The Many Faces of Strategic Voting

Published by University of Michigan Press

For additional information about this book
https://muse.jhu.edu/book/62751

For content related to this chapter
https://muse.jhu.edu/related_content?type=book&id=2234199
Conventional rational choice theory sees voters as utility maximizers, deciding how best to use their vote to affect their preferred election outcome. Voter strategic coordination can influence the electoral results by increasing the vote share of strong candidates (or parties) at the expense of weaker ones. Hence, understanding how and why voters come to think that some candidates (or parties) are more likely to win than others is key to understanding how a democracy chooses its elected officials and consequently the policies those elected officials enact. In this chapter, I consider the case of single-member plurality elections—that is, elections in which each district elects only one representative and that representative is chosen by receiving a plurality of the vote.

To make good strategic decisions—that is, to avoid wasting their votes—voters must know the relative vote distribution of candidates in the electoral district. With such information in hand, voters can vote strategically and ultimately coordinate on the two strongest candidates. Voter coordination thus depends on voter information, and the strategic voting model requires that voters clearly understand who is leading and who is trailing (e.g., Cox 1997; Myatt 2007; Blais et al., this vol.). While most scholars
implicitly assume that voters have ready access to such information, vot-
ers in mass elections are never certain of the electoral results and in some
circumstances will not have access to objective information about who is
trailing in the electoral race (e.g., Myatt and Fisher 2004; Clough 2007).

This chapter investigates the claim that all else being equal, the number
and quality of district-level challenger candidates represents information
helping or hindering voter strategic coordination. While it is well known
that voters are largely uninformed about political matters either because
they are inattentive or because of the enormous complexity of the politi-
cal system, potential candidates who run against each other in the district
“differ in their valence (or quality), which is perfectly observable and is
valued by all voters” (Galasso and Nannicini 2011, 79). In this regard, can-
didate quality has the potential to operate as a heuristic for voters in low-
information situations and help them coordinate strategically. Quality is
related not only to whether the candidate previously held elective office, as
more commonly measured in the existing literature (e.g., Jacobson 1989;
Burden 2009), but also—and more importantly—to the extent to which
the candidate is related to the district and has a well-established base of
supporters. This feature becomes relevant for voter strategic coordination.
In fact, given that formidable challengers have more incentives and oppor-
tunities to develop effective candidacies and hence a better chance to chal-
lenge the top candidate in the district, voters can use the information they
have gathered from knowing who contests the elections to make inferences
about the distribution of support in their district.

Specifically, one quality challenger may give an impression that the seat
is more contested than it really is, increasing competition between the two
strongest candidates and fostering voter strategic coordination. In fact, as
chapter 1 discusses, strategic voting is more likely in competitive, uncen-
tain settings where voter chances of influencing the result are the great-
est. Conversely, multiple quality challengers in a district can hinder voter
strategic coordination, increasing uncertainty about the relative stand-
ing of the trailing candidates and ultimately undermining voter ability to
coordinate on the two front-runners. Hence, strategic coordination will
be higher in those districts where the incumbent faces a quality challenger
than in districts where the incumbent faces multiple quality candidates or
no quality candidates.

To test these propositions, this chapter uses extensive data from the
single-member district (SMD) tier of the mixed-member electoral system
in Japan’s lower house elections covering the period 1996–2009. Japan is a
particularly fitting case because the electoral system as well as the contex-
tual features of Japanese politics create different types of district contenders with varying political skills and local support bases. I show that changes in patterns of competition at the district level are correlated with changes in the number and quality of challenger candidates. However, simply comparing districts at any time can be problematic: in fact, quality challengers do not emerge randomly; rather, their occurrence depends on the prospects of victory (e.g., Hainmueller and Kern 2008; Ariga et al. 2016). Hence, to support the claim that challenger quality affects strategic coordination, I implement a treatment-effects model that corrects the endogeneity bias.

