Over the Range
Francaviglia, Richard V.

Published by Utah State University Press

Francaviglia, Richard V.
Over the Range: A History of the Promontory Summit Route of the Pacific Railroad.
Utah State University Press, 2008.
Project MUSE. muse.jhu.edu/book/7312.

For additional information about this book
https://muse.jhu.edu/book/7312

For content related to this chapter
https://muse.jhu.edu/related_content?type=book&id=163206
Chapter 6

Big Time Railroading
(1875–1904)

So much has been written about Promontory as a unique place in 1869 that it has obscured the town’s later role as one of many places along the railroad. During the period 1875 to about 1900, Promontory’s character changed from a historical curiosity to another link in the chain of increasingly big-time railroading. This chapter covers Promontory as a location on a section of the mainline that ran through some of the most forbidding country in the American West.

In the 1870s, and 1880s, popular atlases often featured maps of Utah and Nevada as a single spread that spanned two full pages. Naturally, the transcontinental railroad was a major feature. One of the most beautiful of these maps was first published by Asher and Adams in 1873, with additional editions published for several more years (fig. 6–1). Its depiction of the section of the line from Ogden to the Nevada state line reveals just how isolated the countryside was along the right of way in the vicinity of Kelton, Terrace, and Lucin. On this map, the Great American Desert appears as an ominous gray stippled area. A hint of civilization is provided only eastward of Rozel, where the familiar rectangular survey gives a sense of order to the country from the Promontory Range to the Wasatch Front. Interestingly, a traveler, or would-be traveler, could use the mileages shown between communities—for example, 10 miles between Terrace and Matlin—to figure out how far he or she traveled. Typical Central Pacific public timetables of the period provided similar information.

At the same time that Asher and Adams published their map, *Gray’s Atlas* featured a full-page map of Utah, showing the completed lines of
Big Time Railroading

the railroad. On this map (fig. 6–2), Promontory’s location shows as a broad swale between two valleys—the Blue Spring Valley to the east and the Hansel Valley to the west. As was typical of the times, all of the stations along the route between Ogden and Lucin are shown. In some places, though, the topography is generalized and simplified. For example, on this map, the railroad appears to skirt the south end of the Red Dome Mountains on perfectly flat land, when, in fact, contour lines drawn at tighter intervals, for example one hundred or even twenty feet apart, would actually reveal this area to be rugged topography. By carefully consulting popular maps of the line over Promontory, we can observe a tendency to downplay the topography, and even straighten out the railroad’s numerous curves in the area west of Rozel and Kelton. True, there are some long stretches of straight track here, and the Red Dome and Hogup mountains are not as imposing as the Promontory

Fig. 6–1
Detail of the line over Promontory on Asher and Adams’s beautiful map of Utah and Nevada, 1873, shows the Central Pacific line and its station stops fairly accurately.
Over the Range, but this map again simplifies the western portion of the line. It is likely that the many verbal descriptions of how “monotonous” travel was here, coupled with the name Great American Desert, tempted mapmakers to simplify this part of the route.

In the 1880s, much effort was spent in reconciling earlier land surveys with the most recent ones. The Surveyor General’s office in Salt Lake City was charged with showing the boundary “between old and new” surveys and the work took them through Promontory. The 1885 map showing Township No. 10 North Range No. 6 West of the Salt Lake Meridian focused on Promontory, which shows as a relatively flat area where the “C.P.R.R” jogs slightly. The map’s stylized town plan at Promontory Summit indicates buildings lining both sides of the track here, but other records confirm that most of them were north of the tracks. Just south of town, the rugged Promontory Range (unnamed) looms as a contorted cluster of hachures, with relatively level areas on the mountainsides suggesting the level of ancient lake terraces. This

Fig. 6–2
Detail of the Utah map in Gray’s Atlas (1873). Map of a portion of the transcontinental railroad line over Promontory shows most of the communities along the line but simplifies the topography west of Kelton.
map reveals that even in Promontory’s heyday, there was only a small community here surrounded by vast open spaces. The primary activity in the area adjacent to Promontory was ranching, and much of the stippled pattern on the map suggests the dominant sagebrush cover.¹

Farther to the west, beyond Promontory Summit, the countryside was bleak indeed, and the railroad appeared to traverse an ancient and foreign land. West of Promontory, the popular guidebooks often made yet another common comparison to Utah as the Holy Land. To set the scene, an eastbound travelogue/guide writer noted, “We pass over, with a word of allusion, the stations of Rozel, elevation 4588 feet; Lake, and Monument, 4226 feet, where the air is impregnated with alkaline and saline odours from the Salt Lake. Monument Point is a grassy promontory, stretching far out into the waters of the Dead Sea of the West.”² This country was probably the most evocative on the entire line, for it conjured up images of the wilderness described in the Bible.

Along the line west of Promontory, there were small, seemingly forlorn communities. Some were larger than others, and some were little more than stations around which a few buildings huddled. However, they all had one thing in common—to travelers, they all seemed desolate. Not all tourist guidebooks agreed on the importance of individual stations, and official railroad records contradict some guides. For example, in the 1880s, Rozel was the place where eastbound Central Pacific freight trains stopped to add helper locomotives. The water here came from Antelope Springs, which is located in the Raft River Mountains. Being a California railroad, the Central Pacific tended to use redwood for many things, including posts, beams, and siding for structures. A redwood pipeline built in 1874 originally conveyed Rozel’s water but was replaced by a 3-inch-diameter pipe in 1883. The railroad’s wooden water tower here was also built of redwood; its tank was 18 feet in diameter x 14 feet tall in a 23-foot-square housing.³ Generally, despite these facilities, tank towns like Rozel did not impress travel writers. In 1879, The Pacific Tourist observed that Rozel was “an unimportant station, where trains meet and pass; but passenger trains do not stop unless signaled.” Contributing to the bleakness of the site was the low, scrubby vegetation. As The Pacific Tourist put it, between Rozel and Lake, the train was “still crossing a sage brush plain, with occasional alkali patches, closing in upon the shore at times.” For all its barrenness, however, Rozel did have one thing in its favor: the view was fantastic and “the lake can now be seen for a long distance, and in [sic] a clear day, with a good glass, the view is magnificent.”⁴

As the train continued along the sweeping curve that followed the northern shoreline of the lake, it passed Monument, also called
Monument Rock or Monument Point, one of the region’s noteworthy, and aptly named, landmarks. As *The Pacific Tourist* romantically described it, “An isolated rock rises, like a monument, in the lake on the left, while the hill on the right is crowned with turrets and projecting domes.”5

Aside from Promontory Summit itself, this evocatively shaped rock was one of the more commonly photographed scenes on the line. Nearby, the marl rock in this desolate plain near the northern shore of the Great Salt Lake contains oddly shaped topographic features, including eroded
spires and natural arches (fig. 6–3). Locomotive Springs, so-named at least five years before a train ever ran through the area, was also aptly titled, for “[o]n the west side of this hill are the Locomotive Springs which puff out steam at times, and which give them their name.”

