late in the spring of 1912 a natural disaster conceived a superlative Alaskan parkland. A geologic event on the Alaska Peninsula between Kodiak Island and Bristol Bay claimed a place among the greatest volcanic eruptions ever recorded. In doing so it triggered a series of events that produced one of the nation’s largest national parks and finest examples of ecosystem preservation.

American Pete, the Aleut chief of Savonoski and among the few recorded eyewitnesses of the event, recalled, “The Katmai Mountain blew up with lots of fire, and fire come down trail from Katmai with lots of smoke. We go fast Savonoski. Everybody get in bidarka. Helluva job. We come Naknek one day, dark, no can see. Hot ash fall.”¹ The town of Savonoski had been evacuated because of volcanic rumblings, but American Pete and his companions had returned to a camp on the Katmai trail 18 miles from the explosion to retrieve hunting equipment. They barely escaped by a 75-mile paddle to Naknek on Bristol Bay.²

Three days after the explosion a Russian at Kaflia Bay on Shelikof Strait, 30 miles east of and downwind from the eruption site, wrote a letter to his wife, Tania:
A mountain has burst near here, so that we are covered with ashes, in some
places 10 feet and 6 feet deep. All this began on the 6th of June. Night and
day we light lamps. We cannot see the daylight. In a word, it is terrible, and
we are expecting death at any moment, and we have no water. All the rivers
are covered with ashes. Just ashes mixed with water. Here are darkness and
hell, thunder and noise. I do not know whether it is day or night. . . . Perhaps
we shall see each other again. . . . Pray for us. Your husband, Ivan Orloff.3

At the time of the eruption most of the people along Shelikof Strait in
the Gulf of Alaska either worked at canneries on Kodiak Island or fled south-
westward from their villages to Puale Bay or eastward to Afognak. Some from
the villages of Katmai and Kaguyak (Douglas) remained at Kaffia Bay where a
salmon saltery operated. Six days after the eruption the Revenue Marine Service
evacuated the people at Kaffia Bay to Afognak. Later in the summer the service
resettled most of them, 78 in all, at Perryville 200 miles southwest of Katmai
village. Katmai, Kaffia Bay, and Kaguyak on the Gulf side and Savonoski and
two other small settlements on the Bristol Bay side were never reestablished. By
the time the sites became habitable by humans, perhaps ten to twenty years af-
ter the eruption, the sites had been incorporated into a national monument.4

The Katmai eruption threw up more than 6 cubic miles—29 billion tons—
of material. At Seward, 250 miles away, sulfuric acid killed vegetation. A ship’s
bell at Cape Spencer, 750 miles away, tarnished twenty minutes after being
polished. Dust could be seen and booms heard 750 miles away at Juneau, and
fumes were detected in British Columbia and Washington State. Ash covered
950 square miles 3 feet deep and 30,000 square miles an inch deep. Europeans
noticed a haze, and the Northern Hemisphere experienced an unusually cool
summer, averaging 1.6 degrees Fahrenheit below normal.5

A colorful legacy preceded the 1912 eruption at Katmai. In 1789 the Rus-
sians set up a trading post at the Koniag Alutiiq village of Katmai; Aleuts wiped
it out. Alexander Baranov, manager of the Shelikov-Golikov Company, reestab-
lished it in the early 1790s. When the United States purchased Alaska, a series
of geographical expeditions immediately set forth to inventory the territory’s
resources. Several visits to the Katmai coast beginning in 1867 turned up no
evidence of important mineral resources in the region.6 In 1868, Hutchinson,
Kohl & Company assumed control of the trading post at Katmai, and its suc-
cessor Alaska Commercial Company opened a post at nearby Douglas in 1878.
Earning substantial amounts of money from sea otter pelts in the 1870s and
1880s, the Aleuts converted to a cash economy. When the otters disappeared
by about 1886, the Aleuts lapsed into poverty, relieved in part by employment
in salmon canneries.

Katmai Pass, the high point of a trail across the Alaska Peninsula to Bristol
Bay, served Alaska Natives for centuries and Russians for decades. Ivan Petroff
passed through the divide while conducting the 1880 census and felt “com-
passed on every hand by the grandest visions of Alpine scenery, snows and
glaciers.” Crossing from Savonoski in the north to Katmai on the south side,
Petroff’s group hoped to find a ship to take them to Kodiak. Finding none,
they paddled in baidarkas. A local weather forecaster’s judgment turned out to
be wrong, and they underwent a hazardous thirteen-hour voyage in rough seas,
partly at night.