The results indicate that the presence of one quality challenger candidate significantly increases competition, thereby increasing voter strategic coordination. Conversely, more than one quality challenger hinders voter strategic coordination by creating informational noise in the electoral race. The findings are corroborated at the individual level using survey data covering Japanese national elections in 2003 and 2005, indicating that the observed patterns result from voter strategic coordination and not only from personal votes for specific candidates.

Challenger Quality and Voter Strategic Coordination

As chapter 1 discusses, scholars assert that voters care about election outcomes and do not want to waste their votes—that is, vote for a candidate or party unlikely to win the election. The objective discrimination against candidates with no chance of winning the district race depends on voter perception of the closeness of the race between the two front-running candidates in that district and the relative distribution of support for trailing challengers (Cain 1978). On the former, the closer the district race is, the more uncertain the result between the two front-runners, the more likely supporters of weaker candidates are to feel that there is a reason for them to vote strategically. Another necessary condition for strategic coordination is that the identity of the leading challenger is known to voters (Cox 1997). The more competition and uncertainty among the trailing candidates, the less likely voters are to coordinate on the two front-runners. But how can voters reach certain expectations about who is winning and who is trailing?

The two sources of objective information available to voters most commonly considered by the existing literature are the outcome of the previous election and opinion polls. Past performance can provide an independent cue to voters who fear wasting their votes on candidates unlikely to succeed (Cox 1997; Lago 2008). Yet doubts remain about the extent to which
it is reasonable to expect that such information is relevant for a significant number of voters. In addition to the fact that time erodes voters’ memories, parties’ popularity may have changed substantially since the last election (Selb 2012), and new candidates may have entered the electoral competition (Crisp, Potter, and Lee 2012). Polls can serve as a coordination signal, providing voters with results and trends based on pre-election polls (Forsythe et al. 1993; Gschwend 2007). However, district-level forecasts are rarely available, and national polls are not very relevant for predicting the outcome of elections in specific constituencies (Blais and Bodet 2006).

Given voters’ uncertainty about electoral outcomes, the relative qualifications of incumbents and challengers and the existence of a costly electoral challenge can convey important information to the voters (Gordon, Huber, and Landa 2007). While the existing literature has usually focused on incumbent quality (e.g., Hainmueller and Kern 2008; Eggers et al. 2015), challenger characteristics have the potential to determine elections by shaping the electoral campaign itself (Scheiner 2005; Burden 2009). Formidable challengers surely have more incentives and opportunities to develop effective candidacies and hence a better chance to challenge the top candidate in the district, thereby influencing the district race and increasing competition at the district level (Karp et al. 2002; Moser and Scheiner 2005).

The literature often makes a crude distinction between quality and non-quality candidates by defining them respectively as those who have previously held elective office and those who have not (e.g., Jacobson 1989; Burden 2009). According to the general argument underlying the incumbency bonus, the difference in the political relevance of certain candidates should create a support party bonus (Stokes 1992; Stone and Simas 2010). To be sure, incumbency status is a shorthand indicator for a number of factors, among them name recognition as a result of media exposure and a larger war chest. The potential to shape the electoral race, however, is also related to candidates’ ability to develop a substantial organized base of support at the district level, including access to organized teams of campaign workers and to local spending, door-to-door electoral canvassing, and so forth. In this regard, quality becomes a shorthand indicator for candidate visibility and for the electoral support that the candidate can mobilize at the district level, which impinges directly on voter expectations about the electoral outcome. Hence, candidate quality operates as a heuristic for voters who do not want to waste their votes: knowing who contests the elections helps voters to make inferences about the distribution of support for district-level candidates. One quality challenger may give the impres-
sion that the seat is more vulnerable than it really is, thereby increasing
competition and voter strategic coordination on the two front-running
candidates. Conversely, having more than one quality challenger creates
uncertainty about who the main challenger is, boosting the complexity of
the voting decision environment and ultimately hindering voter strategic
coordination. All else being equal, I expect that strategic coordination will
be higher in those instances where the incumbent is challenged by one
quality contender and will be lower where there are multiple quality chal-
lengers or no quality challenger.