To the west, between Kelton and Terrace, the railroad encountered relatively rugged topography, which provided some variety or relief from the brush-covered plains. Some travelers and travel writers were impressed with what they found here, but others were not. Of the Red Dome Mountains, Crofutt’s Trans-Continental Tourist had little to say, except that “[h]ere these mountains—low sandstone ridges—are nearer the track, breaking the general monotony of the scene.” Nevertheless, the traveler in search of interesting scenery could find some here. As a more enthusiastic publication, The Pacific Tourist, observed, when one left Kelton westbound, the train encountered a “heavy grade,” along which “you will notice a ledge of rocks on the left [i.e., south] side of the track, the lower end of which has been tunnelled by the wind, forming a natural aperture like an open arch.” Travelers often commented on the geological features defined in hard rock—such as the “beautiful conical dome [which] rises up, as a grim sentinel to guard the way.” Red Dome contrasted with the flatness of “extensive salt plains, which in the sun glisten like burnished silver,” which contrasted with “the green waters of this inland sea,” as writers often characterized the Great Salt Lake.

The scenery here was both terrible and sublime, and it left some of the most vivid impressions on transcontinental travelers aboard the trains of the Central Pacific. Virtually every travel guide and map called this area the Great American Desert. In 1877, the country west of Promontory was described in Leslie’s Illustrated under moonlight, which “shining upon ghostly white alkali, gives the desert the aspect of a stagnant sea.” To keep the oceanic metaphor going as the train moved across this area, the writer noted that “[l]ittle wooly tufts of sagebrush dot it everywhere,” and “[w]aves of naked brown rock or arid land—we cannot tell which it may be—roll away in long swells against the horizon.” The train “crossed the face of a forsaken land” here, while just sixty miles to the east, the Mormons had transformed the desert to “orchards and young grain where the dry alkali dust used to drift to and fro.”

As might be suspected, any settlement in this desolate area was worthy of at least some comment. In 1879, The Pacific Tourist characterized Terrace as “a railroad town on the edge of the Great American Desert.” Located on a flat site—a low bench overlooking the western end of the Great Salt Lake—Terrace is appropriately named. The Pacific Tourist’s description of the railroad town was generic enough, as Terrace was the site of engine-servicing facilities and a substantial railroad yard (fig.
As a guide described it, “Here is a ten-stall roundhouse, and the machine and repair shops of the Salt Lake Division of the Central Pacific Railroad.” The town was home to “about 300 people, which includes not only the railroad men and their families, but those who are here for the purpose of trade and traffic with them.” It was also the railroad station stop for the mines in the Newfoundland District (eighteen miles south) and the Rosebud mines (ten miles north). Surrounding Terrace was “the desert with its dreary loneliness—a barren waste”

Given its location and the presence of the engine-servicing and repair shops here, Terrace naturally featured a water tank, which was “supplied with water brought through pipes from the springs in the mountains.” In this regard, Terrace was similar to the other spring-fed, aqueduct-dependent towns on this part of the Central Pacific, which had built its line through the arid, desolate lowlands sandwiched between the Great Salt Lake to the south, and the well watered mountain ranges, like the Raft River Range, looming to the north. The redwood pipelines or aqueducts that funneled water down from these mountains into places like Terrace, Kelton, and Rozel, were the veritable lifelines of the communities and railroad here.

The tracks ran in a northeast-southwest line through Terrace, which was the largest railroad town on the line between Ogden and Nevada. In the early to mid-1880s, an official Central Pacific station plan (fig. 6–4) reveals that there were several passing sidings, a 26½ x 76.4 foot, two-story depot, and two 24-foot-diameter water tanks here. Other
facilities, however, assured Terrace’s status as *the* railroad town along the line. These included a large roundhouse with fifteen stalls that were 62 feet in length. The turntable was 42 feet long—just long enough to hold the 4–4–0 and 4–6–0 locomotives of the period. Prominent in Terrace was the six-track machine shop, a large (82 x 120 foot) building for machining parts and making repairs. Behind the machine shop was a 17½ x 84 foot building containing an engine room, storeroom, office, and paint shop. There was also a 40 x 60 foot blacksmith shop adjacent to the spur track, which curved to the south and was flanked by an iron rack, and two storehouses. A large (62 x 312 foot) coal shed was built in October of 1883.

These facilities made Terrace a gritty workingman’s community. However, despite the town’s location in the middle of nowhere, Terrace was not a cultural wasteland—not if the railroad had a say in such matters. In addition to the 30 x 116 foot hotel built just north of the station

Fig. 6–5
An official Central Pacific Railroad station plan of Terrace, Utah, in the mid-1880s shows its numerous railroad-related buildings lining the mainline (upper center to right), turntable and large fifteen-stall roundhouse (*left*), three-track railroad shops (*just left of center*) and numerous railroad buildings along the spur track (*lower center*) near which the Terrace Atheneum and park were located.
in July 1883, Terrace also had a cultural amenity that few towns could claim: the Terrace Athenaeum located across the spur track from the blacksmith shop contained a 16 x 63 foot reading room surrounded by a veranda or porch, two ponds, and a series of contemplative, curving trails that ran through a landscaped, half-acre (121 x 200 foot) garden space. The cultural facilities at Terrace represented the well-intentioned paternalism of the railroad companies at a time when unionization gained a stronger footing among American railroad workers.

At the time that Terrace grew into an important railroad town of several hundred European American workers in the 1880s, the Native American population along the Promontory route continued to decline. Despite the progress that the railroad brought to the area, conditions were difficult for the Native Americans who remained dependent on the physical environment. Adolph Reeder recalled that “[s]everal Indians lived in the mountains around Promontory.” They were, evidently, drawn to the new town to trade hand-made items, including “buckskin gloves and belts for sheep pelts and grain.” These Indians typified the enterprising survivors in the Great Basin, who found new opportunities in the railroads (and the mines). At just about this time, though, most Indians moved onto reservations. The coming of the railroad, then, caused a redistribution of the human population here. Whereas before about 1820, people lived in widely dispersed families or bands, they now concentrated in clusters along a single line that demarcated the railroad.

Most of the Anglo-Americans who traveled through the area at this time commented on the scarcity of plants and animals. In traveling through the eastern Great Basin in 1876, the enterprising entrepreneur Don Maguire observed that large animals were fairly scarce in mountain ranges that “do not rise to high altitude, and hence do not afford streams in summer that supply the desert with water for wild animals.” Maguire noted that “the only animals the Indians could use are the jackrabbit, mountain rats, mice, grasshoppers, crickets, horned toads and snakes.” Summing up the vegetable products of this area, Maguire observed that “[t]he seeds of certain desert plants and pine nuts obtained in the stunted pine groves of the low mountains are the only plant foods.” The Promontory Range was one of the low mountains that Maguire may have had in mind, for he had traveled west of Ogden in search of horses for an expedition into the Great Basin, and thence to Arizona from 1876 to 1879. Rather than traveling over the Pacific Railroad, however, Maguire’s route went farther south to the mining camps west of Salt Lake City and into central Nevada, Still, when Maguire drew a sketch map to illustrate his travels, he included the railroad route over
Promontory Summit. The reason, of course, was that the line had now become a major regional landmark.