Briefly, the U.S. Postal Service carried over the pass. Beginning in 1899
hundreds of prospectors followed the route as a shortcut to the goldfields of
Nome, avoiding the hazards of ocean travel through the Aleutian passes. In
the howling winds and sudden storms of winter, Katmai Pass could be a death
trap. Its fame spread after an 1889 visit by Hugh Cecil Lowther, the Fifth Earl
of Lonsdale. Leaving England to escape publicity of his affair with an actress,
the earl sought adventure in the American North. He traveled up the Macken-
zie River Valley, along the coast of the Arctic Ocean, across the Brooks Range
to the Porcupine River, and by dog team down the Yukon and south along the
Bering Sea coast. Expected to negotiate the pass in mid-February and thinking
the weather prohibitive, his Native companions balked. Lowther, impatient to
get home, threatened to shoot anyone who resisted. This persuaded the Natives, who had just seen Lowther repay a dog that had bitten him by shooting it in the head at a distance of 150 yards. After crossing the divide, Lowther wrote, “We began to descend but the storm was terrible, gale very strong we could hardly stand, snowing, drifting & freezing hard. I could not see the man in front of me at all times & he was only 4 or 5 paces ahead.” A momentary lift in the weather revealed three large glacial crevasses nearby. Separated from the main party on the way down the south slope, Lowther had to camp in another storm. The starving dogs ate the rawhide from the sleds and snowshoes, and two dogs died before the party made it to Katmai.9 Before long such adventures as Lowther’s would be replaced by scientific expeditions.

VOLCANIC STUDIES

U.S. Geological Survey geologist Josiah Edward Spurr examined the Katmai region in 1898. Like Petroff he traveled from Naknek to Katmai, but he made the trip in mid-October. He described the snow-covered Katmai Pass as extremely wild and rugged. . . . For several miles on both sides of the summit there is no trace of vegetation. . . . Many Natives have perished here by being caught in gales, for during storms, even in summer, the wind blows with piercing intensity and coldness. At such times stones of considerable size are picked up by the wind and carried through the narrow defiles where the traveler must walk, and we found many of these stones lying on the snow. Owing to this danger the Natives can not be induced to cross except in perfectly calm and clear weather.

Spurr noted a small earthquake, hot springs, and other evidence of volcanic activity on the south side of the pass.10 Native lore made no mention of eruptions; the 1912 event surprised everyone and stimulated great curiosity. Canadian explorer Jack Lee, first to visit the scene, arrived a week after the explosion.11 Mt. Katmai had lost 800 feet of its 7,500-foot elevation and displayed a new crater lake 3 miles across and 3,500 feet deep that observers assumed to be the locus of the explosion. Actually, Novarupta, 5 miles distant, had erupted, and the loss of material beneath the surface had caused the top of Mt. Katmai to collapse. Semimolten sand then flowed into the valley west of Katmai Pass, burying it an average of 100 feet deep and causing fumaroles of gas and steam to shoot upward.12 Lee reported that Katmai had not been the source of the explosion, a thesis finally proven correct in the 1950s. A few days after Lee’s visit geologist George C. Martin arrived representing the National Geographic Society. A year later curiosity seekers William A. Hesse of Cordova and Mel A. Horner of Seward arrived, climbed into the mountains, and became the first to view the agglomeration
of fumaroles in the sand-covered valley soon to be famous as the Valley of Ten Thousand Smokes.13

One organization showed strong interest in Katmai: the National Geographic Society, sponsor of seven expeditions beginning in 1912 to study botany and vulcanology at Katmai. Articles in National Geographic followed most of the expeditions. Immediately upon hearing of the eruption the society dispatched Martin, who had surveyed the Katmai coast as a member of a U.S. Geological Survey team in 1904. He arrived in the town of Kodiak on Kodiak Island four weeks after the event, having interviewed witnesses in several places along the way. The town had been plunged into darkness for nearly 60 hours and had lost radio transmission capability. The steamer Dora, headed for Kodiak, instead had to run out to sea in midday darkness so deep the crew could not see the ocean surface. Captain C.B. McMullen reported that “heavy thunder and lightning commenced early in the afternoon and continued through the night. Birds of all species kept falling on the deck in a helpless condition. The temperature rose owing to the heat of the volcanic ash, the latter permeating into all parts of the ship.” The Dora proceeded to the Kenai Peninsula and again ran into darkness created by ashfall.14

