Over the Range

Francaviglia, Richard V.

Published by Utah State University Press

Francaviglia, Richard V.
Over the Range: A History of the Promontory Summit Route of the Pacific Railroad.
Utah State University Press, 2008.
Project MUSE. muse.jhu.edu/book/7312.

For additional information about this book
https://muse.jhu.edu/book/7312

For content related to this chapter
https://muse.jhu.edu/related_content?type=book&id=163205
On the Early Mainline
(1869 to 1875)

In one sense, Promontory in 1869 represented a Central Pacific victory. By pushing Union Pacific back from Promontory to the Bear River, and ultimately to Ogden, the federal system rewarded the California rather than Omaha crowd. A Map Showing U.P.R.R. Lands in the Salt Lake District (fig. 5–1) shows "Land withdrawn by [the] letter of May 15 1869 [and] acknowledged . . . May 24, 1869 . . ." reveals the Union Pacific relinquishing the line over Promontory Summit. A written note on the map, apparently made a few years thereafter, mentions that this is a “Diagram of six townships showing [the] line of road+limits and the division line between the two roads, sent to R&R at Salt Lake City, April 22, '72.” This map is important as it confirms Union Pacific’s withdrawal from the Promontory Summit route. Moreover, one unexplained double set of squares, one inside the other, apparently indicates the site of the short-lived railroad town just a few miles north-northwest of Ogden. The rise of that new town meant the end of Promontory as a meeting point of the Union Pacific and Central Pacific. With that new meeting point of the railroads at the base of the Wasatch, the Central Pacific’s wish to reach completely across the entire Great Basin now became a reality. From this point forward, Promontory became a one-railroad town.

By Christmas of 1869, Promontory was just another stop on the Central Pacific mainline from California to Ogden. Now that Central Pacific called all the shots here, it is worth looking at the railroad’s operations over the range. At this time, railroads ran at a relatively slow pace. An early Central Pacific handbill of “Rules and Regulations for Employees” states that “Passenger Trains will not run faster than twenty-five miles
Fig. 5–1
Portion of the Map Showing U.P.R.R. lands in the Salt Lake District (1872) indicates the Central Pacific line over Promontory and a second alignment in that area; also features a large square symbol at the future site of Bonneville (unnamed, double square above “Weber River”) which never grew into a major place, despite hopes.
an hour, except on special order, over any part of the road, and Freight Trains will run as near to Time Table as practicable.” To prioritize types of service, it was noted that “Through Freight trains will keep entirely out of the way of passenger trains, but will have the right of road over way freight trains”—those freight trains that plod along, picking up and dropping off cars at local stations along the line. These lowly way freights had to “... keep entirely out of the way of both Passenger and Through Freight trains.” Engineers in all trains were required to “[a]pproach all Stations slowly; pass all Stations carefully, and be sure the switches, by their levers, are seen to be right.” In rural areas, enginemen were required to take care to avoid running over livestock, and furthermore that “[t]rains must come to a full stop, if necessary, to avoid doing so.” One assumes that mishaps involving pedestrians alongside the tracks also occurred, as one of the rules stated: “Enginemen and Firemen are particularly directed not to throw any wood from the Tender while in motion.” However, the scarcity of wood along much of the Central Pacific route was also a factor. This rule evidently resulted from the fact that some of the wood provided as fuel was too large to fit into the firebox opening and might be tossed off the train in disgust. Such wood, the rules stated, “should be thrown off at the next station” and in the meantime “not be piled on Tenders in such a manner as to be liable to fall off.” Presumably, woodcutters chopped the wood into smaller pieces for use in locomotive fireboxes or stoves in railroad buildings. Speaking of the combustibility of wood, the rules further stated that “[d]ampers of [locomotive] ash pans must in all cases be closed while Engines are crossing bridges and passing wood yards.” Some of these rules seem obvious today, but evidently resulted from mishaps. One can only imagine what inconvenience or disaster prompted the railroad to state the obvious: “Cars must never be allowed to stand on the Main Track, but must be placed on a siding, and the wheels must be securely blocked.”

With its line running all the way across the Great Basin to Ogden, Central Pacific became more dependent on coal for fuel. To its chagrin, Central Pacific territory in Nevada and California was notoriously coal poor, while Union Pacific traversed one of the world’s great coalfields. Accordingly, Central Pacific’s coal was supplied by Union Pacific, which owned and operated coal mines throughout Wyoming. The coal was brought to Ogden, which occupied a strategic location at the base of the Wasatch Mountains. There it provided fuel for locomotives but was also shipped in gondola cars to coaling stations along the Promontory line well into Nevada.

The Union Pacific’s retreat to Ogden from Promontory Summit in December 1869 ensured that the former would become a major
railroad town and service center while Promontory would remain a small community straddling the mainline. At Ogden, Central Pacific and Union Pacific shared some of the same facilities. Central Pacific also had a 1–stall engine house located just northwest of the turntable. It was also here that the trains of the Central Pacific and Union Pacific met the Mormon-built standard gauge Utah Central, colloquially called “Brigham Young’s railroad,” which was completed from Salt Lake City to Ogden in 1870. Some of the locomotives and rolling stock for Young’s standard gauge Utah Central came second hand from the Union Pacific as partial payment for the money the railroad owed the Saints for contracted grading work in 1868–1869. This was another example of Young bartering to obtain what he needed to make Utah, and the Mormons, prosper.

As Brigham Young’s brainchild, the Utah Central helped Salt Lake City maintain its lead as Utah’s capital city. This Mormon-owned railroad also ensured Ogden’s status as a railroad center and “Crossroads

Fig. 5–2
A superb photograph of Ogden (ca. 1885), showing the coordination of activities between Central Pacific and Union Pacific. The eastbound *California Limited* (behind second locomotive at left) received passengers who transferred from its Central Pacific counterpart (behind locomotive, center of photograph), which had taken the train over Promontory Summit. The Ogden station is between these two trains, which are in turn flanked by other locomotives in the busy railroad yard.
of the West” where the Central Pacific, and later, Southern Pacific lines terminated. By 1872, another line, the narrow gauge Utah Northern, extended north from Ogden to the mines and agricultural/grazing lands of southern Idaho paralleling the Central Pacific line to about Brigham City. Ogden, in other words, was the strategic place where the two Utah railroad lines crossed at right angles, and connected with the two major railroads that formed the Pacific Railroad route. For our purposes, these developments further increased the volume of rail traffic over Promontory Summit; however, that once-strategic place was becoming increasingly forlorn as the trains now met, and exchanged passengers, at bustling Ogden (fig. 5–2).