The American map industry helped put the transcontinental railway, and the country adjacent to Promontory, on the map. Now it helped to keep it there. At this time, Rand McNally of Chicago emerged as a major player in the industry, frequently publishing maps for the railroads. For other railroads connecting with the Central Pacific, this line was a major draw because traffic could be routed to it over adjoining lines. A map by the Burlington & Missouri River Railroad showing the route of the transcontinental railroad in a solid black line flanked by a wider swath that highlights the Union Pacific-Central Pacific route is typical of this arrangement. On it, white dots indicate the location of communities, namely Lucin, Bovine, Terrace, Matlin, Ornbey, Kelton, Seco, Monument, Lake, Rozel, Promontory, Blue Creek, Quarry, and Corinne, with the more important transfer point of Ogden in larger letters. North from Kelton, a narrower black line heads north through Idaho; this is a stage line connecting important mining communities with the Central Pacific Railroad. West of the GREAT SALT LAKE (in capital letters) is the GREAT AMERICAN DESERT. That evocative term suggests a huge, singular, forbidding region fixed in time, but that is not the case. The term Great American Desert had been used as early as the 1820s for the western Great Plains. Now, sixty years later, with that grassland being settled, the concept migrated westward to the area just west of Promontory, where a bleak landscape of salt flats—which Utahns call the West Desert—remains, to this day, one of the least populated places in the western United States.

Williams’ map of the transcontinental railroad positions Promontory in a national context (fig. 6–6) and is typical of the cartographic products used by travel writers. It is interesting to note that all communities on such maps are represented as simple dots of equal size spaced more or less evenly along the railroad. These maps are what cartographic historian Kit Goodwin calls “designed maps” in that their information varies from what is actually found on site. Although these maps give the impression that the area is equally settled and under control, in reality, it is anything but. Along the Central Pacific, at or near Promontory, the small towns are virtually the only communities here.

A map that accompanied A. Pendarves Vivian’s popular Wanderings in the Western Land (1879) provided a colorful representation of the geology in this area. Its “Explanation of Colours” legend claimed that the line over Promontory consisted of Cambrian and Silurian strata. The numerous rock cuts excavated by the railroad[s] here (fig. 6–7), were of considerable interest to travelers then, and continue to be of
interest to people visiting the site today. Vivian noted that the area west of Promontory consisted of alluvium of more recent age; on his map, he depicts the volcanic rocks to the north in bright red. Tellingly, however, the cranky Vivian made no comment about the railroad line in the text, simply noting that he boarded, in Ogden, a Silver Palace Car that “appears to be nothing more than a modification of a Pullman, and [has] the same comfortable berths, which we soon turned into.” Like many travelers, Vivian crossed over Promontory Summit at night, and that may explain his failure to mention it.16

With the completion of the transcontinental railroad, freight traffic boomed. California produce could now be shipped east in a fraction of the time it used to take. Coinciding with this development was the invention of the refrigerator car. There were several types of refrigerated rail cars, or “reefers,” as they came to be known. Most of the early reefers were insulated boxcars with tightly sealed doors and ice
bunkers into which ice could be placed. One type of car built for the Central Pacific by George B. Dave of San Francisco in 1870 had “. . . double sides, ends, top and bottom, with sawdust filled in between the inner and outer boards.” Ice, which was stored in boxes suspended by iron bands, was loaded through hatches in the roof. The cold air then drained down into the car, keeping fruit and vegetables fresh on their trip east. The Central Pacific shops in Sacramento also built a car, called Booth’s Refrigerating Car. It was “lined inside and out, like the fruit called of his design, and has in either end iron boxes as receptacles for ice, large enough to hold a quantity sufficient to last during a trip to the East.” This car also had “two revolving fans in the roof, which are kept in motion by the momentum of the train” to “avoid the dampness which might otherwise arise from the ice.” The enthusiastic writer reported that when this car was successfully tested in July of 1870 it “worked admirably.” With its ice bunkers at the ends of the car and fans to circulate air, this type of car soon dominated the refrigerator car fleet that Central Pacific, and later Southern Pacific, enlisted for shipping perishables from California to the Middle West and East. Typically, these cars were painted a distinctive mustard yellow color to distinguish them from the dark reddish brown boxcars.
Later that year, the Sacramento newspapers reported that considerable work was being done at the Central Pacific Railroad shops, which were engaged in building cabooses and stockcars. The typical caboose of this era (fig. 6–8) rode on passenger car trucks, had passenger car-type platforms and upholstered seats, as well as fold-up berths “for the accommodation of the conductor and train hands.” Behind this compartment was the conductor’s office, over which rose a cupola, or “raised skylight with sliding windows on every side.” Gazing out from this cupola in his elevated seat, the conductor “is enabled to watch his train as effectually while seated in his office as if standing of top of the car.” Central Pacific cabooses were somewhat distinctive in that windows on both ends of the cupola featured a place to exhibit indicators (i.e., train numbers) so that trainmen would know which train was passing. Some cabooses were relatively simple affairs made from boxcars (fig. 6–9), but they served much the same purpose—a home away from home and an office on wheels.

The caboose was a specialized car designated for the official conducting of train-related business. In one sense, it was a non-revenue car in that it earned no direct income for the railroad. Other cars, however, had specific purposes. Despite the name, the new stock cars were quite versatile. Their sides consisted of a series of wooden slats separated by open space that naturally ventilated the cars. They were constructed to
be more comfortable for animals being shipped and could be “transformed into ordinary box cars for freight purposes” when the side gratings were provided with doors that could be closed tightly. That these and other cars might not always stay on the track was evidenced by a third type of car described—the wrecking car. This was 36 feet long, 9 feet wide and “three or four times stronger than an ordinary car.” It featured “a huge derrick twenty-two inches in diameter, and capable of hoisting about ten tons” and would “enable the company’s workmen to clear up a wreck very expeditiously.”

In 1882, the Union Pacific issued a timetable for the Union and Central Pacific Railroad Line via Omaha or Kansas City to San Francisco. Billing the line as “The Great Shortline” and “the Old Reliable” because it was “the Shortest Route from the Principal Eastern and Western Cities to San Francisco by from 250 to 538 miles,” the timetable shows two passenger trains each way per day. Running westward, train No. 6, the “Emigr’nt” [sic], and train No. 2, the “Express,” arrived at Promontory at 6:25 p.m. and 8:30 p.m., respectively. Eastbound, train No. 5, the “Emigr’nt,” and No. 1, the “Express,” arrived at 4:00 a.m. and 6:15 a.m., respectively. At that time, both trains stopped
Over the Range

at all the communities on the line, including Corinne, Blue Creek, Promontory, Rozel, Lake, Monument, Seco, Kelton, Ombey, Matlin, Terrace, Bovine, and Lucin. Describing opportunities in Utah in glowing terms, the timetable noted, “The topography of the territory is varied, comprising broad lakes, long rivers, mountains, salt deserts and marshy sinks.” It added, “The valleys are farmed, more or less, and the terraces and foothills are famous stock ranges.” Leaving no stone unturned, the Union Pacific and Central Pacific railroads also claimed that their entire “Old Reliable” route now featured “Well Balasted Road-Bed. Courteous Employees Pullman and Silver Palace Day and Sleeping Coaches. Emigrant Sleepers. Air Brakes. All Modern Improvements. Excellent Equipment. Picturesque Landscapes.”