A series of heavy explosions and earthquakes, followed by gigantic clouds of ash, had occurred for the first three days after the eruption, and lesser activity persisted throughout the summer. Martin found ash layers 3.5 inches deep on parts of Afognak Island 113 miles downwind from the presumed volcano, about 12 inches deep at Kodiak 100 miles east and directly downwind of the source, and 55 inches deep at Amalik Bay on the Katmai coast 15.5 miles southeast of the source. Rafts of pumice a foot thick floated in the bay. Nearly all vegetation at the bay had been buried or killed, and only fox tracks testified to the presence of mammals. Three dogs survived at the nearby village of Katmai, whose few residents had left just before the eruption. On Kodiak and Afognak islands, hungry and partially blind brown bears reportedly attacked cattle. As far away as Iliamna Lake the ash blinded rabbits and killed a wide variety of small birds and mammals. Fewer salmon could be found in the streams, and barnacles and mussels died. Two or three people at Kodiak died after breathing the volcanic dust. Martin regarded the inconveniences to humans as temporary and judged that “the soil will probably be improved.”15

On southern Afognak Island the ash lay 10 inches deep and covered 70 percent of the vegetation. But when the surface dried and cracked after rains, the taller and stronger plants emerged through the cracks. Foxes virtually disappeared from the island, and the following winter trappers complained that the abrasive ash had ruined furbearer pelts by wearing them down and matting them. Spawning salmon and steelheads choked on sediment in the streams, and relatively few sockeye fingerlings returned to the sea the following year. Ash also
The Katmai eruption drew scientific and public interest, ultimately producing a national park.
killed worms and insects needed by fish. In the salt water, sea urchins, clams, and cockles died and the growth of kelp appeared to be retarded. The near-complete destruction of mosses caused postponement of a plan to introduce reindeer for sustenance of the Natives.

Botany professor Robert Fiske Griggs (1881–1962) of Ohio State University first visited the Katmai area in 1913; and in 1915, 1916, 1917, 1919, and 1930 he headed expeditions. A native of Columbus and 1903 graduate of Ohio State, Griggs earned a master’s degree at the University of Minnesota and a doctorate at Harvard. His kelp study on the Alaskan coast caught the attention of National Geographic Society officers, who chose him to lead most of the organization’s safaris to Katmai.

Volcanic debris rendered the Katmai region difficult to negotiate and potentially dangerous to visitors. A landslide had dammed up Katmai River, forming a large lake in the valley. In early 1915 the dam burst, sending a wall of water down the valley at 70 miles per hour, moving boulders the size of houses. In places the water washed away ash and revived buried vegetation. When Griggs and his partner Lucius G. Folsom arrived that year, they found most trees dead but some regenerating. On the beaches around Katmai Bay they saw tracks of fox and brown bear. Salmon ascended the streams to spawn. A year later they encountered numerous signs of additional predators—wolves and wolverines—and by 1919 abundant evidence of moose and caribou.
Griggs and his colleagues paid the most attention to vegetative recovery, the key to rejuvenation of Katmai’s ecosystem. Several elements inhibited regrowth: ashfall, ranging up to 40 feet deep, buried many plants. Some trees, notably willows, survived by protruding above ground level. Horsetail, one of the oldest plants on earth, could push up through three feet of ash. Grasses and other plants could penetrate thinner layers. Streams might rescue plants by exposing roots, but they often changed course in the unstable volcanic material. Katmai’s frequent high winds lowered ash levels in many locales but also contributed to surface instability by constantly moving material, and flying particles damaged vegetation. Seeds could germinate in the ash if given water and protection from wind. Yet lack of nitrogen and humus retarded soil stability and plant growth. Brown bears contributed to recovery by leaving deep footprints in which seeds could find increased moisture and protection from the wind.

The 1915 research team set up vegetation observation stations on the Katmai coast and near the village of Kodiak. When he arrived in June, Griggs marveled at the rapidity of change:

It was not the same Kodiak that I had left two years before. The mountains were everywhere green. . . . Where before had been barren ash was now rich grass as high as one’s head. Everyone agrees that the eruption was “the best thing that ever happened to Kodiak.” In the words of our hotel keeper, “Never was any such grass before, so high or so early. No one ever believed that the country could grow so many berries, nor so large.”

