey was interested in the philosophy of history and in preventing the dominance of science and scientific method in the humanities. Still a highly influential figure in Germany, he is widely considered to have made decisive contributions to the theoretical foundations of the humanities as separate disciplines independent of the natural sciences.

(3) *Critical revision.* Heidegger's primary influence in *Being and Time* is of course Husserl, and it is Husserl's concept of phenomenology that Heidegger considers both most important and most in need of critical revision. There is also a marked tendency to emphasize the Kantian elements in Husserlian phenomenology insofar as Heidegger, like Kant, is concerned with fundamental structural features of the human epistemic constitution. (As Heidegger puts it: he is concerned with identifying *primeval existentials* of Dasein38.)
Heidegger further attempts to strengthen Husserl's phenomenology by introducing concepts from hermeneutics. The term "hermeneutics" is derived from the Greek verb hermēneuein, meaning "to explain," "to interpret," or "to translate." Traditionally it referred to the theory of interpretation in general, and to Biblical interpretation in particular. Hermeneutics traces its ancestry to 18th-century Germany, where it began with the theoretical works of Johann Martin Chladenius and Georg Friedrich Maier on text interpretation. Its best known proponent, however, was the theologian Friedrich Daniel Ernst Schleiermacher (1768–1834). By recasting Husserl's phenomenology as a technique of interpretative description, Heidegger hoped to avoid the pitfalls to which Husserl fell prey, namely the questionable possibility of using a theoretical technique to explore a pre-theoretical level of experience. Heidegger's version of phenomenological hermeneutics will be further discussed in Sections 2.4 and 2.6.

The foregoing three reactions to philosophical influences do much to explain the style of Being and Time. The resulting unique combination of "theoretical" and "practical" philosophy is one of the most peculiar and most fascinating aspects of Heidegger's work. Taking all of the foregoing considerations into account, we can identify four fundamental characteristics of Heidegger's phenomenology that emerge from these influences:

(1) **Anti-rationalism.** Here I am using "rationalism" in the sense in which Descartes, Baruch (Benedictus) de Spinoza (1632–1677), and Leibniz are said to be "rationalist" philosophers. Heidegger denies that logic, mathematics, or geometry are suitable models for philosophical thinking because he believes that the task of philosophy is to grasp the pre-theoretical level of human existence. The notion is simply that rational argument is based upon other fundamental structures (for Husserl these are structures of consciousness) and that therefore arguments are not concerned with the primeval facts with which philosophy should be
concerned. This is often (inaccurately) expressed by the assertion that Heidegger's phenomenology is a purely descriptive methodology in contrast to the argumentative methodology employed, for example, by Spinoza. It has nothing to do with "irrationality" in any sense of the word.

(2) The shift from consciousness to the world. For Husserl, phenomenological description was dependent upon the suspension of our belief in the reality of the external world. It was precisely this *epoché* that made it at all possible to study the pure structures of transcendental consciousness. For Heidegger, on the other hand, this is a mistake, because our primeval experience, the sphere in which we live, *is not an experience of our own consciousness but of the world* (our being-in-the-world).

(3) The position that the fundamental structures of our relation to the world are in some way hidden. One might think that a philosophical account of being-in-the-world should be fairly simple—after all, we spend most of our time relating to the world. Husserl even emphasized that it was precisely this everyday relationship to the world that obscured philosophical thought and so had to be eliminated by means of the phenomenological *epoché*. For Heidegger, however, it is precisely because we are so deeply involved with the world in every moment of everyday life that we fail to appreciate the structural complexity of our relation to it. As a result of this lack of acquaintance with the very world in which we live we turn to logic, mathematics, and geometry, failing to appreciate the conceptual poverty of such formal systems. The task of phenomenology, then, is to *make these hidden structures of the everyday world clear to us*.

(4) A pronounced emphasis on ontology in the form of the "question of Being." To explain the reasons for this emphasis at this point would take us too far away from our general outline of the history and development of
phenomenology. The meaning of the question of Being is highly technical and will be addressed separately in Section 2.2.

These four characteristics are adequate for a comprehension of Heidegger's general philosophical position at the time of the writing of Being and Time. Addressing later developments in Heidegger's conception of phenomenology and the phenomenological enterprise is too vast an undertaking for the context of the present work.

1.5 THE VICISSITUDES OF THE PHENOMENOLOGICAL MOVEMENT

Through Husserl, the terms "phenomenology" and "phenomenological" acquired a certain vogue, appearing in the works of thinkers as divergent in their interests as Albert Einstein and Carl Gustav Jung. In this popular usage, "phenomenology" was, without further qualification, more or less equated with "description" and "phenomenological" with "descriptive." This popular use was coupled with connotations that were still less desirable, as "phenomenology" and "phenomenological" came to be understood as mutually exclusive with respect to the terms "explanation" and "explanatory." The very specific methodological considerations with which Husserl himself meant to link the term "phenomenology" failed to enter the popular consciousness.