Types of District Competition in Japan

Japanese elections provide an excellent case study because the electoral
system as well as the contextual features of Japanese politics create dif-
ferent types of district contenders and a variety of district-level competi-
tions. The analysis examines electoral behavior from the introduction of
the mixed-member electoral system in 1996 through the fifth election held
under this system (2009). The mixed-member system has two tiers. In the
first tier, 300 members (reduced to 295 in 2013) are elected in SMDs; in
the second tier, 200 members (reduced to 180 in 2000) are elected from
closed party lists in 11 region blocs according to proportional representa-
tion (PR) (Reed 2005). In particular, parties devote much attention to the
district-level competition since the SMD vote for candidates has a large
effect on the final composition of the parliament, thereby raising the stakes
of the SMD elections (Estevez-Abe 2006; Pekkanen, Nyblade, and Krauss
2006). The two tiers of the system work independently of each other and,
as chapter 1 discusses, each vote may be sincere or strategic on its own
terms (Plescia 2016; Harfst, Blais, and Bol, this vol.). In this chapter, I focus
exclusively on the SMD tier.

By and large today, two types of parties exist: majority-seeking parties,
such as the Liberal Democratic Party (LDP) and the Democratic Party of
Japan (DPJ), and non-majority-seeking parties, such as the Social Demo-
cratic Party (SDP), the Japanese Communist Party (JCP) and the religious
party, Koumei. Each party can nominate only one candidate per electoral
district; not all parties run candidates in every district. In Japan as in other
countries, the number of candidates at the district level tends to diminish
slowly over time yet rarely reaches the Duvergerian voting equilibrium m
+ 1 (Reed 1990; Ariga et al. 2016). While in every SMD there is one seat to
be awarded, and technically only one incumbent who has won the district in the previous election, there can be many different challengers.³

First, challenger quality is related to previous parliamentary experience. In this regard, it is possible to distinguish several challengers of quality. A feature of mixed-member electoral systems is the dual candidacy provision, according to which a candidate endorsed by a party runs in an SMD contest and appears on the party’s PR list (McKean and Scheiner 2000). Zombie incumbents are those who lost in the SMD district but were resurrected and elected to the parliament through party lists (Pekkanen, Nyblade, and Krauss 2006). These resurrected winners usually behave as pure representatives of their respective districts because their efforts to be visible in their district increase their chance to win an SMD seat or a resurrected PR seat in the following election (Bawn and Thies 2003). Shadow incumbents are candidates previously elected to the parliament from that SMD in the past but not in the immediately preceding election. Other groups of challengers include those who have never represented that specific district before but still enjoy increased visibility at the district level either because they ran as part of a tag-team—Costa Rica arrangement—with a candidate who ran in the SMD in previous elections (quasi-incumbent)⁴ or because they had previously been part of the lower house of the parliament (fading incumbents).⁵

Second, quality is related to the ability to develop a substantial organized base of support at the district level and local-level experience, a crucial feature in the Japanese case (Scheiner 2005, 137) as well as elsewhere (e.g., Karp et al. 2002). Specifically, the candidate support organization (koenkai) in Japan is designed to cultivate and deliver an organized vote for the candidate on Election Day (Scheiner 2005). This category of candidates, whom I call star challengers, includes all candidates who have never served in parliament before and thus are not part of any of the previously discussed categories of challengers, yet they are likely to receive a surplus of support at the district level because they are part of the district and have a well-established base of supporters.⁶ Such challengers include former prefectural governors and local assembly members, former city mayors or upper house members from that district, or candidates who inherited a district from a close relative.⁷