At Kodiak, particles lay in three sizes: a light gray dust on top, medium-sized grains, and angular grains the size of fine sand on the bottom. Wind blew away most of the gray dust and some of the medium-sized material. Wind and water exposed hilly areas, facilitating vegetative growth. Trees still carried coats similar to snowfall, but most survived. Numerous plants arose from roots buried as long as three years. Seedlings could be seen in 1916, and earthworms had begun to mix the soil and create humus. But sphagnum bogs did not recover, and in some spots the ash formed a hard layer that acted like quicksand when water-saturated. Whatever the effect on animals, the eruption disturbed most vegetation only temporarily.

Griggs returned in 1930 to observe the change in vegetation since 1919. He found widespread growth of small plants and willows, largely from roots not killed by volcanic ash. Others such as grasses had taken root from the surface where seeds, plants, and small amounts of organic material had been blown in by the wind. In the Valley of Ten Thousand Smokes, covered by ash essentially devoid of nitrogen, he found extensive and luxurious growth of two species of liverwort. He theorized that the plants had somehow managed to fix nitrogen in a sterile environment and would provide organic material for succeeding
Robert F. Griggs and Katmai National Monument

Valley of Ten Thousand Smokes; Mt. Mageik (left) and Mt. Katmai in background. Jasper Sayre coll. KATM 7696, Lake Clark Katmai Studies Center 7696. The fumaroles, a determining factor in Katmai’s park designation, proved short-lived.

plant life. The uncontaminated ash bed at Katmai offered a rare opportunity to examine plant colonization and succession.23

Griggs and Folsom first sighted the Valley of Ten Thousand Smokes, so named by Griggs, on their 1916 expedition. The once-green valley below Mt. Katmai, about seven miles wide by fifteen miles long, now appeared as a barren plain punctuated by highly active steam vents. For years it represented the most dramatic expression of volcanic activity in North America, attracting the notice of writers and visitors. Even though he knew of Hesse and Horner’s 1913 sighting of the valley, Griggs for some time regarded himself as its discoverer and generally received credit for it. Similarly, he erroneously believed his party had been the first to view the crater of Mt. Katmai.24

Donovan B. Church, Griggs’s photographer on the 1917 expedition, recounted his impressions of the valley:

It seemed to me, as we stood on the edge of Novarupta, that this was the Devil’s own private corner in hell itself. It seemed, as I gazed at the seething steam clouds that rushed from the cooling lava plug, and at the shattered, steam-smothered furnace that filled the vale beyond, that there was some vague, fantastic form, a horrid dream, a hideous, potent “thing” which was
not for human eyes to see nor human ears to hear. . . . As, homeward bound, we skirted Cerberus, the steamers turned in the dying sunlight to shimmering gold and the snowy crests of distant mountains glinted yellow. I forgot the heavy pack which bowed my shoulders as I glanced backward at the growing beauty which filled the valley. Through its giant gateway the “Valley of the Ten Thousand Smokes” sank from sight as we dropped over the pass, and the sky above reddened to a crimson halo in the fading rays of the sinking sun.25

Such descriptions, supplemented by photographs in \textit{National Geographic} and by scientific articles, shifted public attention away from botanical studies and identified the Katmai region as primarily a volcanic phenomenon.

\textbf{KATMAI BECOMES A PARK}

Katmai so impressed Griggs that while in camp during the 1916 expedition he resolved to work for its status as a national park. National Geographic Society president Gilbert Grosvenor liked the idea and arranged expeditions for 1917 and 1918, in part to support the park status effort. Most of the politics took place behind the scenes. Grosvenor contacted society board member Franklin K. Lane, who happened to be secretary of the interior. Lane referred him to acting National Park Service director Horace M. Albright, who approved of the project. Albright advised that the 1917 designation of Mt. McKinley National Park made it unwise to ask Congress for another park so soon, that Katmai should be designated a national monument by presidential proclamation.26