For travelers on the line over Promontory Summit, the wide-open spaces often received some comment, as did the finery of ornate sleeping cars and parlor cars. For the most part, though, most people grew accustomed to traveling across the Interior West by train. Some remarked on Promontory but most did not. Ironically, on his 1882 trip across the very region he helped survey in the summer and fall of 1868, James H. Martineau makes no reference at all to Promontory. Rather, he observes that he “obtained a ticket to San Francisco, Cal. 883 miles, at $26.50 and sleeping car ticket for same place $6.00.” Martineau dutifully notes that he “left Ogden at 6:45 p.m.,” but he must have slept over Promontory Summit, for he next relates, on Saturday, November 25, “Awoke this morning at Halleck, Nevada. Got a poor breakfast at Elko, dined at noon at Battle Mountain, 348 miles from Ogden, and stopped at Humboldt Station” due to a “wrecked freight train that blocked the way.” Like most travelers, Martineau confirmed that “the journey through Nevada is very dreary, passing the whole distance through a desert.” On a trip two years later, Martineau did much the same thing. Leaving “Ogden at 6:15 p.m. (Pacific time) 7:25 [local] Ogden time on September 18th,” he notes that he “awoke at Terrace,” and reached “Elko about 10 p.m.” The sleeping car ensured added comfort, but it also increased the likelihood that passengers would be unconscious for a part of the trip, which, in the desert of Utah and Nevada, might be counted as a blessing. Martineau was not alone in his tendency to sleep on the trip over Promontory and into the desert beyond. As British traveler George Alfred Lawrence put it, the Great Basin was “a country that tempts the traveler to take his uttermost pennyworth out of the sleeping cars.”

Southern Pacific Company (Pacific System) Employee Time Table No. 23, effective May 1, 1892, shows ten regularly scheduled trains—five each way—over the line. Of these, four were passenger trains (the eastbounds were called the “Atlantic Express,” and those bound for San Francisco,
Big Time Railroading

the “Pacific Express”). The six remaining trains (three each way) were freight only. At that time, it took the typical passenger train about five hours to travel the 145.5 miles between Lucin to Ogden—an average speed of about twenty-nine miles per hour. However, an indication of the rugged topography in places along the line, notably in the vicinity of Promontory, passenger trains took about thirty-five to forty minutes to travel the 11.4 miles between Blue Creek and Promontory Summit, or an average speed of only about eighteen miles per hour.

Freight trains, of course, were much slower. The typical freight train in the timetable took about ten and one-half to eleven hours to travel from Ogden to Lucin, an average speed of about thirteen miles per hour. Here, again, the Promontory grade slowed things down to a crawl, or rather a trot. From Blue Creek to Promontory Summit, a freight train required one hour and five minutes, averaging about nine miles per hour. Freight trains in 1870 were about ten to fifteen cars long, but by the 1880s, thirty-car trains were common. They were called “freight drags,” no doubt due to their heavy weight and slow speed.

It was the passenger trains, though, that drew the most attention. In this era of limited trains, the railroads rapidly improved their passenger cars. By the turn of the century, most new passenger cars featured closed vestibules. This innovation made passage from one car to another much safer and more comfortable. Passengers no longer had to pass from one car to another and risk falling off, or under, the train or be exposed to smoke, dust, and temperature extremes. The closed vestibules also tended to give the entire train a connected or integrated look, as there was no visible space between the cars.

The Southern Pacific car shown here (fig. 6–10) represents the epitome of passenger car design when through trains last ran through Promontory. The car is 76½ feet long over the sills and fully 80 feet long including platforms—about 25 feet longer than the passenger cars of 1869. It was 10 feet ¾ inches wide—just a bit wider than the early cars—and it was a bit taller, too, at 15 feet 1¾/16 inches compared to about 12 feet. The biggest difference, though, was in weight. This car weighs 128,000 pounds (64 tons) and has gas and electric lighting. Compared to the old wood (or coal) stoves in the 1869 cars, this represented a vast improvement in comfort and safety.

The car’s window spacing reveals how different it is from a coach or sleeping car. It is, in fact, a dining car, which is an interesting story, as it pertains to the ultimate fate of Promontory’s eating house. As railroad historian John White Jr. notes, railroads were slow to adopt dining cars. Small wonder: a dining car like No. 10017 was the heaviest, most expensive, and most labor-intensive car on any late nineteenth-century
passenger train. It was not until the 1890s that the Central Pacific (and Union Pacific) owned any dining cars—though the Pullman Company owned and operated some that, no doubt, traveled over Promontory Summit in the 1870s. However, dining cars were taken off trains and introduced—or rather, re-introduced—later. There was another reason for this: As White put it, “Central Pacific was known for the excellence of its eating houses, and it saw little reason to reverse this policy until the demands of faster schedules forced it to do so.” That factor—speed—now demanded that passengers’ time not be wasted in eating meals at places like Promontory when hours could be cut from the schedule by serving people on board a moving train. Thus it was that the dining car became an important component of trains running over the Summit, especially those limited trains. Ironically, maintaining a rolling restaurant was never cost effective for the railroads, but rather a necessity to keep the train competitive by maintaining schedules faster than those of its competitors.

By the late nineteenth century, rail passengers expected speed, comfort, and even luxury. Consequently, passenger-car interiors became
increasingly elaborate by century’s end. Inside and out, the Union-Central Pacific car Sybaris provides a case in point. Built in 1889, Sybaris represented the epitome of the builder’s art. Its exterior (fig. 6–11) is a highly varnished dark green—that color would soon be known as “Pullman green” or a variant such as “coach green”—and most railroads would paint their own passenger equipment to match. Sybaris is ornately lettered and striped in gold. Its letter board features the bold name PULLMAN while in smaller letters, “Union & Central Pacific—Golden Gate Special,” reveals its routing over Promontory Summit. An observation-lounge car, Sybaris featured an open observation platform surrounded by an ornate brass railing. Like its counterparts on other class-one railroads, Sybaris provided a glimpse of Victorian luxury with a partially open vestibule, wherein passengers walking from it to the other cars in the train passed through a narrow passage protected by doors on each side. Its plush interior (fig. 6–12) was a thing of beauty. Given Victorian tendencies toward lavish detailing, the inside of this car was, in a word, sumptuous. Decorated in exotic woods, its walls were papered with intricate designs. The windows of the clerestory roof, as well as those in the upper sashes of the side windows, were likely stained glass. Ornate gas lamps hung from the car’s ceiling, their brass fixtures gleaming.
Fig. 6–12

Interior of the observation-lounge car *Sybaris* reveals the ornate fixtures, carpeting, drapery, and trim of the Victorian period.
If the nineteenth century witnessed improvements in rail passenger travel, one of the most significant was the train schedule. In 1887, the Overland Flyer was inaugurated. This was a plush train, but an even plusher one was added for travel over Promontory Summit in December 1888 when the new Golden Gate Special was inaugurated. Billed as “the finest train in the world,” a claim that just may have been true, the Golden Gate Special ran just once weekly. It was an extra-fare luxury train featuring ornate, highly decorated passenger cars. By the next year, however, Central Pacific decided to cancel the Golden Gate Special, replacing its service with an expanded version of the Overland Flyer, which was later named Overland Limited. In 1902, the “Overland,” as it was popularly called, was upgraded. This included the distinction of being among the first trains to feature steel-framed cars and telephone service. These improvements resulted from E. H. Harriman gaining control. That change in company leadership, though, ultimately signaled the beginning of the end for Promontory as Harriman was the outspoken advocate of another modernization project—the Lucin Cutoff across the Great Salt Lake.