As part of the agreement by which Union Pacific moved its westernmost terminal to Ogden, Central Pacific now ran over the Union Pacific line from Corinne to Ogden, as the proposed Central Pacific roadbed between those two points had never materialized. Central Pacific also inherited the challenges of running trains up and down the east side of the Promontory Range. When it was the end of the line for the Union Pacific and Central Pacific from May to December 1869, Promontory Summit was the place where both railroads needed to turn their locomotives around. With most trains running through town now, however, Central Pacific had less need to turn locomotives here. Nevertheless, it still needed to turn helper locomotives—locomotives added to assist trains upgrade—at Promontory. On the grades leading up to Promontory Summit, helpers were a necessity. American (4–4–0) type locomotives did the job at first, but larger 2–6–0 (Mogul) and 4–6–0 (Ten-Wheeler) locomotives began to appear around 1875. Because these were larger engines, their weight increased accordingly. By the mid-1870s, 30-ton locomotives were common. Once they reached the summit either as helpers added to the front of the train or as pushers helping to boost the train from behind, locomotives had to be turned for the return trip downgrade. “Light” locomotives—those unencumbered by trains—ran to the bottom of the grade at Blue Creek. After being turned at Blue Creek, they again headed upgrade, boosting the next train needing assistance. On the entire line between Ogden and Lucin, there were five turntables. In addition to those at Blue Creek and Promontory, turntables were located at Lake, Kelton, and Terrace. Situated at the bottom of helper grades, most turntables only turned locomotives and did not require large roundhouses for locomotive storage. However, large multi-stalled roundhouses and shops at Ogden and Terrace serviced, stored, and repaired locomotives.

Travelers passing over Promontory Summit, in effect, traversed geological time and could see the results of a geological drama millions
of years in the making. Nineteenth-century geologists Arnold Hague and S. F. Emmons observed that the limestone hills or ridges east of Promontory “show a number [of] synclinal and anticlinal folds, with gentle dips, which can be traced from the Promontory Mountains nearly to Bear River.” The sedimentary rocks here undulate: The first ridge east of Blue Creek inclines to the east and the second ridge dips westward, then dips under the valley, reappearing west of Corinne as the isolated feature called Little Mountain. The Promontory Mountains form what they described as “a rocky promontory, which divides the two north arms of Salt Lake.” The railroad traversed the Promontory Mountains through “a gap in the range,” that is “about three miles in a north and south direction” and shows, on both north and south sides of the gap, “the upper terrace-lines of the old lake” That Old Pliocene lake, as they called it, had once “unquestionably occupied this pass, making the southern part of the range into a huge island.” North of the railroad, Hague and Emmons noted that the Promontory Range “is comparatively low, with rounded outlines, the greater part of its surrounding surface being covered with loose soil and grass, and showing but few outcrops.” South of the railroad, the Promontory Range was narrower but more rugged, comprised of “dark heavy beds of nearly black limestone” About four miles south of Promontory Station, though, “the range widens rapidly to the westward,” where it becomes about seven miles wide. This portion of the Promontory Range overlies ancient, Archaean rocks consisting of quartzites and mica-bearing schists.

By the time that travelers took the train over Promontory Summit in the early 1870s, a number of the man-made landscape features had become landmarks. Travel guides often highlighted areas where the competing railroads had changed the topography. Impressive cuts and fills, especially, revealed something about the furious competition between the two protagonists. For example, as the train entered “the deep rock cuts as we wind around Promontory Mountain,” with “the engine puffing and snorting with its arduous labors,” Crofutt’s Trans-Continental Tourist told tourists to be alert. Just east of Promontory, the publication noted that “[t]he track along here has been changed recently to avoid passing over several high trestle bridges built by the Union Pacific Company when they extended their track to Promontory, and afterwards abandoned by order of Congress, which fixed the junction of the two roads near Ogden.” With that story related, and the train reaching the point where “the summit is gained, . . . we arrive at the former terminus of the two Pacific railroads”—Promontory.

Promontory was now on the mainline of a Central Pacific line that ran west from Ogden over the range and along Nevada’s Humboldt
River to California. In 1872–1873, Joseph Garlinski produced a remarkable map showing a portion of the route of the railroad in some detail (fig. 5–3). Prepared as a *Diagram of the Survey of the Third Standard Parallel North and Exterior Lines in Utah Territory*, 1873, by Joseph Garlinski, depicts the Central Pacific line, and the nature of the lands north of Spring Bay in considerable detail.

Unfortunately, no Garlinski map(s) showing the area around Promontory, or other portions of the line from Ogden to Lucin, have been located to date.

The surveying and construction of the line over Promontory Summit had been so frantic that it took Congress years to figure out exactly what had happened. As a post mortem to 1869, report after report sought to clarify the situation between the Central Pacific and Union Pacific. In 1877, Captain William J. Twining of the Corps of Engineers compiled a detailed report on the Union and Central Pacific Railways for the 44th
Over the Range

Congressional Session of the United States House of Representatives. Congress authorized the report in 1876 to address some unanswered questions. In making the detailed survey, Twining’s report identified the locations of the portions of track for which bonds were set. Later that year, the Union Pacific’s terminus was at MP 1038, “Five miles west of [the] crossing of Utah Central Railroad.” From that point near Ogden westward—through Bonneville (MP 1043), Brigham (MP 1050), Corinne (MP 1058), Blue Creek (MP 1077), Promontory (MP 1086), Monument (MP 1110), Kelton (MP 1125), Matlin (MP 1146), Terrace (MP 1157), and Lucin (MP 1178)—the railroad line over Promontory was now in the hands of the Central Pacific. In this same report, Captain W. H. Heuer provided extensive field notes that included detailed readings of “nearly every curve, bridge, trestle, tunnel, and water tank, together with numerous culverts and other points noticed on the railroad.” Captain James F. Gregory’s report covered the portion of the Central Pacific line “from its eastern terminus at Ogden, Utah, to the west switch at Battle Mountain, Nevada.” There were numerous trestles, bridges, culverts, and water tanks along the section from Ogden to Lucin. Gregory details the location of every culvert as to type (either box or open), section post, water tank, bridge (by type), switch (i.e., turnout), mile and half-mile post, and trestle.

Fig. 5–4
This 1869 photograph of the Union Pacific yard and main track at Blue Creek shows the large water tank (left, in distance). Note the work train with workers’ bunk cars and boxcars (supply cars) at right.