National Geographic expeditions and articles generated a favorable public attitude toward Katmai, as did a few other magazine articles. Griggs pulled out the stops in an August 1918 issue of \textit{Nature}: “The Valley of Ten Thousand Smokes . . . is traversed by hundreds of fissures extending along its margin or criss-crossing its floor. These fissures are the seat of several millions of volcanic vents of all sizes, from great volcanoes pouring forth columns of vapor more than a mile high, down to minute jets of gas.” For readers more difficult to sway he declared, “As a spectacle of the grandest of all the forces of Nature, the Valley of Ten Thousand Smokes is so far beyond anything else known to us on the globe as to make it quite certain that it will rank as the first wonder of the world.” Moreover, the reader might share directly in the glory: “Were the means of transportation provided, it would be quite possible to land from an ocean liner in the morning and cover the whole of the district in a single day by automobile.”27 Having read Griggs’s articles, Alaska congressional delegate Charles Sulzer offered to introduce a park bill if needed, adding that “we have the highest mountain in the continent enclosed in a national park in Alaska; why shouldn’t we have the biggest volcanic crater in the world similarly enclosed?”28
Laura Griggs and husband, Robert, at Baked Mountain, Katmai National Monument, 1919. National Geographic Society Katmai Expedition No. 6491, University of Alaska Anchorage Archives. Griggs led five NGS expeditions to the Katmai region and succeeded in gaining monument status for it.
Robert F. Griggs and Katmai National Monument

One question had an important bearing on Katmai’s status: whether the 10,000 smokes, a potential tourist attraction, constituted a permanent phenomenon or just temporary releases of trapped water. In 1918 the National Geographic Society declared the phenomenon permanent. This assessment may have made the difference in Lane’s favorable recommendation to President Wilson. No organized opposition surfaced, and no public debates or hearings had been conducted. National Geographic articles had left an impression of the region as essentially a scientific curiosity of no economic value except for tourism. Preoccupied by the war and sensing no controversy, Wilson signed the order for the 1,700-square-mile monument on September 24, 1918.29 The proclamation cited the work of the National Geographic Society as the determining element in the monument’s creation.30

Several groups of sightseers and filmmakers visited the monument in the 1920s and 1930s. But the distance from population centers and travel routes restricted access to a relatively wealthy and adventurous few. No one could afford to invest in comfortable facilities at or near the monument, and this lack of accommodations in turn retarded the flow of tourists.31

Father Bernard Hubbard, the adventurous “glacier priest” and geologist who had climbed extensively in the Alps and elsewhere, enhanced Katmai’s magic appeal by making seven visits between 1927 and 1934. Accompanied by his friend Red Chisholm and two graduate students in 1929, he climbed Mt. Katmai and traversed the Valley of Ten Thousand Smokes. Atop Katmai, Hubbard peered into the gigantic caldera, three miles across and a half-mile deep: “a vivid mosaic in yellow, violet, orange, green and vermilion, emphasized by bold lines of black and studded with glaciers glinting like jewels in the sun.” He descended to the blue lake at the bottom. On the way to the fabled valley the party cowered in their tents, pelted by pumice stones driven by a 36-hour blizzard. Hubbard described the valley as they viewed it on a clear morning: “On either side rose a line of lofty, smoking mountains, ash-yellow slopes hung with snow fields and sparkling blue glaciers. The feet of those volcanoes were gashed with fissures red as blood. The smooth valley floor was yellow, but punctuated by fumaroles ringed with brilliant red, blue, violet and orange.” He noticed, however, that the valley “is growing cold. . . . Instead of thousands of smokes, there are now only hundreds.” Hubbard also took note of one of the sources of post-eruption recovery. During blizzards the men watched numerous small trees and bunches of grass fly past, uprooted from elevations far below.32

Hubbard’s crews compiled the most complete motion picture record of the Katmai region available in the 1930s. In 1934 they found access to the interior still difficult. Men and pack dogs sank up to their waists and bellies in the soft sand. They walked through a dead forest left by the explosion:
Stark, gaunt trunks of fallen giants sprawled about the ground, their limbs flung out in reckless abandon as though they had grasped for life as life was departing. Dead trees stood upright, without leaf of foliage, without color save the ghastly color of death. . . . This phantom forest stretched for miles, and in all that expanse we and our dogs were the only living things. Curiosity led us to strike some of the dead branches—they snapped like pistol shots; and when we examined them they showed no sign of decay. There was no appreciable weight to the wood, either, and logs of impressive size could be heaved about as though we were giants of prodigious strength playing with twigs.33