Although much was said and written about passenger service on the Overland Route, freight had always been the most lucrative commodity on this line. The diversity of freight was impressive. In January 1876, for example, merchandise shipped through Ogden bound for Sacramento included, among many other items, “3 bundles copper bars, 45 sheets copper, 12 boxes candles, 2 barrels wire, 7 boxes hardware, 1 box jack-screws, 5 bars iron.” Moreover, because the railroad cut the amount of time shipments took in crossing the Interior from months to days, cars in transit also included somewhat perishable merchandise, including “45 crates butter, 20 boxes and 20 kegs fish, 40 half boxes raisins, [and] 10 barrels currants.” Because the line over Promontory Summit now opened up eastern markets to California products, however, the flow of traffic continued to go eastward over Promontory Summit to middle-western and eastern states. As California markets built up during the period, eastern producers shipped their goods westward over Promontory.

By the 1880s, new boxcars were about 34 feet in length, though 28–foot cars were still being built. Most Central Pacific boxcars were of the standard closed-car configuration, but combination cars were still common. At this time, people at trackside along the mainline over Promontory Summit saw boxcars bearing the slogan “Southern Pacific Company Fast Freight Line” and “California Fast Freight Line” on their sides. These cars signified a joint effort between Southern Pacific and other railroads—notably Union Pacific, Chicago & Northwestern, Rock Island, and the Milwaukee Road—to expedite service between Chicago
and San Francisco. These cars were most often found on fast freight trains. The typical Central Pacific freight train would usually consist of cars of the home road, but a variety of cars from other railroads also went over the summit.

Essential to the shipment of perishables were ventilated cars and refrigerator cars. Although freight traffic was fairly heavy on this line, most of the cars were simply hauled through on trains bound for the east or west coasts. On occasion, however, a freight car would be set out at the siding or house track at one of the towns along the way. At this location, the car would be unloaded and its contents delivered to local customers. Where cars would be loaded directly from wagons, the term team track was used, presumably because teams of horses were used to drag the loads to and from cars that were set out on those siding tracks.

The line over Promontory Summit featured stations of numerous shapes and sizes. All appear to have been of wooden construction. Passengers could embark or disembark from those depots or stations, which represented the town’s connection to the outside world. Promontory had its distinctive station and eating-house facility, but only the larger communities along the line, Terrace and Kelton, had substantial railroad stations. In keeping with its importance as a major railroad shop town, Terrace had the largest depot between Ogden and Nevada. It was an impressive two-story structure about 80 feet long. The depot at Kelton was one story and had a smaller footprint than Terrace’s large station. One of the earliest structures on the line, Promontory Summit’s depot was less conventional in appearance, housed in a multi-purpose building that was located on the south side of the tracks. In the smallest communities and water stops, such as Rozel and Matlin, railroad stations were simple affairs. Typically, a former boxcar would serve the purpose. In keeping with their freight-car origins, these were usually about 28 feet in length, about 8 feet wide, and were converted into stations by the addition of a smaller door and a few windows. Shorn of their trucks and wheels, such boxcar depots were usually placed parallel to the track on pilings to keep them level and free from rot. It is likely that these boxcar depots were made from some of the oldest cars on the railroad. Therefore, a lowly boxcar depot lasting into the 1920s or 1930s may have been upwards of sixty years old. Originally used in service hauling freight through Promontory on the mainline in the late 1860s and 1870s, these cars now served out their final years in non-revenue service, and in relative obscurity, along the dusty Promontory line.

Promontory Summit’s railroad facilities kept pace with improvements in railroad technology. The station-plan maps of this section of the Central Pacific railroad are quite informative, for they help to
compensate for the lack of photographic coverage here in the 1880s and 1890s. By station plan, the railroad meant a relatively detailed map of all railroad track and buildings at a particular site. The Central Pacific Railroad’s mid-1880s station plan for Promontory, as it was now called, depicts a 3–stall roundhouse served by a 54-foot-long turntable (fig. 6–13). If this plan is correct, that roundhouse would soon be either expanded into, or replaced by, a 5–stall brick structure. In recalling Promontory of the 1880s a half-century after the fact, numerous informants noted that several locomotives, perhaps six to eight, were based here in helper service. Promontory also had a hotel and telegraph office, which was 36 feet wide and stretched 78 feet along the right of way. Immediately to the west were two section houses (one 16 x 24 feet, the other 20 x 24 feet). Farther west, a coal shed 200 feet long sat adjacent to the mainline until it was removed in June of 1885. Still farther west, two car houses (one 14 feet square, the other 10 feet square) stood hard by the mainline. In these car houses, the track workers’ handcars were stored.
The railroads’ much-needed water supply, a tank 15 feet in diameter, was located alongside the mainline at the western passing siding, where a wooden tool house 8 x 10 feet square stood nearby. Promontory also had a “China section house” (where Chinese track workers lived). It had a road master’s house, which was roughly 36 x 14 feet, an engineer’s bunkhouse (which was finished on January 15, 1885), and an L-shaped section house, roughly 24 feet on a side, built October 1882. In that same month, a “new sand house” was built at Promontory that provided sand for locomotives. The official station plan for Promontory also showed a lodging house (for Simon Tooker) which was $24\frac{1}{2} \times 16\frac{1}{2}$ feet, a dwelling house for John Henry that was 20 x 22 feet square, Charles Munn’s house, and D. L. Davis’ house.

In the 1880s, Promontory was a small community huddled along its lifeline—the Central Pacific Railroad. Most of its buildings were located on the north side of the tracks, with the exception of the coal dock, hotel, telegraph office, two section houses, and the houses of D. L. Davis and Jessie Brown. The pattern of development with most of the town’s buildings north of the tracks appears to date from as early as 1869. Although small in size, Promontory now occupied a strategic position astride the mainline. According to the station plan, a new coal bin was constructed in June 1885. Railroad traffic continued with six passenger trains—three in each direction—passing through town daily.

At this time, Promontory had a somewhat unusual track layout. A long (1,944 feet) passing siding began east of the hotel and telegraph building, and ended at the coal dock—which was adjacent to the turntable and roundhouse. In a handwritten recollection about Promontory at around this time, Marion Woodward recalled that a snowplow was kept in the roundhouse, and that a sister, Katie, “had her finger cut off on the turntable, [and] I have a bad scar caused by stepping in a hot ash pit.” Promontory could be a hazardous place for kids to explore, but it was a busy place for the railroad. Just west of the passing track that ended near the roundhouse, the mainline became a single track for several hundred feet until it reached another passing siding at the point where the track began to curve slightly to the south. At this point, another passing siding 1,765 feet long was located. That single track at the top of the grade underscored Promontory’s situation as a bottleneck on the line—though that appellation was normally given because the place lay at the top of a steep grade where gravity presented a perpetual obstacle to rail traffic.

Situated at the summit of a steep grade on a busy railroad, Promontory in 1900 was an important location. Reconstructing Promontory from the information in this chapter, we can envision its station alive with the
click of the telegraph key and the air filled with coal smoke as a locomotive or two simmered in the brick roundhouse with another taking a spin on the turntable. From time to time, double-headed trains chugged into town, their large Ten-Wheeler or Mastodon locomotives panting and emitting hisses of steam as if impatient to get underway again. A few passengers might be sauntering around the station platform as their trains took on coal at the spindly coaling station, or water from the dark red water tank. Though Promontory was not much of a town, it did have some services, including a school, hotel, and store. Lining the tracks, men who tended this section of the railroad occupied some railroad buildings. Though places like Promontory were the result of captains of industry, the railroad engineer was the real captain of the road—the conductor king—and the workforce of men required to keep trains running resembled a military engaged in noble but dangerous work. Responding to the conductor’s watch, which was synchronized with the station’s Regulator clock and the watch in the engineer’s hand, the railroad ran—if all went well—as smoothly as a well-oiled timepiece.