Courtesy of the National Park Service
Steam locomotives consumed tons of wood and coal, but they consumed even larger amounts of water. In the 1870s, locomotive tenders held about 2,000 to 2,500 gallons of water. Water tanks helped quench the thirst of the iron horse and were ideally located about twenty-five miles apart. The earliest water tanks consisted of tubs (open-topped, barrel-like vertical tanks held together with metal hoops) mounted on an elevated framework. Each tub held about 5,000 gallons. When the Union Pacific first began operation to Promontory Summit, there was a tank at Blue Creek10 (fig. 5–4) but none indicated at Promontory.

Central Pacific very likely used this original Union Pacific water tank at Blue Creek upon taking over this portion of the line in late 1869. Yet, a water source at Promontory remained a problem. Early photos confirm that water cars transported water to Promontory, probably from Indian Springs. Across the Promontory Range, Central Pacific had a four-tub water tank at Rozel, which lies at the foot of the Hansel Mountains; an eight-tub water tank at Kelton in the Curlew Valley; two water tanks, each with four tubs, at Terrace; and a four-tub tank at Lucin at the edge of the Salt Lake Desert.11 It is noteworthy that each of these locations had a dependable source of water, while Promontory did not. This is not to say that the locations themselves were well-watered, only that dependable sources of water were diverted from higher up the watersheds to those places by redwood aqueducts. Blue Creek also had an aqueduct, though it was evidently the best watered of these locations. Water stops on the line over Promontory were located at Lucin, Terrace, Kelton, Rozel, Blue Creek, and Corinne.12 The typical Central Pacific water tank house featured a 50,000–gallon, 16–foot diameter water tank mounted in a frame building with slightly tapered or slanted sides. Some, like the tank at Promontory, had straight sides but retained their boxy look (fig. 5–5). These water tank houses, as they were called in railroad records, were 21 feet square at their base, and their shingled roofs peaked at 28 feet tall. They not only presented a more finished appearance but also helped keep the water pipes from freezing because the interior of the building, and hence the piping, could be heated in winter.

Promontory Summit often appeared as a dot on maps of the 1870s. In 1871, W. H. Gamble of Philadelphia produced a beautifully colored lithograph \textit{County Map of Utah and Nevada} prominently featuring the Central Pacific (fig. 5–6). This map is noteworthy because it perpetuates a common error: Promontory is called “Promontory Point.” A pocket map titled \textit{Map of the C.P.R.R. and Connecting Lines} (ca. 1874), shows Promontory as well as other stations along the line from Ogden to the Pacific Coast.
On an inset feature called “Distances & Altitudes on C.P.RR,” Promontory—at 828 miles from San Francisco at an elevation of 4,905 feet above sea level—is the only locale shown between Toano (Nevada) and Ogden. Tellingly, however, Promontory appears not because of its population, but rather because it was a summit (as were Taono, Cisco, and other locations). Promontory was probably also listed because of its association with recent history. In fact, the map’s font shows Promontory as an inconsequential place much like Rozel, Monument, and Matlin. Only Kelton—with its strategic stagecoach line connection to the mining camps of the north—appears in bold letters. Moreover, of the eleven illustrations bordering the map, only the more spectacular points along the line—snow coverings (snow sheds), the Summit of the Sierra, Emigrant Gap, the Palisades along the Humboldt River—are shown. For all its notoriety in 1869, Promontory is not among them.

By the early 1870s, travelers and travel writers commented on Promontory’s depot, which continued to serve as a restaurant and store. Photographs of the period (fig. 5–7) show the bustling activity during “train-time” at Promontory’s Station, which also served as an eating house. Perhaps equally important was the fact that the Central Pacific built an engine house there with a turntable to turn around helper locomotives. Typical of such places where engines were turned or kept, Promontory also had a water supply consisting of water cars and, possibly, a cistern connected to a water plug. However, Promontory soon had a water tank and sand house. Most sources agree that Promontory’s water was always shipped to the summit from Blue Creek in wooden tank
On the Early Mainline

cars, though some suggested that the summit originally had springs that later dried up. The sand house was important indeed. Given the steep grades in the area, sand was necessary to keep locomotives from slipping their drive wheels, that is, help them gain and maintain traction when starting or moving upgrade. At the sand house, workers in the engine servicing area placed fine sand in the sand domes of locomotives. The engineer diverted the sand, when needed, from the sand boxes or sand domes atop locomotive boilers down pipes to the driving wheels.

Because servicing locomotives and maintaining stretches of railroad track require manpower, Promontory also had several homes, or section houses, where railroad employees lived. These were located across the tracks on the north side. Anglo as well as Chinese workers lived in these section houses. By the early 1870s, coal became an increasingly common locomotive fuel; accordingly, coal sheds were constructed. These were located to the west of the depot on the south side of the tracks, the same side of the tracks on which the depot stood. By the 1870s, Promontory

Fig. 5–6
Detail of W. H. Gamble’s 1871 County Map of Utah and Nevada prominently shows Central Pacific Railroad line and misnames Promontory Summit as “Promontory Point”—a common mistake that persists to the present.

Courtesy of Virginia Garrett Cartographic History Library, Special Collections, University of Texas at Arlington
had the characteristic “look” of a Central Pacific railroad town. Most of the railroad buildings were painted in the standard Central Pacific color, which was apparently similar to boxcar, or perhaps Tuscan, red.

We know a fair amount about Promontory from the written sources and railroad reports of the era. This is fortunate because virtually nothing from the period ca. 1869–1880 is visible there today. However, underground archaeological investigation confirms many details about the size and location of structures such as the roundhouse, with its brick foundation revealing a 5–stall structure. Interestingly, some remains of that building exist today in the form of a barn-like ranch building containing several recognizable elements, including wooden doors and metal roofing material, some of the latter bearing the stamp “CP RR” (fig. 5–8).

The 1870 census is also helpful in reconstructing the character of Promontory. The population of Promontory Precinct at this time was 158, about two-thirds (117) of whom were Chinese.14 Almost everyone
On the Early Mainline

in town either worked for the railroad or was in some way dependent on it. The town of Promontory had only seven residences; the majority of the population lived in temporary quarters nearby. Most of the townspeople were men. Only one woman appears in the census: the wife of hotel operator William Case, whose occupation was listed as “housekeeper.” Among the men enumerated, occupations included one conductor, a steam engineer, three firemen, a car inspector, and a telegraph operator. The latter was extremely important as he received and transmitted messages. Virtually all of the men in railroad service jobs were white, but the majority of the town’s track worker population was Chinese; the census shows that twenty-six Chinese track workers occupied two section houses. These railroad-owned houses were utilitarian places where railroad workers slept and ate meals. Most of the Chinese employees were responsible for keeping the track in order, and they answered to a section foreman or section “boss.” The other Chinese man living here was a cook.