In the valley Hubbard found “tough grasses a foot or more in height, and large patches of flowering Alaska cotton.” As for the smokes, Hubbard judged them “a great disappointment. [The valley] is so inaccessible, so totally different from the enthusiastic descriptions of its first explorers, and finally, so belies the predictions of what might be expected of it, that it should be discontinued as a National Monument, and the trappers who made an honest living in the Valley should be allowed to return there.”34 Hubbard therein touched on a weak point in Katmai’s standing; namely, whether restrictive monument status represented a higher use of the land. Other critics had challenged the designation, and more would do so in the coming decades.
Father Bernard Hubbard and dog at Katmai Crater, 1929. Hubbard coll. VTS 29-03, Santa Clara University Archives. Hubbard, the “glacier priest,” compiled the first moving picture record of Katmai National Monument.
CHALLENGES TO THE PARK

Like other federal attempts to protect land in Alaska, Katmai met opposition from settlers and politicians. The monument designation happened not long after the closure of coalfields in 1906 and oil lands in 1910. Alaska’s governor Thomas Riggs remarked pointedly in his 1918 annual report that “practically all of the reservations should be eliminated.” In 1920 he declared that Katmai Monument “serves no purpose and should be abolished.” But the writings of Griggs and others, promising tourism dollars, helped dampen criticism. In 1923 the U.S. Geological Survey sent two teams into the monument to assess mineral potential. They reported a low likelihood of finding significant mineral deposits. Thereafter, governors’ reports focused on tourism potential rather than mining.35

Prospects for immediate tourism expansion faded in the 1920s. But another Park Service goal, preservation of wilderness and wildlife, emerged. Charles Sheldon, expressing the interest of the Boone and Crockett Club, had recognized the potential for a brown bear sanctuary and drafted revised monument
boundaries for that purpose. As the brown bear controversy (Chapter 12) heated in the late 1920s and the 1930s, Griggs, Stewart Edward White, and others rose to the bears’ defense. After Griggs visited Katmai in 1930 he pointed out in a report to the Interior Department that only in the monument did brown bears live unmolested. Boundaries needed to be extended north and west, he contended, to sustain the bears on a long-term basis. Writings in defense of the bears helped prompt President Herbert Hoover’s signing of a 1931 order enlarging Katmai National Monument to 4,214 square miles, for “features of historical and scientific interest and protection of the brown bear, moose and other wild animals.”36 Thus the rationale for the park broadened to encompass status as a wildlife sanctuary. This change would prove vital in National Park Service efforts to prevent decommissioning of the monument, by now the largest in the national park system.

In spite of its size, Katmai maintained a tenuous hold on monument status. Remoteness and lack of facilities deterred tourism, and the scarcity of tourists in turn inhibited budget appropriations for facilities. Katmai received virtually no money during its first three decades. Its headquarters were in Mt. McKinley National Park 400 miles away, itself underfunded. Neglect of Katmai encouraged poaching of wildlife and other intrusions and a revival of demands for abolition of the monument.37

Alaska Game Commission wardens reported frequent illegal trapping in Katmai in the mid-1930s. Unable to field a ranger, the Park Service relied on the wardens, who had enormous territories to cover. Trapping resumed whenever surveillance slackened. Some violators operated from islands along Shelikof Strait. To prevent such encroachments a 1942 presidential order altered the monument boundary to include all islands within five miles of the shore. The service finally brought trapping under control by deputizing warden Carlos Carlson in 1949. A year later it initiated summer ranger patrols.38

During World War II the army built an air base and two recreation camps near Naknek. Soldiers engaged in illegal hunting and fishing in the monument. Private air carriers, having flown in small numbers of visitors since 1929, now brought numerous cannery workers to fish the lakes and streams. These activities put pressure on wildlife, but the Park Service tolerated them—in part for lack of enforcement capacity and in part because it wanted to encourage tourism.39 Sport fishing held potential to open Katmai to development minimally damaging to wilderness values.

Other interests sought economic exploitation or discontinuance of Katmai. In 1941 Alaska’s Territorial Department of Mines pushed for termination of the monument, claiming mineral potential. The Park Service managed to forestall the effort. In 1945–1946 commercial clammers and fishers launched another attempt at abolition, backed by a territorial legislative resolution. The
petitioners received permission from the Park Service to clam below high tide and fish offshore. In 1947 an Anchorage entrepreneur investigated use of the Katmai pumice deposits to manufacture building blocks for construction. He pressed for a law opening the monument to mining. Meanwhile, he illegally entered the monument and set up a pumice extraction operation at Geographic Harbor. When tested the material proved inadequate, and the operation ceased. Yet long afterward the law passed, opening Katmai to pumice mining by permission of the secretary of the interior.