Using this classification, table 6.1 shows that of the 1,446 incumbent candidates who ran between 1996 and 2009, about 66% won re-election, almost 11% lost their SMDs but were resurrected in the PR tier of the electoral system, and a little more than 23% lost their seats. The rate of success is lower for quality challengers than for incumbent candidates but
much higher than for low-quality challengers. The rate of election in the SMDs is 50% for tag candidates, 34% for zombies, 35% for shadows, 25% for fading candidates, and 51% for star challengers but only 6% for non-quality candidates. Although I cannot control for how many of these candidates also run in the PR contest, table 6.1 shows that the rate of election under PR is 6% for tag candidates, 23% for zombie, 17% for shadow, 27% for fading, and 18% for star challengers, but only 5% for non-quality challenger candidates. Table 6.1 also displays average spending figures by type of candidate. The resources available to quality challengers do not differ substantially from those of incumbent candidates but are very different from the spending rates of non-quality challengers.

Data and Methods

The first test of voter strategic coordination uses aggregate election data. The underlying idea behind this test is that if the proposed model of behavior is correct, all else being equal, strategic coordination will be higher where the incumbent is challenged by one quality contender and lower where there is more than one quality challenger and where an incumbent faces no quality challenger. Because the expectations apply to cases in which an incumbent is running for reelection, the empirical analysis is restricted to district elections in which one incumbent participates. To measure voter strategic coordination, I employ a recently proposed modification of Cox’s (1997) commonly used second-to-first loser’s vote (SF) ratio. Cox’s SF ratio takes on a minimum of 0 if elites manage to coordinate on only two competitors before the election or if voters desert all candidates other than the winner and the main challenger. In contrast, the SF ratio’s maximum,

<table>
<thead>
<tr>
<th>Type of Candidate</th>
<th>Won SMD</th>
<th>Lost SMD but Elected in PR</th>
<th>Not Elected</th>
<th>N</th>
<th>Mean (SD) of Spending in 1,000 US$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incumbent</td>
<td>65.9%</td>
<td>10.8%</td>
<td>23.3%</td>
<td>1,446</td>
<td>116.5 (42.8)</td>
</tr>
<tr>
<td>Quality challenger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tag</td>
<td>50.0%</td>
<td>6.3%</td>
<td>43.8%</td>
<td>48</td>
<td>121.8 (48.2)</td>
</tr>
<tr>
<td>Zombie</td>
<td>33.9%</td>
<td>23.0%</td>
<td>43.0%</td>
<td>330</td>
<td>88.7 (41.5)</td>
</tr>
<tr>
<td>Shadow</td>
<td>35.2%</td>
<td>16.9%</td>
<td>47.9%</td>
<td>284</td>
<td>91.3 (44.2)</td>
</tr>
<tr>
<td>Fading</td>
<td>24.7%</td>
<td>27.3%</td>
<td>48.1%</td>
<td>77</td>
<td>100.3 (47.1)</td>
</tr>
<tr>
<td>Star</td>
<td>51.6%</td>
<td>18.0%</td>
<td>30.5%</td>
<td>256</td>
<td>101.9 (43.1)</td>
</tr>
<tr>
<td>No quality challenger</td>
<td>5.0%</td>
<td>4.6%</td>
<td>90.3%</td>
<td>3,173</td>
<td>48.6 (41.1)</td>
</tr>
</tbody>
</table>
one, will be obtained if the expected vote shares of first and second losers are too close for voters to decide which of the two to desert. A common criticism of the SF ratio pertains to its inability to correctly identify non-Duvergerian equilibria in lopsided elections (Gaines 1999). For example, Cox’s ratio will report a non-Duvergerian equilibrium in an SMD with three candidates receiving 90%, 5%, and 5% of the votes, respectively (SF ratio = 5/5 = 1). Selb (2012) proposes a slight modification of the SF ratio that corrects this shortcoming: the minimum of the first-loser’s-to-(last)-winner’s ratio and the second-to-first loser’s ratio (mSF ratio). The mSF captures a sharp distance in the distribution of votes either between the first and second loser or, in lopsided elections, between the winner and the first loser, as indicated by an mSF value close to 0. In neck-and-neck races between the (last) winner and the first and second loser (a clear three-way tie) where instrumental voters have no incentive to desert their preferred choice—that is, a truly non-Duvergerian equilibrium—the mSF ratio still assumes values close to unity. Hence, the lower the ratio, the higher the degree of strategic coordination.¹⁰