Adolph Reeder recalled living in Promontory in the early years. In an undated, hand-written manuscript, he noted that the town had a population of “about 150 people consisting of between 20 and 30 families and several single laborers (firemen and section crews).” The majority of engineers and brakemen, he recalled, “were married men with

Fig. 5–8
A barn-like shed near Promontory Summit constructed from wood and corrugated metal salvaged from the doors and roofing, respectively, of the Central Pacific roundhouse at Promontory.

Courtesy of Michael Polk, Sagebrush Consultants, Ogden, Utah
families.” Most of the buildings in town were of lumber construction and were one story, except a two-story section house; there were also several dugouts in which section workers lived. As Reeder recalled, a “Chinese [man] [who] lived in one, sold fire works to children on the fourth of July.” The census figures above confirm that over 90% of the population was associated, in one way or another, with the railroad. The remainder (four) consisted of three men who ran a stock farm, and one who listed his occupation as a “quartz miner.” The latter must have been a perpetual optimist, for there was relatively little precious metals mineralization nearby—the best hope being a small area on the west side of the Promontory Mountains south of the station, where metals were ultimately mined.

Promontory’s Golden Spike Hotel typified the services offered in the days of slow railroad travel, when trains stopped at stations so that passengers could eat meals. The Golden Spike Hotel was said to be the brainchild of T. G. Brown, who opened a general store, saloon, and restaurant that could seat one hundred travelers. Brown originally lived in Corinne but took advantage of opportunities at Promontory when the place was still an important railroad stop. He was quite well connected, and evidently used technology to help his restaurant business thrive. Old-timers recalled Brown’s ingenuity: in order to better prepare for serving the westbound passengers, he would rely on someone in Corinne to telegraph the numbers of people who would stop to eat at Promontory. That twenty-eight-mile run would take about an hour and a-half, and Brown’s cooks made good use of the time. As if by magic, when the train had finished laboring upgrade to the summit, meals for the proper number would be ready and waiting. Brown became something of a legend. He is said to have bought more than 3,000 acres close to Promontory, where he also was sheriff, postmaster, and operator of the telegraph office. Being an enterprising soul, however, Brown ultimately opened a general store in Corinne when Promontory’s fortunes declined.

If railroad officials had any concerns about the volume of railroad traffic that would follow the driving of the golden spike, those concerns did not last long. On May 21, 1869, a Central Pacific Railroad circular noted that freight between Sacramento and its terminus with the Union Pacific could be shipped immediately and that each first-class shipment of one hundred pounds cost $3.25 ($65 per ton), and $45 per ton for second class. In addition to a private excursion that gained much attention for its fast speed (an average of twenty miles per hour over the line) regular trains handled growing numbers of passengers. In early June, for example, about two hundred passengers, many of whom
were women and children, journeyed eastward through Promontory aboard the cars.20 On June 8, 1869, Silver Palace Sleeping Car B left Sacramento for Promontory “with every section taken.” Sleeping Car A was scheduled to leave the next day. With new cars on order at the rate of one or two per week, the newspaper reported that “a sleeping car will be attached to every train.”21 That this was no idle promise became apparent when “[a] new Silver Palace sleeping car, to be designated as ‘Q’” arrived in December.22 In early 1870, a train consisting of ten cars—a Pullman sleeper, Pullman commissary, two Silver Palace sleepers, four coaches, a baggage car, and an express car—traversed the line over Promontory Summit.23

European observers frequently commented on the openness and flexibility of accommodations in these railroad cars. In the best-selling adventure novel \textit{Around the World in Eighty Days} (1873), French writer Jules Verne’s characters travel over the recently completed transcontinental railroad. Upon leaving Sacramento, and heading eastward into the night, Verne’s protagonist, Phileas Fogg, travels in a passenger car described as “a sort of long omnibus on eight wheels, and with no compartments in the interior.” Verne here draws a fundamental distinction between European and American railway cars. The former often rode on four wheels that were rigidly affixed to the car, as opposed to the swiveling trucks upon which American cars rode. Moreover, the openness of the American car contrasted with the numerous compartments that divided up the typical European passenger car. Verne noted that the American car’s interior “…was supplied with two rows of seats, perpendicular to the direction of the train on either side of an aisle which conducted to [connected] the front and rear platforms.” This, too, differed from European trains, where compartments were usually accessed from doors on the sides of the passenger cars. Verne was thus struck by the way people could move through the typical American train: “These platforms,” he wrote, “were found throughout the train, and the passengers were able to pass from one end of the train to the other.”

Verne provides an example of how the Pullman cars could be converted into sleeping cars. As Verne put it, when bedtime arrived at around eight o’clock, the car could be “transformed into a dormitory.” The conversion was surprisingly simple. “The backs of the seats were thrown back, bedsteads carefully packed were rolled out by an ingenious system, berths were suddenly improvised, and each traveler had soon at his disposition a comfortable bed, protected from curious eyes by thick curtains.” Verne was clearly impressed with the quality and design of this train, which “…was supplied with saloon cars, balcony cars, restaurants and smoking cars” With both speed and safety in
mind, Fogg and his companion rode the train across the Great Basin and into “... Utah, the region of the Great Salt Lake, the singular colony of the Mormons.” In writing this description, Verne relied on the voluminous travel literature describing the transcontinental railroad. That his description appeared in one of the world’s most popular travel novels reminds one just how readily the transcontinental railroad fit into the Victorian-era imagination.

In 1873, the adventurous Isabella Bird traveled through Promontory describing “the huge Pacific train, with its heavy bell tolling” and the Silver Palace cars she found so comfortable. As Bird noted, the car featured “a luxurious bed three and a half feet wide, with a hair mattress on springs, fine linen sheets, and costly California blankets.” The car was, as she put it, “a true Temple of Morpheus”—the Greek god of dreams. It was sumptuous, and its “[f]our silver lamps hanging from the room, and burning low, gave a dreamy light.” Moreover, the plush interior had “green and crimson curtains, striped with gold” and a “soft Axminster carpet.” Although it was below freezing outside (27 degrees), the inside temperature of the car “was carefully kept at 70.” The observant Bird went so far as to describe the train’s consist. It “consisted of engine and tender, two baggage cars 45’ each, two cars loaded with peaches and grapes, two Silver Palace cars, 60’ each, a smoking car, then five ordinary pass[enger] cars, which gave the train a length of 700’.” One can imagine this train at night snaking through the curves over Promontory Summit and rolling over the wide open, desolate country of the Curlew Valley, its bright headlight, glowing firebox, illuminated windows, and red marker lights briefly disrupting the nearly funereal solitude and darkness of a chilly night in what would come to be known as the “Great American Desert.”