It was, no doubt, a mistake for Husserl to choose this particular name for his philosophy. On the one hand, its strong associations with Hegel invited confusion between Husserl's own methodology and the Hegelian dialectic, and on the other hand, the term already had a firmly entrenched popular meaning of its own. The resulting ambiguity permitted a great deal of latitude in the interpretation of what was and was not "phenomenology," so that it is customary among scholars to speak of "the phenomenological movement" rather than of "phenomenology."
Here we will forego the attempt to distinguish "phenomenology" proper from "pseudo-phenomenologies." Discussions as to the legitimacy of the use of the name "phenomenology" by specific philosophical schools are all too likely to become acrimonious and unproductive. Suffice it to say that from a Husserlian point of view the popular conflation of "phenomenology" and "existentialism" is the most perilous and damaging of all, particularly in view of the notorious ambiguity of the latter term. For our purposes it is enough to emphasize that there are very significant differences between the various flavours of "phenomenology." It is too late to eliminate the ambiguity of the term "phenomenology" (if it was indeed ever possible) and so the question of whether its various flavours have anything else in common besides the name is moot. It is also worth mentioning in this connection that a true continuity between Husserl's and Heidegger's versions of phenomenology has sometimes been denied. Again, for our purposes, it is enough if the manner in which Heidegger modified Husserl's basic assumptions has been made clear. The decision as to whether or not the resulting product is "phenomenology" can safely be left to the reader's own sensibilities.

Among the German phenomenologists, the best known after Heidegger is Max Scheler (1874–1928). Disenchanted with Kant and Neo-Kantianism, Scheler's fortuitous meeting with Husserl in 1901 led him to study Husserl's Logische Untersuchungen. Scheler found Husserl's methodology an ideal tool for his ethical studies. Scheler's use of a modified phenomenological approach to investigate moral and religious issues was highly regarded by Heidegger, who cites his works approvingly in Being and Time. His concern with the problems of human existence and his interest in sociology led him in a philosophical direction he designated as "philosophical anthropology." This development foreshadowed and probably influenced Heidegger's treatment of existence in Being and Time, although Heidegger's philosophy is clearly not a "philosophical anthropology" in Scheler's sense.

The two philosophers who have done the most to further the association of "phenomenology" with "existentialism" are Karl
Jaspers, the founder of Existenzphilosophie, and Jean-Paul Sartre, the founder of "existentialism" proper. Jaspers, who began as a physician and psychologist, transformed the psychological and philosophical framework of his earlier work into an "existential" framework inspired by his reading of Heidegger's Being and Time. As mentioned previously, his main work, Philosophie (1932), is the first recognizably and unambiguously "existentialist" book. Jaspers employs a Heidegger-derived terminology to put forth his own philosophical position with respect to human existence. Jaspers' account, inspired by Kierkegaard and the work of the sociologist Max Weber (1864–1920), is notable for having begun the "existentialist" precedent of suppressing the traditionally objective concerns of philosophy in order to speak of subjective human experience. The accessibility of Jaspers' account and his obvious dependence on Heidegger led many early Heidegger interpreters to believe that Heidegger himself was doing the same. Heidegger, however, is interested in human existence in a very different sense, as we shall see in Chapter 2.

To Sartre, who coined the term "existentialism" to designate his particular blend of phenomenology, literature, Cartesianism, Hegelianism, and Marxism, belongs the dubious honour of having been by far the most visible and most popular member of the phenomenological movement. Posterity has, on the whole, been extremely critical of Sartre's philosophical legacy, and his influence as a philosopher has proportionately diminished in importance since its peak in the 1950s and 1960s. Sartre's historical importance for the prevailing trends in modern French philosophy cannot, however, be doubted. For better or for worse, he was almost single-handedly responsible for an infusion of German thought into the French intellectual atmosphere, whose continuing influence upon the style and concerns of French philosophy is evident in the works of many of its pre-eminent representatives, including those of Jacques Derrida (1930–2004) and Michel Foucault (1926–1984).

Sartre first learned of Heidegger through the Japanese philosopher Shuzō Kuki (1888–1941), who had engaged Sartre as
a private tutor in Paris towards the end of 1926. Kuki had taken a course with Heinrich Rickert, the co-supervisor of Heidegger’s doctoral thesis, in 1922, and studied with both Husserl and Heidegger from 1927 to 1928. It was Kuki who provided Sartre with a letter of introduction to Heidegger. The esteem in which Heidegger held Kuki can be judged from the fact that he is mentioned in Heidegger’s dialogue “Aus einem Gespräch von der Sprache. Zwischen einem Japaner und einem Fragenden,” published in Heidegger’s Unterwegs zur Sprache.

Though he was also personally acquainted with Henri Bergson (1858–1941) and studied his writings, the main influence on Kuki’s philosophical development came from Husserlian and Heideggerian phenomenology. In 1929 Kuki was appointed a lecturer at Kyoto Imperial University on the recommendation of Nishida Kitarō. The chairman of the Department of Philosophy at this time was Nishida’s successor Tanabe Hajime, who himself had studied with Husserl and met Heidegger in the period 1922–24. Kuki is best known for his work on aesthetics, in which he attempts to define the Japanese concept of the aesthetically elegant, or iki, and for his work on Japanese culture and on the categories of ontological contingency. Despite his contact with Nishida and Tanabe, he is not generally considered part of the Kyoto School.

The French phenomenological tradition did not, of course, end with Sartre but continues to flourish to the present day. We will briefly mention only two of its chief representatives: Maurice Merleau-Ponty (1908–1961) and Paul Ricoeur (1913–2005). Influenced by Sartre and also directly by Husserl, Scheler, and Heidegger, Merleau-Ponty’s best known work is the Phénoménologie de la perception (1945). Although “existentialist” in character, his work is both more faithful to Husserl’s conception of phenomenology and more erudite than Sartre’s, which has ensured it a permanent audience among philosophers with a serious interest in phenomenology and phenomenological method. Ricoeur too has done much to further the clear distinction of Husserlian phenomenology from the ideological
programme of Sartre. One of the few students of phenomenology who have investigated the early phenomenological movement in significant detail, Ricoeur was an original and stimulating thinker in his own right, with important contributions to phenomenological method, the theory of metaphor, and many other areas.