An empirical analysis of the effect of the number of quality candidates on strategic coordination at the district level compares the mSF ratio of districts with one quality challenger to those with none or more than one. The quality challengers are all those candidates classified as zombie, shadow, fading, and star challengers. Table 6.2 displays the values of the mSF ratio in those different scenarios, comparing them with a simple count of the number of candidates. The upper part of the table shows that the SF and the mSF ratios increase as the number of candidates in the district gets larger, indicating declining levels of strategic coordination. The lower part of the table shows that the values of the two ratios remain

<table>
<thead>
<tr>
<th>N (Candidates)</th>
<th>SF Ratio</th>
<th>mSF ratio</th>
<th>Margin (%)</th>
<th>Districts (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.24 (0.17)</td>
<td>0.22 (0.14)</td>
<td>10.88 (8.56)</td>
<td>627</td>
</tr>
<tr>
<td>4</td>
<td>0.40 (0.24)</td>
<td>0.37 (0.20)</td>
<td>9.02 (7.46)</td>
<td>441</td>
</tr>
<tr>
<td>5</td>
<td>0.51 (0.26)</td>
<td>0.47 (0.23)</td>
<td>7.27 (6.91)</td>
<td>175</td>
</tr>
<tr>
<td>6</td>
<td>0.57 (0.24)</td>
<td>0.53 (0.20)</td>
<td>5.44 (4.67)</td>
<td>46</td>
</tr>
<tr>
<td>> 6</td>
<td>0.61 (0.27)</td>
<td>0.55 (0.23)</td>
<td>5.20 (3.79)</td>
<td>18</td>
</tr>
</tbody>
</table>

Type of competition

<table>
<thead>
<tr>
<th>No quality challenger</th>
<th>SF Ratio</th>
<th>mSF ratio</th>
<th>Margin (%)</th>
<th>Districts (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.34 (0.21)</td>
<td>0.31 (0.21)</td>
<td>12.15 (9.15)</td>
<td>534</td>
<td></td>
</tr>
<tr>
<td>1 quality challenger</td>
<td>0.32 (0.24)</td>
<td>0.29 (0.16)</td>
<td>7.70 (6.18)</td>
<td>663</td>
</tr>
<tr>
<td>> 1 quality challenger</td>
<td>0.60 (0.25)</td>
<td>0.55 (0.21)</td>
<td>5.49 (4.61)</td>
<td>109</td>
</tr>
</tbody>
</table>

Note: Calculations exclude open seats and districts with only two candidates.
stable in districts where there is no or just one quality challenger, although the ratios are lower in the latter case. However, the values of the ratios increase sharply when the number of quality challengers is larger than one. The actual number of candidates per district is only marginally related to the number of quality challengers. The two variables are clearly positively related, but the correlation coefficient is very low ($r = 0.3$). The table also displays the mean values of vote share margin between the SMD winner and the runner-up in that election: competition increases (i.e., margin values decrease) as the number of candidates or quality challengers increases.

Simply comparing the districts this way, however, is problematic. The number of quality candidates is clearly an endogenous product of the competition; in fact, parties tend to nominate quality candidates in those districts where the chance of victory is greater. One solution to the problem of nonrandom selection would be to add control variables that at least in part can account for the observed heterogeneity across districts. This, however, would not properly correct for the endogeneity issue, and the addition of control variables may produce biased estimates (Barnow, Cain, and Goldberger 1980). Because of the problem of nonrandom selection involved in quality challengers entering the race where they have better chances of success, for the first test using aggregate data, I use a treatment-effects model.