Even at this time, Promontory was also something of an archaeological site, as it possessed the ruins of activity dating from its early period. Consider, for example, vestiges of the early Chinese workers. By the early twentieth century, the “dugouts” had a number of Chinese workers occupied therein and are part of a widespread building tradition in the West, where lumber was scarce. In many cases, a dugout was excavated into a hillside so that the inside walls were simply what remained of the hillside; the excavated area served as living quarters (and sometimes even commercial space). In other places, dugouts might be built into relatively flat ground. As Doris Larsen noted, the dugouts made by the Chinese laborers at Promontory “. . . were just big, big holes in the ground and then they’d usually have a canvas [roof] over the top.” One entered such a dugout by descending steps or, as Ms. Larsen put it, an entry “[w]ith steps down” into it. She remembered these Chinese dugouts at Promontory being located “. . . south of the railroad track and kind of west of the store.”

In addition to ruins here, other non-railroad buildings were noteworthy. Promontory was now an established service center for a large ranching area, so it had a school. W. A. Clay (born 1884) recalled that the schoolhouse was located “southeast of where the Golden Spike was driven.” As opposed to many buildings in town, which “they didn’t care whether they were painted or not,” the schoolhouse was painted white. It had a belfry and faced south; one entered it by going up the steps. Most old-timers remember the schoolhouse sitting rather high on a rock or stone foundation and recall that it was reached by front steps.
Some also remember the school serving as a community church—in which case, the bell in the tower could have called students to school or townsfolk to worship—a distinct possibility in an age when there was less concern about maintaining the separation between church and state than there is today.

Unfortunately, Promontory was never the subject of a Sanborn fire atlas map, which would have shown in detail its buildings—by size and construction material. Nevertheless, Promontory’s buildings can be reconstructed, so to speak, because they are mentioned so often in oral histories. Not all of the informants agree about specific details. For example, Marion Woodward also remembered the schoolhouse, but a bit differently than W. A. Clay did. She recalled “[a] little red school house where I and my sisters & brother attended school and in later years I taught school in the same building.” Woodward recalled when the school burned down after a teacher dumped seemingly cold ashes next to it to fill a hole. This was, to Woodward’s knowledge “the only fire in Promontory.” After this fire, “[a] new school house was built a little larger than the first and also painted red.”

A photograph purporting to be Promontory taken about this time is of considerable interest and surrounded by some controversy (fig. 6–14). It shows a gently curving track running through a small settlement along the Central Pacific. Numerous features in the picture would appear to suggest that it was indeed taken in Promontory: It does, after all, have a 5–stall roundhouse, a number of buildings that could be
Promontory’s as well as a general alignment of the track that seems to “fit.” Even though the roundhouse appears a bit too close to the main track, the angle could be deceptive. Furthermore, although the track grading itself does not seem right (was the grading along the main track at Promontory ever so eroded?) It could be Promontory, as the curve appears to be the correct radius. But what about the background? Where are Promontory’s characteristic hills to help us position the photograph? One explanation for their absence could be because the photo was taken on a hazy day. Overall, the photograph appears to be of Promontory, which is remarkable since there are so few images of any trains at the summit after the big day (May 10, 1869).

There is another caveat for researchers working with material bearing the name “Promontory” in archives. Documented plans and a specific name like Promontory does not mean a building was actually located at Promontory Summit. For example, a cold climate signal repair shed was reportedly erected at “Promontory” in December of 1903, and plans exist that illustrate it in detail. However, that date suggests a location on the new Lucin Cutoff rather than Promontory Summit, where railroad activity was actually winding down. In fact, the name “Promontory” is often used for Promontory Point; the Lucin Cutoff touched Promontory Point, not Promontory Summit, creating additional confusion.

Throughout this time when Promontory was on the mainline, the track was constantly upgraded to compensate for wear and tear and to accommodate heavier locomotives and rolling stock. Although most of the rails originally laid along this stretch were 50 pounds (per yard) Scranton, they were upgraded to 61½ pounds in 1893 and 76 pounds in 1898. The ties laid in 1883 were 6 x 8 inches x 8 feet Truckee Pine and were marked with a notch in one end (fig. 6–15) to differentiate them from the ordinary pine ties, because the railroad needed a way to determine when ties were laid because they had a limited service life. As the railroad’s profile book noted, “All ties put in track during 1883 [were] marked by a chip taken off the upper east corner of tie, on right hand side of track going east.” Conversely, “All ties put in track during 1884 [were] marked by a chip taken off the upper west corner of tie on right hand side of track going east.” Date nails were used beginning about a century ago, but it is worth noting that Central Pacific’s tie-chipping technique worked well enough, though it became increasingly confusing with subsequent upgradings and replacements.

In 1886, the General Land Office published a map that revealed how problematical it was to represent Promontory (fig. 6–16). On the map, the town’s site shows as two lines of buildings (square black rectangles), four on each side of the Central Pacific tracks. This map lacks the detail
we would need to accurately reconstruct the town’s layout at the time—after all, Promontory consisted of two types of buildings, those on railroad land that served the railroad’s needs and those off railroad land that were owned by private individuals. Nevertheless, the map does suggest that the town was oriented to the railroad, and that was the case. Perhaps the most revealing aspect of this map, though, is that it shows the town to be situated in a fairly level site dotted with scrub-like vegetation, no doubt sagebrush.

In 1899, the United States Geological Survey published its *Map of Utah*, which uses contour lines to depict the topography (fig. 6–17). Contour lines are drawn at 1,000–foot intervals. As opposed to hachures, they involve increased sophistication in showing features such as mountains, for they are based on surveys using advanced measurements that accurately identify points above sea level. By connecting the dots, so to speak, the mapmakers now depicted mountains according to equal lines of elevation. The word *contour* is from the Italian *contorno* (to round off or to turn around)—an apt term for lines that ultimately find their way around mountains or hills. Note that the Promontory Range, which is unnamed, rises about three thousand feet above the level of
the Great Salt Lake. This map is noteworthy because it also shows the railroad and selected station stops, depicting Willard, Corinne, and Kelton as the largest communities on the line. Had the railroad workers in Terrace studied this map, they would have seen a glimpse of the future. Developments in boardrooms as far away as San Francisco and New York were about to reshape the geography of this part of the West and the line over Promontory Summit.

This map shows Promontory at a critical moment in its history, its high point as a railroad-oriented town. By 1900, the United States Census information for the Promontory Precinct reveals five telegraphers, fifteen laborers, thirteen section hands, two section foremen, two engineers, three firemen, eighteen dry farmers, and four stock and cattle merchants. From these, we can see that serving the railroad was still a major occupation but that the rural economy was also becoming increasingly important. The majority (eighty-eight) had been born in Utah, but seven were from the British Isles, thirteen from Europe.
Over the Range

Over the Range (including nine Italians) and six from China. As in many places along the railroad, the Chinese and Italians were most likely to be railroad workers while the farmers and ranchers were from Utah, the British Isles, and northern Europe.