Trappers and commercial salmon fishers tried unsuccessfully to reduce the size of the monument or to gain entry. The Naknek Civic Club, assisted by Alaska congressional delegate E.L. “Bob” Bartlett, made concerted bids in 1950 and 1953 for trapping access. Trappers argued that beaver dams impeded salmon migration upstream, a claim not supported by experience. Fishers accused brown bears of damaging the salmon runs by catching large numbers of fish on their way to spawn. Again the Park Service, aided by the National Parks and Recreation Association, staved off the assaults.

Park Service biologist Lowell Sumner, carrying out a boundary survey in response to calls for reduction of the monument, recommended an overall increase
in size. He noted that of all the national park units, “only Katmai appears to contain all its native species in approximately their original numbers.”\(^{43}\) Higher-level officials defended the proposed expansion, reinforcing the National Park Service commitment to wildlife preservation values as articulated in its original mandate and in the 1931 Katmai proclamation.

Park status moderately affected area Natives. Once a locus of villages living on seafood, salmon, and land resources, the Katmai coast lost most of its population to disease during the Russian era. Survivors permanently abandoned the nearby small villages when the volcano erupted in 1912. Some Natives made subsistence use of Brooks River salmon until the 1950s when Park Service priorities and sport fishing discouraged their activity. Absence of Natives along the river, a mile-long stream between Brooks and Naknek lakes, changed the ecology of the area. Humans had lived there for about 4,000 years, most of the river’s geological time span. After they left, the brown bear presence gradually expanded. Rarely seen on the river in the 1930s and 1940s, bears proliferated in the late 20th Century to a park total of 1,500 to 2,000, and as many as 40 at a time visited the river. The large gathering of bears so appreciated by tourists and regarded as a primeval scene may never before have existed at Brooks River.\(^{44}\)

The many actual or potential intrusions on the natural integrity of the park included a fishway at Brooks Falls. Fisheries agents had noticed that sockeye salmon had difficulty jumping the 5- to 8-foot waterfall, especially in times of low water. In 1920–1921 they cut a channel through the falls at one end. To complete the project, in 1949–1950 the Fish and Wildlife Service, assuming it had permission from the Park Service, built a concrete fishway in the channel. Park Service officials insisted no such permission had been granted and objected to the visibly intrusive structure that altered migration patterns and ended the spectacle of salmon jumping the falls. Park Service research in 1984–1985 indicated that the fishway did not significantly enhance fish migration and might harm genetically distinct populations of sockeye salmon spawning below and above the falls. Accordingly, the service proposed to the Alaska Department of Fish and Game (ADF&G), the agency holding jurisdiction since statehood, that the fishway be removed. ADF&G denied approval, arguing that the fishway did allow more fish upstream and that removal of the structure would violate state and borough coastal management programs, which emphasized fish production.\(^{45}\) The issue remained in contention.

To combat critics of the monument and claims on its resources, the Park Service carried out a research program in 1953–1954. Called the Katmai Project, it combined the efforts of federal agencies and university scientists to study Katmai’s geology, biology, and archaeology. In February 1953, a few months before researchers arrived, Mt. Trident erupted. It spewed out lava and ash sporadically for two years and offered an unexpected opportunity to observe a
volcano in action. Of the fifteen recently active volcanoes in the monument, about half steamed in 1953–1954. Vulcanologists also observed two rare phenomena: five glaciers buried by the 1912 explosion and the glacier formed inside Mt. Katmai’s crater, the only known glacier whose date of origin could be determined.46

A study by University of California–Berkeley geologist Garniss H. Curtis and his graduate student Jack Sheehan revised the theory of how the 1912 explosion occurred. They measured the depth of fallen ash at selected sites and found that concentric circles of similar depth surrounded Novarupta, not Mt. Katmai. They found no large stones around Katmai as would be expected from a source. They speculated that an underground connection caused Mt. Katmai to cave in when Novarupta expelled the material.47 Their interpretation won acceptance.