The treatment-effects model is becoming increasingly popular in political science (e.g., Schneider et al. 2003; Maeda 2008). This model consciously examines the two processes simultaneously—that is, whether or not the subjects receive the treatment and what factors affect the occurrence of the treatment. The first stage of the estimation process uses pertinent factors to predict the occurrence of quality challengers. The second stage estimates the “treatment effect”—the impact of the number of quality challengers—on voter strategic coordination. Controlling for the selection of quality challengers enables the isolation of the marginal impact of the number and quality of candidates on voter strategic coordination from the factors that lead to placement of these candidates in specific districts in the first place. I present the results of the treatment-effects model next to those obtained using a naive Ordinary Least Square (OLS) regression model.

The second test of strategic voting relies on individual-level data leveraging on pre- and postelectoral survey data covering the 2003 and 2005 elections. Examining these survey data enables us to test vote choice while directly controlling for voters’ preferences regarding candidates and expectations about the electoral outcome. The individual-level data also allow for a more direct measurement of the respective weights that voters give to strategic considerations and sincere preferences.
Empirical Findings at the Aggregate Level

The aggregate-level analysis proceeds in two steps employing a multinomial treatment-effects model (Deb and Trivedi 2006).11

First Stage: Model Setup

The dependent variable in the first stage is the treatment effect: whether the district has no challenger of quality or more than one compared to the control group, where there is only one challenger of quality. Which factors affect the quality and the number of quality candidates in a district? The first factor is the vote share margin between the SMD winner and the runner-up in the previous election (PrevMargin): the larger the values of the PrevMargin variable, the less competitive the district is and the less likely it is that challenger parties will enter the race and waste strong candidates. Since the competitiveness in the previous election is needed to calculate this variable, the first postreform election (1996) cannot be included in the empirical models.12 The second factor takes into account Japanese parties’ capacity to nominate slates of qualified candidates for SMDs. Because of its historic dominance and many incumbents, the LDP is best situated to locate high-quality candidates with strong local support. For this reason, I include a dummy variable in the model for the presence or absence of an LDP incumbent (LDPincumbent), which should scare away strong opponents. Third, voters’ incentives to coordinate strategically are known to be affected by elites’ coordination. Hence, the third factor included in the model is a dummy variable that measures, at the district level, whether the opposition (to the LDP) has coordinated around a strong Democratic Party of Japan candidate.13 Coordination by the opposition increases the chances of a quality challenger but reduces the chances of more than one. Finally, the fourth factor is the number of candidates who contested the district in the previous election (PrevNcands), which is likely to affect the dependent variable: the larger the number of previous candidates, the more likely that more than one quality challenger will arise and the less likely that only a single quality candidate will arise.

First Stage: Results

Table 6.3 shows the results of the first-stage regression. As expected, the PrevMargin variable has a significant positive impact on the likelihood that a district will have no quality challenger and a negative effect on the
likelihood that a district will have more than one: the less competitive the

district is, the larger the advantage of the incumbent candidate and the

less likely an opposition party is to run a quality challenger. The variable

measuring the number of candidates who have contested the district in

the previous election has no significant impact on the likelihood of the

absence of a quality challenger. However, the larger the previous number

of candidates contesting the elections, the higher the chances of finding

more than one quality challenger. The presence of an LDP incumbent has

a positive effect on the likelihood that there will be no quality challengers

and a negative effect on the likelihood of multiple quality challengers, but

these findings are statistically significant only in the second case. Coordi-

nation by the opposition parties has the expected negative sign, but it is not

statistically significant. Overall, and as hypothesized, the findings indicate

that the number and quality of challenger candidates clearly depend on

past electoral results.