From time to time, a miner or two had appeared on the census roles in the Promontory area. For example, in 1894, A. H. Snow reported, “Messrs. Toombs and Hickman, says the Brigham Bugler, have been quietly developing a valuable onyx quarry situated on Promontory [peninsula], twelve miles south of the station on the S.P. Ry. in Box Elder County by that name.” The report went on to note that “[t]hey have taken out some beautiful samples, varying from very dark to white” and that “[f]ine specimens of marble are also found in the vicinity.” It was further claimed that representatives of an eastern business found the material of such interest that they “organized a company called the Western Onyx and Marble Company, at Eau Clere [sic] Wis., where they will erect a new plant purposely to work the precious stones from this place.” Mr. Toombs expected to hire “eight or nine men to work on the quarries . . .”; it was also noted that “[t]his find may mean thousands for

Fig. 6–17
A 1899 topographic map showing the line over Promontory reveals a tendency to simplify the topography, even on a scientific map, when contours are drawn far apart—for example, the thousand-feet elevation contours shown here.
our county.” Alas, like most extractive industries, this enterprise did not last very long.

Promontory’s main claim to fame, and reason for existence, was the Central Pacific Railroad. Later in the nineteenth century, the name Central Pacific became increasingly rare as the Southern Pacific assumed control. At this time, both names, Central Pacific and Southern Pacific, were used more or less interchangeably to characterize the railroad here. The process by which the Central Pacific became part of the Southern Pacific was evolutionary and took place in several steps. The change was complex but was generally a result of limitations imposed on Central Pacific by early legislation. Railroad historian Ed Workman notes that “as a separate company, the Southern Pacific Railroad was not restricted by any terms of the Pacific Railway Act and so could incur indebtedness, construct, buy, [and] control other railroads and qualify for its own additional land grants.” Workman also observed that the creation of the Southern Pacific was “. . . done almost entirely to protect the Central Pacific,” but, by the last decade of the nineteenth century, “. . . the Central Pacific of the Big Four had changed from the operation of the SP lines to a creature of Huntington’s SP.”

With Southern Pacific status came aggressive standardization of physical and plant equipment and rolling stock. Under the SP banner, the line over Promontory Summit became part of the “Ogden Route”—the popular nickname for the line from Ogden westward to California. This line was now, in fact, part of the Salt Lake Division of the Southern Pacific, which was the West’s largest railroad. Southern Pacific’s other two major routes (Sunset and Shasta) served as a reminder that this was a three-pronged system based out of San Francisco and reaching to Portland (Oregon), New Orleans, and Ogden. Southern Pacific’s standardization was apparent in the large circular logo painted on boxcars of the various routes. All of these logos looked essentially the same, the main difference being the words (or name) for each route. A boxcar or refrigerator car, for example, would be easy to identify as an SP car from some distance—they were all pretty much of the same dimension. Only when one got closer could one tell if the car belonged to one of the various routes. These routes were larger than divisions. In fact, each of Southern Pacific’s individual routes was larger than most railroads.

As Southern Pacific and Union Pacific inched closer to a possible merger under the genius of E. H. Harriman just after the turn of the century, both railroads—once fierce competitors—began to look increasingly like each other. With Harriman’s takeover of SP in 1901, the vision of a huge railroad serving much of the West became a reality—until the United States Supreme Court stepped in to undo the vision. In the
court’s judgment, the Southern Pacific-Union Pacific alliance represented more of a monopoly than the operation of public corporations.

The buildup to the merger had repercussions across the West, including Promontory. In 1900, when the transcontinental Overland Route passenger trains still traveled over Promontory Summit, the railroads’ publications usually commented on the signature event that had made this part of the line famous. The booklet *Souvenir and Views of the Union Pacific, “The Overland Route”* noted that, upon leaving Ogden westbound, “The train soon passes Promontory, which was originally intended to be the point of junction of the two lines forming the transcontinental route, namely the Union Pacific and Central Pacific railroads,” but quickly added that “[l]ater, Ogden was decided upon as a compromise.” More to the point, though, the booklet notes that “The traveler over the Union Pacific sees very few things aside from the physical features and general topography of the place to remind him of the scenes which occurred at Promontory, Utah, on Monday, May 10, 1869.” In an interesting if subtle reminder that Harriman had brought both railroads under one banner—or rather, shield—the booklet used Promontory as metaphor: “It was here,” the booklet observed “that the last rail was laid and the golden spike driven which united the Union and Central Pacific roads, and completed a work whose chief significance was that thereafter the Great East and the Great West were indeed but a single country, ‘one and indivisible.’”

No strangers to metaphors, Harriman’s advertising department knew how to equate the unification of the merger with the patriotism of a unified nation.

In 1901, a pamphlet titled *Sights and Scenes from the Car Windows of the World’s Pictorial Line* was prepared to educate passengers about what they could see along “the Overland Route” of the Union Pacific. The pamphlet described Rozel as a place “where passenger trains only stop on signal.” It also noted, “Between Rozel and Lake there is a signboard close to the track, showing the western limit of the ten miles of a track laid in one day.” Of Kelton, it noted that there was a stage “daily except Sunday, at 6.00 [sic] A.M. for Bridge, 35 miles, $2; Conant, 48 miles $3 [and] Albion, 60 miles, $4.” On Wednesdays and Saturdays, the stages left at 1:00 P.M. for Park Valley and other locations, while on those same days, stages left at 8 a.m. for Stone, Idaho. Of Promontory, the pamphlet featured a sepia tone photograph of the driving of the last spike, adding, “This place is celebrated for being the point where the connection between the Union Pacific and Central Pacific roads were made on the 10th of May, 1869.”

As travelers rode trains over Promontory Summit in the late nineteenth century, the place itself became more and more of a headache
for the railroad. The fact was that Promontory’s location was a function of the late 1860s, and the Southern Pacific Railroad now resurrected the Central Pacific idea of building a line straight across the Great Salt Lake from Ogden to Lucin. This line would be called the Lucin Cutoff after the name of that small community far to the west of Promontory. At the time the Lucin Cutoff was built, the line over Promontory Summit was experiencing a substantial amount of rail traffic annually—6 million tons worth, in fact—which amounted to ten trains daily, each consisting of thirty-three cars that carried 50 tons each. The 2.2 percent grade over Promontory Summit necessitated three locomotives per train to move each of these 1,650-ton trains. By this time, locomotives were becoming more powerful and larger. The Central Pacific now only rarely used 4–4–0 American-type locomotives. Larger engines, such as 4–6–0 (Ten-Wheeler) types on passenger trains, and 2–8–0 (Consolidation) and 4–8–0 (Mastodon) wheel arrangements for freight trains were common on Promontory by about 1900. In contrast to the 4–4–0 American-type locomotives that originally opened the line, the new locomotives now weighed twice as much—50 versus 25 tons. Their longer wheelbases necessitated longer frames, which reduced their ability to operate on tight curves.