At the other end of the scale from such plush accommodations was the lowly emigrant car. Any rundown or cheaply constructed passenger car was termed an emigrant car. Eastern railroads used emigrant cars three decades before the completion of the transcontinental railroad. They reflected a highly culture- and class-stratified society, the premise being that the cars “were so inferior that only emigrants would ride in them.” By 1869, anticipating a thriving traffic in emigrants over the transcontinental railroad, Central Pacific’s general manager Alban N. Towne oversaw the design of special emigrant cars that would “... improve the emigrants’ lot by providing supereconomy sleeping cars.” Towne’s emigrant cars appeared similar to other passenger cars, but had special “Emigrant Car” lettering on the outside and a no-frills setup on the inside. Featuring oak plank interiors, board seats, common cooking stoves, and simple toilet facilities, these cars answered an important need. In April 1869, Central Pacific’s Sacramento shops “were busy
fitting up twenty-five emigrant sleepers.” Extant photographs and plans suggest that Central Pacific’s first emigrant cars had simple arched roofs, but those in the 1870s and 1880s featured clerestory roofs. In other words, emigrant cars underwent an evolution similar to other passenger cars, only more economically. Union Pacific also had emigrant cars, and they presumably ran them on the Central Pacific when travelers needed to reach the Pacific Coast. It is also likely that the Union Pacific cars carried a large number of Mormon converts only as far as Ogden (and Salt Lake City).

In the 1870s, evidently before Union Pacific had the opportunity to upgrade its emigrant cars, Scottish writer Robert Louis Stevenson crossed the United States on a trip to San Francisco. At Council Bluffs, Iowa, Stevenson boarded a Union Pacific emigrant train, leaving a lasting record of the dreadful experience in *The Amateur Emigrant* (1879). The last three cars on the long train were reserved for emigrants. To board these cars, families consisting of “women and children” ran toward the very last car; single men were directed toward the next (i.e., middle car of the three), and Chinese to the third car. Stevenson described the typical American railroad passenger car as a “long, narrow wooden box, like a flat roofed Noah’s ark, with a stove and a convenience [toilet], one at either end, a passage down the middle, and transverse benches upon either hand.” Union Pacific emigrant cars, however, were even more Spartan: “Those [cars] destined for emigrants on the Union Pacific are only remarkable for their extreme plainness, nothing but wood entering in any part into their constitution, and for the usual inefficacy of the lamps, which often went out and shed but a dying glimmer even while they burned.” The seats were, in effect, “benches [that] can be made to face each other in pairs, for the backs are reversible.” At night, boards could be “laid from bench to bench, making a couch wide enough for two, and long enough for a man of middle height”—provided that the car was not too crowded to permit that option. The cars were shabby enough, but became more intolerable with every mile westward. To make matters worse, the food at way stops was horrible, and Stevenson contracted food poisoning.

Upon changing trains at Ogden, things brightened considerably. Stevenson pointedly compared the cars of the Union Pacific with those of the Central Pacific, noting that the latter “were nearly twice as high, and so proportionately airier; they were freshly varnished, which gave us all a sense of cleanliness as though we had bathed; the seats drew out and joined in the center, so that there was no more need for bed boards; and there was an upper tier of berths which could be closed by day and opened at night.” Central Pacific’s Alban Towne would have
been proud to hear this praise, since he had designed a better car for emigrants than Union Pacific’s cars. Still, Stevenson found traveling on the Pacific Railroad emigrant-style wanting. Stevenson observed that the people traveling aboard the cars were a sorry lot, and Americans who boarded the cars were particularly mean to the emigrants. The occupants in the “Chinese car”—who “travel by steam conveyance, yet with such a baggage of old Asiatic thoughts and superstitions as might check the locomotive in its course”—were especially reviled. Why? Sharpening his pen into a stiletto, Stevenson thought it was “because their dexterity and frugality enable them to underbid the lazy, luxurious Caucasian.” Unfortunately, in contrast to most traveling writers, Stevenson was so concerned with social commentary that he paid no heed at all to the area around Promontory. As he put it, this “little corner of Utah is soon traversed, and leaves no particular impressions on the mind.”

From the very beginning, the problem with the line over Promontory was that it slowed down the traveler, who always craved faster ways to get places. Despite improvements in shipping people and express, some people envisioned methods of travel that would ultimately supersede the railroad itself. Shortly after the completion of the transcontinental railroad, in fact, an inventor in Sacramento demonstrated a contraption consisting of a machine to be suspended below a lighter-than-air balloon. It would, he predicted in 1871, “be able to carry passengers from one place to another at the rate of fifty miles per hour . . . ” in order to offer a “style of traveling” whose “greater safety, speed, avoidance of dust, healthiness of route, etc., will cause it to be a powerful opponent of railroads and steamboats.” That, of course, would be long into the future. In the meantime, with the completion of the railroad, goods previously shipped by sea now moved westward, and eastward, over Promontory Summit. Despite visionary glimpses at this time, most people realized the train was the fastest way to travel. The passenger trains they rode were likely to have on board at least one travel writer like Isabella Bird or Robert Louis Stevenson, who could help immortalize the railroad line and prepare future travelers for the sights that they would see, and trains they would ride, along the route over Promontory Summit. As opposed to the fictional Phileas Fogg, who traveled west to east, they usually related the experience much as the public envisioned railroad travel, that is, going from east to west. Most writers briefly described Ogden, but also commented on the meeting point between Central Pacific and Union Pacific west of that flourishing town. When Crofutt’s Trans-Continental Tourist described Union Junction in 1874, it noted that the place “is a station only in name, six miles west of Ogden” but suggested better things were scheduled for the future. That same writer
also noted, “the companies propose to jointly erect at this ‘junction’ ample permanent buildings to accommodate their own interests”—that is, railroad services—“as well as a magnificent building to be called the WASATCH HOTEL.” Continuing with a description of what would be a magnificent Victorian-style building, the guide described nearby HOT SPRINGS, which “in cold weather send up a dense cloud of vapor, which is visible for a long distance.” Given the sulphurous content, the guide politely warned travelers that “the odor arising from them is very strong, and by no means pleasant for some people to inhale.”