In the Valley of Ten Thousand Smokes a few fumaroles remained active. The vegetation had changed as well. The liverworts found in abundance by Griggs in 1930 had disappeared, but numerous species of plants—including willows—grew on the hillsides. Botanists set up plots to record future vegetative growth.48

To justify the monument to Alaskans, the Park Service needed to accelerate tourism. In a December 1953 letter to Interior Secretary Douglas McKay, congressional delegate Bob Bartlett made the case that, given the disappearance of nearly all the smokes,

the very purpose for which the Monument was established no longer exists. Notwithstanding, I for one believe that the beauty of the area and its other special features warrant a national monument there. But it should be realistic in respect to size and should not deny to residents of the area land which has no proper place within the Monument. It is interesting though discouraging to note that while in the years gone by the Interior Department has resisted uniformly and successfully any attempt to restore to the public domain any of the area within the boundary, it has never done anything at all—that statement is almost literally true—to open the Monument to public use.49

Bartlett’s lament articulated the essence of the booster perspective: brown bears had no place, a modest reserve might be tolerated as long as it brought in money, and the Park Service goal of ecosystem preservation for posterity should be sacrificed for the slightest economic advantage of the smallest number of people.

National Park Service officials warded off nearly all competing claims on Katmai, and its recreational value gradually advanced to the fore. Ray Petersen, owner of a flying service named Northern Consolidated Airlines, had made bush flights in the Katmai vicinity since 1935. Acting on Park Service approval, he built Brooks and Grosvenor camps on-site in 1950 to accommodate tourists.
Brooks Camp sat in the middle of prime bear habitat, causing long-standing conflict between ecological values and tourist preferences. The Park Service built a ranger station at Ukak River between 1955 and 1957. Under pressure from Victor Cahalane at base of Novarupta, August 1954. By George Schaller. RG 79G Box 9, National Archives at College Park. National Park Service chief biologist Cahalane and others surveyed Katmai National Monument in the 1950s and fought successfully to include wilderness preservation in the monument’s purpose.
Robert F. Griggs and Katmai National Monument

Senator Ernest Gruening it constructed a road in 1962 from Brooks Camp to the Valley of Ten Thousand Smokes. This sparked requests to continue the road to the East Coast, but cost and resistance from Park Service officials doomed the idea. Money spent on the valley road delayed construction of a park headquarters, completed at King Salmon in 1964.50

Katmai had achieved recognition as a recreational resource as well as a wildlife sanctuary. In 1969 President Lyndon Johnson increased the size to 4,361 square miles, and in 1980 it became Katmai National Park and Preserve.51 To a perpetually growing tourist population Katmai offered a variety of scenic and scientific attractions: evergreen forests, lakes and streams, tundra, volcanic features, glaciers, and archaeological sites as much as 4,500 years old.52 Mt. Griggs, named for the monument’s founder, overlooks the now-cooled Valley of Ten Thousand Smokes.53 Of the four million acres, 85 percent is designated wilderness. Katmai hosts at least 117 species of birds54 and 27 species of land mammals, including a large and viable population of brown bears, as well as moose,
wolves, wolverines, lynx, red foxes, river otters, beavers, porcupines, and Arctic hares. Offshore swim sea otters, seals, sea lions, and several species of whales. Its fresh waters hold northern pike, Dolly Varden, Arctic char, grayling, and sockeye, chum, silver, king, and pink salmon. A rare geological event in a remote region, followed by timely and intelligent efforts of a few dedicated individuals, made possible one of the world’s largest and finest national parks.

More than almost any other American national park, Katmai embodied values of ecosystem preservation. The initiation of the monument involved a classic case of collusion between government and a small but influential interest group, the National Geographic Society. But the society planned no detrimental use of the land and did not interfere in government efforts to manage it. Initially, Griggs and the National Geographic Society intended to preserve a scientific wonder analogous to Yellowstone National Park (1872). Action by Sheldon, Griggs, and others on behalf of the brown bears moved the purpose closer to species preservation and ecosystem sustainability. Additions by Presidents Hoover, FDR, Johnson, and Carter reinforced the sustainability value.

Scientific information in the form of field observation precipitated a crucial but erroneous judgment about the park’s geology. Later, research demonstrated the lack of potential for significant resource extraction. Had the land potentially benefited the mining or logging industries, it probably would not have become a park. The *National Geographic* articles overcame the inaccessibility and interested the attentive public enough to warrant its designation as a monument. National Park Service biologists, backed by their superiors, clarified and fought for the park’s wildlife and wilderness values. When Katmai eventually drew tourists in numbers, it increasingly demonstrated the strength and economic vitality of nonconsumptive use values. As one of the five largest national parks in the United States, Katmai marked a signal victory in ecosystem preservation.