As locomotives became larger, so did their tenders, which carried fuel and water. The latter was always an issue on the line over Promontory Summit. From around 1850 to about 1885, “tender size seemed pretty well frozen at 2,000 gallons [water] and 2 tons of fuel.” Most of these tenders had two, four-wheel trucks (that is, a total of eight wheels), though “Southern Pacific . . . built a number of high capacity twelve-wheel tenders.” The latter were a sign of things to come, because by the twentieth century, six-wheel trucks were common on large tenders. By the late 1880s, tenders often carried 3,000 gallons of water and 5 tons of coal. By the late 1890s, when Promontory Summit was still the scene of big-time railroading, tenders of large engineers like 2–8–0 Consolidations often carried 4,000 gallons of water. These increasing sizes of motive power, in turn, necessitated strengthening bridges, and, in some cases, “straightening out” (decreasing the curvature of) trackage. These developments increasingly pointed a spotlight on Promontory Summit, which was branded as a “bottleneck” that restricted the traffic flow over the entire Overland Route due to its steep grades and tight curves. Ideally, those newer, larger locomotives could haul longer trains faster. That, however, assumed minimal grades and straight track—both of which were in short supply on the line over Promontory Summit.

The introduction of improved air brakes on trains made railroading over summits like Promontory easier and safer. The system consisted
of a series of air cylinders that maintained air pressure while the train was in operation, but the release of pressure—say from an accidental uncoupling—would automatically apply the brakes. In addition to giving the engineer greater control of the train during normal operation, air brakes helped eliminate, or greatly reduce, the likelihood of a runaway if the train’s cars became uncoupled. When this happened, air brakes went into the emergency braking position automatically. Air brakes also greatly reduced the number of men who had to ride the roofs of the cars to operate the hand brakes on each car.

In 1893, when the United States Railway Safety Appliance Act made air brakes mandatory, *Harper’s Weekly* observed that railroading had lost some of its dangers and character since “the Heroic Age of the brakeman.” A brakeman in action was a sight to behold. In keeping a train under control, “. . . he swung himself and twisted those brake wheels till it seemed as if they must come up by their iron roots.” “Today’s brakemen,” the humorous and nostalgic article went on to observe, were not made of the same tough stuff as their predecessors. A modern brakeman, as *Harpers Weekly* put it, “could no more twist a brake till the chain creaked and the sparks shot out from the car wheels than he could go into Wall Street and twist a railroad ‘til the stockholders creaked and the dollars shot from their pockets.” This made things sound a bit easier than they really were. Despite the use of air brakes, railroaders still had to be sure the brakes on all cars were charged before proceeding downhill. Nevertheless, Westinghouse safety air brakes were nothing short of revolutionary.

We know most about Promontory from railroad records and the recollections of rail travelers. However, one surprising source of information on the line over Promontory Summit just after the turn of the century came from an early day motorist. On his pioneer automobile jaunt across the United States in a brand-new 1903 Oldsmobile, John Hammond and his fellow driver Lester Whitman crossed from Nevada into Utah and entered what they called “The Great American Desert.” Their trip across Nevada, of which they hoped they would “never set foot inside the cussed state again,” had been tough going. Now across the state line, they hoped Utah would “treat man and machine more kindly than did Nevada’s unbelievable desolation.” This, however, was not to be. The first forty miles of road in Utah, which ran parallel to the Central Pacific line, “was a nightmare, full of sand and badly ditched by washouts from recent cloudbursts.” Driving, or rather maneuvering, over this road required crossing gulches “varying from 3 to 10 feet deep with sheer sides looking like miniature Grand Canyons.” Hammond and Whitman dug their way through some of these, plodding along
at a snail’s pace in the hot desert sun. Amazingly, they conducted this effort within sight of the transcontinental railroad line. As Hammond recalled, in what is probably the best description ever written of big-time railroad over the line across Promontory: “When the overland express trains thundered past us, their locomotive engineers would blow their shrill whistles and wave their arms in greeting. The passengers waved, too, and we felt comforted by all the momentary attention out on these remote, bleak barrens.”

By the time Hammond and Whitman arrived at “the small railroad town of Terrace,” as they called it, they were bone tired. After dinner, they “began to forage for gasoline” but could not find a drop because the railroad used coal for both cooking and heating. However, they did learn that the Central Pacific railroad had “a supply of distillate at the engine house.” When approaching the man in charge, who refused to sell them any because that was against company rules, they suggested he “look the other way”—which he did while they acquired several gallons. The Oldsmobile, which “would drink anything,” ran fine on the distillate so they continued on toward Kelton. But before they reached Kelton, they found that they were low on water and tried to find some at a nearby ranch—to no avail. In the salt flats at the north edge of the Great Salt Lake, Hammond described passing “many bleached skulls and carcasses of cattle and sheep alongside our trail for several miles.” Arriving at Kelton at 8 p.m., they found a small hotel after a long day in which they had driven seventy-five miles.

The next day, Hammond and Whitman drove across the salt flats, where they saw “teams of horses pulling scrapers, plowing up layers of salt to be shipped in vast quantities by rail to market.” After “a most desolate ride,” they arrived at Lake Station, where they saw the ruts left by wagons that had traveled along the “old emigrant’s trail.” Heading uphill under a hot sun, Hammond and Whitman arrived at Promontory at noon, where they visited the general store to pick up a five-gallon gasoline can they had ordered by telegram. However, when they asked about the gas can, the proprietor told them, “Well, it’s gone.” To their dismay, the storekeeper had recently sold it to “two fellows in a big auto” who needed it. Those fellows, as it turned out, were also trying to cross the continent in record time. The owner apologized for assuming the first motorists who arrived were the ones who had ordered the can. And why not? The storekeeper admitted, “That was the first auto I ever saw in these parts and I didn’t figure there was another coming!”

Hammond says this incident occurred at Promontory, but then added that he and Whitman continued uphill for several miles more, “then downhill some,” when he arrived at “Promontory on the
Over the Range

Southern Pacific railroad.” Their diary appears to confirm that there was a small spot in the road east of Lake called Promontory, but this was not the famed Promontory Summit.42 Here, at Promontory Summit, they “stopped long enough to see that historic monument which marks the spot where, on May 10, 1869, just 34 years ago, those gold and silver spikes were driven.” After dinner at Promontory, they continued east to the hill from which they could see “a large expanse of civilization in the distance.” This greenery was located along the Bear River at Corinne where they encountered verdant green pastures the “like of which we had not seen for the last two weeks in the desert wilderness.” They evidently did not photograph this scene, but it was described well enough to suggest that they were close to the railroad grade crossing. Perhaps they were lucky enough to witness a Southern Pacific train ascending the summit as illustrated in a painting done expressly for this book (fig. 6–18).

In recollecting this trip over Promontory Summit, Hammond added a note of irony: “Without the help of this railroad, the fledgling

Fig. 6–18
As seen in this conjectural painting, the 1903 Oldsmobile has topped the Promontory Summit and is heading toward the Wasatch Mountains as a Southern Pacific passenger train ascends the grade on the east face of the Promontory Range.
horseless carriages at the turn of the century might have been delayed for a few years in their attempts at successfully crossing the continent.”

Could he have imagined that the automobile they had just driven through the Great Basin and over Promontory to New York in such discomfort would begin, within a generation, to threaten rail traffic itself? If he did imagine such a scenario, Hammond left no record of it. To him, in 1903, the railroad was king—even though Promontory was about to be dethroned in favor of the new railroad route that ran, much like freeways would later run, on a relatively level route directly across the Great Salt Lake.