This junction, then, offered amenities, and the locale had various names, including Bonneville. In describing Bonneville, Nelson’s Pictorial Guide Book of The Central Pacific Railroad (1871) noted that “The chief feature of interest here is the Hot Springs, whose clouds of vapour rise far away at the foot of the mountains, reminding one of the ‘cloud’ which protected the Israelites by day on their march through the weary wilderness.”

If both railroads had had their way, Bonneville City might have blossomed into a spectacular tourist transportation hub, part spa and part bustling railroad terminal. Central Pacific’s Huntington certainly hoped so, until Stanford talked him into accepting Young’s recommendation that Ogden become the city where the railroads converged. Alas, Bonneville remained what Crofutt’s Trans-Continental Tourist called “unimportant,” adding that the train passes through “fine farming lands, which yield crops of wheat, barley, and corn” in this area of the Wasatch Front. Beyond Willard City and Brigham City, the train reached Corrine, a potentially-Edenic place surrounded by “thousands of acres of land, which require only irrigation to render them productive in the highest degree.”

After leaving Corinne, the train skirted the northeastern edge of the Great Salt Lake for about fifteen miles, then dug in to assault the steep grade up to Promontory Summit. Travel writers with vivid imaginations frequently commented on the form and color of the landscape near Promontory Summit. In reference to the dark color of the limestone outcroppings and strata on Promontory, The Pacific Tourist described the scene at Quarry as “a side track, with a huge, rocky, black castle on the right and back of it.” The use of the term castle is quite revealing as many observers of the time fancied seeing the shapes of ancient buildings in the rugged western landscape. The Pacific Tourist continued as the train passed beyond Quarry near Little Mountain: “As we pass beyond and look back, an oval-shaped dome rises from its northern end as the turret of a castle.” Victorian-era readers expected such imaginative prose, and the scenery along the transcontinental route over Promontory offered plenty of grist for the pulp-era descriptions.
In a handwritten manuscript at the Utah State Historical Society Archives, Thomas A. Davis described his life near Promontory Summit from 1869 to the 1880s. Davis, who had recently arrived there as a ranch hand just before the railroads met, “was denied the priviledge [sic] of witnessing that great event by being sent to Willard with some horses to prevent them [from] being stolen.” Davis describes his partnership with Mr. John L. Edwards in the cattle ranching business. Through his connection with Edwards, Davis soon “became located on the Promontory, taking up a place of my own, which I homesteaded when I became of age.” Marrying Margaret Davis of Willard in 1871, Thomas Davis and his new bride “soon made our home on the place I had located.” Here, “. . . on the Promontory in the Summer of 1871, I built a house of old Telegraph poles.” Although the poles “were rotted at the bottom,” they nevertheless made “a room of 16 by 14 feet,” where the Davis family lived until the spring of 1887. During the sixteen years that they lived in the house, Thomas “built a kitchen at the back made of square Rail Road ties.”

This was typical of the cobbled together materials many pioneers used in this part of the West, where timber was scarce. In one passage, Davis notes that “the building of a Ranch out at that remote place was quite expensive and laborious.” Although “[c]edar posts were fairly easy to get,” he added that “. . . all other fencing material was expensive and hard to get.” Given the shortage of materials, Davis first fenced his land near Promontory “with smooth [sic] wire, [as] this was before barb wire became in Vouge [sic].” As one might expect, this smooth wire was not up to the job. It “proved to be worthless, and rotten and brittle,” and “the cattle would break it to pieces.” To remedy this situation, Davis then used “lumber, and later barb wires,” after which the ranch family “got on fairly well.” To make ends meet, however, he also “did some teaming for the Rail Road Company, had some milk cows, and made a lot of butter to sell to rail road people.” In the summer of 1886, the land was surveyed into the U.S. public domain and “placed in the market.” Davis took a homestead of 160 acres in section 12—an even-numbered section. Of this 160 acres, “about half was bench land and above all water, and gravely and rocky.” By contrast, most of his “hay land became [was surveyed into] an odd-numbered section,” and “was called Rail Road land, and in time we would lose it.” In about 1886, Davis noted, “the Rail Road Company sold all its lands that were embraced within the land grant to a company consisting of George Crocker, Captain Buford, and one John W. Taylor of San Francisco.” About a year later, Thomas wrote that the “new company expressed a desire to purchase all the ranches . . . cattle and all” Because Davis believed that “so much
of our hay land was within an Odd section” the family deemed it “advisable to sell, which we did.” Still, after so much work, Davis and his family must have found this to be a difficult outcome. As he wrote, “I believe to this day that we made a mistake in disposing of that ranch, as It is in a good locality, and [experiences] short winters.” From here, the Davis family moved to Idaho.33

Because most of the land in this area sloped down toward the railroad, trains of the Central Pacific were visible for a considerable distance. The parade of trains was a study in evolving railroad technology. When trains began running over Promontory Summit, the typical Central Pacific boxcar was 25 feet long and 15 tons in capacity. The cars were slightly larger and could carry heavier loads than most American boxcars at the time, which had a capacity of 10 tons. Central Pacific boxcars of this type had an interior space of 197 square feet and 1,158 cubic feet. They were about 8½ feet wide and had an interior height of 10½ feet. In the early 1870s, Central Pacific began to use somewhat larger boxcars measuring 28 feet in length. A standard feature of all such cars was the staff-mounted brake wheel found at one end of the car, reached by climbing up the car ends using metal rungs. Once atop the car, a man knelt on the roof walk or rooftop at the car’s end, turning the brake handle clockwise or counter-clockwise to apply or release the car’s brakes. This was a dangerous activity, and especially so when ice and snow fell on Promontory (fig. 5–9).

Southern Pacific freight car authority Anthony Thompson notes that “[i]mmediately upon completion of the transcontinental railroad in May, 1869, shipments of fruit commenced.” Both Central Pacific and Union Pacific used special cars for this fruit traffic.34 The ventilated boxcar and its cousin, the fruit car, were especially common in service over Promontory. Ventilated boxcars featured numerous, slatted vents in the car sides. As railroad historian John White Jr. noted, “Central Pacific became something of a patron of ventilated cars because it had so many on-line shippers requiring equipment of this type.” Central Pacific soon built these cars in its Sacramento shops; the oldest of this type still in existence can be seen at the Nevada Railroad Museum in Carson City.35 These cars were especially versatile in that they could carry fruit, grain, or ordinary freight. A freight car ventilated for such traffic is termed fruit car, but passenger trains used some special fruit cars to guarantee the fastest shipping. These cars rode on passenger trucks and had end platforms (fig. 5–10).

Central Pacific used the term combination car for boxcars with side vents that could be closed on the inside, and two types of side doors, solid wood plank and ventilated with slats. Depending on the type of
service desired, the car could be either a regular closed boxcar or a ventilated boxcar (fig. 5–11). These combination cars were found wherever the railroads needed versatility in the car fleet. The typical combination car might carry regular freight as a closed car on other trips, in which case, the car would be sealed; horses on another trip; or fruit on yet another. The last two examples would involve opened vents and the ventilated doors positioned over the door openings to facilitate the flow of air. These combination cars should not be confused with combination passenger-baggage cars, which were of passenger car design but had one windowless section (or end) of the car dedicated to baggage storage.

Fig. 5–9
As seen in this generic illustration titled “Braking in Hard Weather,” operating a train’s brakes using a brake wheel, always a dangerous activity, became even more so when a train rattled around curving lines like that over Promontory—especially in ice and snow. From *The American Railway*, 1888 edition.
Most of these freight cars were of wooden construction, strengthened by metal corner angle braces and truss rods that hung below the floor, which explains the expression *riding the rods* for the hoboes’ risky method of free travel. Given the boxcar’s versatility, they became the most common cars on many railroads. Most boxcars hauled a wide range of cargoes from furniture and canned goods to sacked wheat and flour. In 1871, the Central Pacific developed “an improved plan” for their boxcars—or “box freight cars” as the press called them. This involved building the body two feet taller and casing the car “inside and outside” to make it stronger and more weather-tight. This, naturally, increased the car’s weight. At this time, the average weight of these new cars was about 20,000 pounds, or 10 tons. Like everything else on the railroad, however, boxcars became larger over time.

To avoid mishaps and catastrophes, air brakes were added to Central Pacific’s cars beginning in 1871. This was especially important for routes like the line over Promontory Summit, which had steep grades where it was easy for an engineer to lose control of his train descending into the lows on either side of Promontory Hill or Red Dome Pass. Designed and patented by the Westinghouse Air Brake Company in 1869, they were called “atmospheric brakes” and gave the engineer control of the train on such grades. These air brakes were relatively simple but ingenious. They required a compressor, a cylinder-shaped device, mounted on the locomotive. The compressor piped air to individual railroad cars in turn via hoses. Each car contained a hose connected to an air cylinder, which activated the handbrake chain when pressurized. When the brake lines were charged up, the brakes were applied. This was a real

Fig. 5-10

Central Pacific Railroad plan showing a fruit car used in “fast passenger trains” built in the Central Pacific’s Sacramento shops. Note the car’s end platforms and passenger-car type trucks. See also Anthony Thompson, *Southern Pacific Freight Cars, Vol. 4, Box Cars* (2006).
improvement over earlier direct (hand-powered) braking, but left much to be desired. Charging up the brake lines in a train required considerable time. Moreover, if the brake line separated anywhere in the train, there were no brakes. At such times, the crew did one of two things. They would likely scurry from car to car to apply firmly and quickly each car’s hand brakes, hopefully slowing the train enough to avoid disaster. However, they might simply “join the birds” (jump off) to avoid being crushed to death when the train crashed, as all too often happened. Despite these dire options, air brakes still represented some important gains in safety. Thus it was that at the very time the transcontinental railroad was completed, a series of developments took place that increased safety and simultaneously reduced labor costs and damage claims.

Long runs like the trip over Promontory Summit to and from California continued to stimulate improvements in passenger cars. Among these was the sleeping car, which provided passengers the opportunity to sleep in comfort and some privacy, as opposed to sleeping bolt upright in a coach. In June 1871, the Kimball Manufacturing Company of San Francisco unveiled a 67-foot-long passenger car with an interior “divided into four drawing-rooms and a rotunda at each end, with spacious halls passing around the rooms.” The car’s construction was unusual in that it featured long, unspliced timbers for support, and the wood of thirty-four different types of Pacific Coast trees, each highly polished, provided interior ornamentation. The car was mounted on two six-wheel trucks, each wheel being made of compressed rubber to
soften or smooth the ride. In June, this car crossed Promontory Summit on its way east to be “exhibited in all the leading cities.”39 During that same summer, the Central Pacific began operating its first mail cars. Especially designed for this service, the car contained separate sections or “divisions for way mail for all points between San Francisco and Ogden, a department for through mail, and another, in the center of the car, for the convenience of the route agents—the whole car being devoted to mail service—whereas heretofore one car served for both mail and express.” These new cars, the Sacramento \textit{Daily Union} noted, “fill exactly the requirements of the postal business”40

As things quieted down at Promontory after the big celebration, most of the commentary about the line related to rail passenger traffic. In June 1870, for example, several Central Pacific officials traveled over the line on a “trip to Salt Lake.”41 With increasing railroad traffic in Ogden, which was on the Pacific railroad as well as the Utah Central and the Utah Northern, the city needed a larger railroad station. On December 21, 1874, Loren Farr asked surveyor James H. Martineau “to assist in determining as to the arrangement of the grand depot at that place, of the Union Pacific, Utah Central and Utah Northern Railroads.” On December 22, 1874, Martineau reported that he “consulted with Br. Reeves, agent U.C.RR. and Mr. Pratt, Div. Supt. Of C.P. RR. About the grounds, and it was determined that I should go to S. L. City to copy the C.P. map of the Depot grounds, Br. Farr going also.” On December 23, Martineau “copied the map in Mr. Marshall’s office,” continuing on the project after Christmas. On December 28, Martineau diligently “worked on map of Ogden Depot.”42 Upon completion, the “grand depot,” as Martineau called it, was one of the Interior West’s most important \textit{Union Stations}—a term used for a large depot that could serve the needs of travelers using several railroads. This made travel on the Pacific railroad over Promontory easier, as it did for travelers from Salt Lake City and points in Idaho, who now “changed cars” in Ogden for San Francisco or Omaha.

Ogden figures in another aspect of the Promontory line. Not long after completion of the transcontinental railroad, two patterns in ridership became apparent. The first was \textit{through travel}—that is, people traversing the line over Promontory as part of a long journey. The second, however, was quite different, and related to the distribution of towns along the Wasatch Front for what might be called “local” service. This local travel could be on the Central Pacific or the newly completed Union Pacific line to points north. On Friday, July 4, 1873, Martineau described riding a portion of the line from Corinne to Ogden. As he wrote in his diary, “An excursion went to Corinne today, by invitation of the Corinne people to celebrate, and have a rail road ride.” Martineau
added that “[t]here was [sic] about 200 persons on the train, which was nicely fitted up with evergreens and flags.” Traveling with his wife, Susan J., Martineau added that “we had a pleasant ride over, and were met by the Corinne Brass Band.” Later that afternoon after the community-railroad festivities, Martineau and Susan J. boarded the train, but “as we were about to start home at 4 pm while sitting in the car, Susan was suddenly seized with a very severe fainting spell, which continued more or less all the way home.” By the next day, she had recovered but remained weak. On numerous occasions, Martineau rode the Utah Northern from Cache County “to Corinne, thence by C. P. R. R. to Ogden” as on October 6, when Susan again experienced distress. As Martineau put it, “When near Ogden, she was again taken suddenly” and “very badly, but arrived safely at Ogden.” The couple went to a hotel where, just after dinner, “she had a miscarriage of a little boy.”

The social and economic impact of the railroad on Utah was profound and can best be understood by observing how it encouraged the growth of the Mormon economy and non-Mormon enterprises. In 1864, five years before the completion of the transcontinental railroad, Henry Kendall, general secretary of the New School Presbyterian Church Board of Domestic Missions, visited Utah for a week. Kendall was investigating the feasibility of establishing a Protestant school in the middle of Mormon Country that would also attract Mormon students (that school ultimately became Westminster College of Salt Lake City). Bluntly put, Kendall hoped to encourage Protestant education to counter the dominance of Mormonism. During his visit, Kendall met with LDS Church President Brigham Young. To Kendall’s surprise, Young informed him that he welcomed non-Mormon missionaries and invited Kendall to speak in the Mormon Tabernacle on Sunday! Tellingly, during this interview, “Young extolled the resources and prospects of Utah, particularly the anticipated completion of a transcontinental railroad that would link the territory with the two coasts.”

Five years later, with the opening of that railroad in 1869, Presbyterian minister/educator Sheldon Jackson arrived in Utah. Jackson summoned three ministers to towns on the Union Pacific. One of the towns, Corinne, was a booming community with a decidedly non-Mormon character and no religious institutions. Moreover, religion of any kind or denomination was simply not welcome here. In fact, when Melancthon Hughes attempted to establish a church in Corinne, he met strong opposition from “local rowdies who disrupted services and ridiculed the need for religion in a wide open town like Corinne.” Hughes left Corinne in less than two months and was replaced by Edward E. Bayliss, who reconstituted the church there after his arrival in April of 1870. If anything,
Bayliss was even more enthusiastic than his predecessor: he hoped to form the Rocky Mountain Female Academy in Corinne. Predictably, however, Bayliss never received the necessary support. Even the Presbyterian Church in Corinne faltered, eventually closing its doors.

Corinne was what historian Page Smith calls a “cumulative” community—that is, one founded solely on commerce and trade. Smith contrasts such cumulative towns with “covenanted” communities, like Salt Lake City and other Mormon towns, built on a covenant with God, and not on commerce. Like most cumulative towns, Corinne thrived when commerce poured through its gates. However, the town’s situation changed as soon as the transportation pattern in the vicinity developed. With the opening of the Utah Northern Railroad in the 1870s, Corinne’s fortunes declined as the new Mormon-sponsored, narrow gauge line siphoned off Montana trade. Corinne’s site—one strategically located north of Salt Lake at a point that could tap the northern trade—now became its curse. Although it was on the transcontinental line over Promontory Summit, Corinne began to change character as the railroads regularized operations. It did, however, ultimately become an important, and largely Mormon, farming town.

A beautiful bird’s-eye view map of Corinne in 1875 (fig. 5–12) reveals that community’s strategic, and changing, position as gateway to the north. Looking northward, the view shows a steamboat on the Bear River, which meanders through the scene from the mountains in the right distance. Steamboats once ran on the Great Salt Lake, connecting Corinne with points south, including Salt Lake City, in the days before the railroad. As seen in this map, the Central Pacific bisects and dominates the town of Corinne, which is platted in a checkerboard pattern. Corinne’s main business streets—North Front, South Front, and Montana Street—parallel the railroad. Clustering in the area marked “depot” are a railroad station and other railroad-related buildings, including a freight station. Boxcars are lined up to be loaded or unloaded, and no fewer than five trains—three passenger trains, one freight, and one mixed train—are either arriving or departing. This likely was a result of artistic license rather than actual scheduling—a familiar technique of enthusiastic mapmakers of the time. Nevertheless, Corinne was now a rather bustling place—the location where a spur from the Utah Northern narrow gauge line joins the Central Pacific mainline. In the far left distance, Blue Creek is shown, behind which the “Promontory Range, 25 miles distant,” looms. That Central Pacific freight train leaving Corinne will likely pick up a helper locomotive at Blue Creek to ascend the Promontory grade.

To travelers, Corinne’s location seemed both interesting and ominous. It marked, as Leslie’s Illustrated put it in 1877—‘the beginning of
the Great American Desert.” A panoramic lithograph (fig. 5–13) from the period reveals the impact of the Great Basin on the popular psyche. The train, telegraph poles, and distant town are the only marks of civilization, though the marsh land close to the lake is fairly luxuriant. Aside from this hundred-foot-wide strip, the rest of the scene is one of increasing desolation with each mile traveled westward—fascinating, of course, but frightening. Soon, for miles in all directions, the sagebrush-covered landscape will seem ready to devour the meager workings of humankind. This, as the accompanying magazine article warned, is “the Great Desert, that dreary waste so lately a *terra incognita* to tourists—the ‘unexplored lands’ of school atlases.” To reach Corinne, travelers had to cross what one writer described as “. . . miles upon miles of alkaline tracts, looking like a badly frosted cake” Another writer observed that one had to traverse “the dreary level of wet marsh, white with alkali, from whose shallow pools the yellow sunset strikes fire.” Glancing westward, travelers could see “a distant glimmer of the Great Salt Lake and the ghostly Promontory Mountains beyond.”
After leaving Corinne, travelers came to “Promontory, famous in the history of the West as the meeting point of the two railroads—the spot where the last ties and the last rails were laid by Chinese workmen, the last spike driven, and the marriage of the Union Pacific with the Central Pacific declared in the presence of a thousand witnesses.” Other than this destination, Leslie’s Illustrated recognized Promontory as “[a]n insignificant little dot of a place,” but nevertheless, one we must “take off our hats to . . . as we pass, and the long train roars its faint echo of the cheers that went up here nine years ago.”50 At not quite ten years of age, Promontory already seemed easy to overlook, except, of course, for the pivotal event that had occurred here in 1869. That is unfortunate, for during Promontory’s long life, it had a number of other identities that had little to do with the joining of the rails ceremony, and much more to do with its position in the changing panorama of western railroading from the 1870s to around 1900.