Second Stage: Model Setup

In the second stage, the dependent variable is the mSF ratio. The right

side of the equation includes the key independent variable (the trichoto-

mous treatment variable, whether there is no quality challenger, more than

one, or just one), the current number of candidates, and the previous vote

margin. All else being equal, a larger number of candidates decreases voter

TABLE 6.3. Multinomial Treatment-Effects Model: First-Stage

<table>
<thead>
<tr>
<th>Dependents Variable: Treatment</th>
<th>No Quality Challenger</th>
<th>> 1 Quality Challenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref: 1 Quality Challenger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PrevMargin</td>
<td>0.141***</td>
<td>−0.059+</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.031)</td>
</tr>
<tr>
<td>LDP incumbent</td>
<td>0.252</td>
<td>−0.741*</td>
</tr>
<tr>
<td></td>
<td>(0.178)</td>
<td>(0.288)</td>
</tr>
<tr>
<td>Coordination_DPJ</td>
<td>−0.331</td>
<td>−0.651</td>
</tr>
<tr>
<td></td>
<td>(0.254)</td>
<td>(0.525)</td>
</tr>
<tr>
<td>PrevNcands</td>
<td>0.128</td>
<td>0.344**</td>
</tr>
<tr>
<td></td>
<td>(0.092)</td>
<td>(0.127)</td>
</tr>
<tr>
<td>Constant</td>
<td>−2.210***</td>
<td>−2.968***</td>
</tr>
<tr>
<td></td>
<td>(0.415)</td>
<td>(0.598)</td>
</tr>
<tr>
<td>N</td>
<td>1,048</td>
<td></td>
</tr>
<tr>
<td>BIC</td>
<td>709.88</td>
<td></td>
</tr>
<tr>
<td>AIC</td>
<td>605.83</td>
<td></td>
</tr>
<tr>
<td>LL</td>
<td>−281.92</td>
<td></td>
</tr>
</tbody>
</table>

Note: Standard errors in parentheses; + p < 0.1, * p < .05, ** p < .01, *** p < .001.
coordination and thus increases the mSF. Contrarily, the more competitive the district in the previous election, the more voters will fear wasting their votes, resulting in lower mSF values. Again, coordination by elites is likely to influence strategic voter coordination by reducing the number of quality alternatives available to voters. I include two variables to capture elite coordination: one that measures coordination by the center-right government party, the LDP, and one for the coordination of the opposition parties around the main center-left party, the Democratic Party of Japan. I also control for the characteristics of the SMDs in terms of the level of urbanization, which is known to be strongly related to parties’ popularity in Japan. I added a variable measuring the proportion of the district’s population that lives in census-defined urbanized areas (Urban).

Second Stage: Results

Table 6.4 reports the results of the second stage of the multinomial treatment-effects model. It also reports the results from a naive OLS model. Focusing first on the key independent variable, table 6.4 shows a statistically significant and positive effect of the two treatment variables in both the second stage of the multinomial treatment-effects model and the OLS model. To illustrate this result, I calculated the marginal effect of the treatment variable on the predicted value of the mSF ratio (figure 6.1). Starting with the non-quality challenger treatment, the marginal effect is about 0.035—that is, the value of the mSF ratio is on average 0.035 points higher (meaning less strategic coordination) in those districts where there is no quality challenger than in districts where incumbents are challenged by quality candidates. This difference is significant at \(p < 0.05 \). A naive OLS model predicts the same positive effect, albeit a more modest one—0.024. The marginal effect of more than one quality challenger is 0.135—that is, the mSF ratio is about 0.135 points higher when there are multiple quality challengers compared to districts with just one quality challenger. This difference is significant at \(p < 0.001 \). Again the naive OLS model predicts the same positive effect but this time at slightly higher rate—0.185.

Table 6.4 also shows a positive coefficient for the variable measuring the number of candidates: this means that the larger the number of candidates, the lower the level of voter coordination. The table also indicates that the larger the previous margin of votes between the winner and the loser (that is, the less competitive the district was), the lower the strategic coordination today; however, the coefficient is not statistically significant. The coordination by the opposition or the LDP also increases strategic
coordination, but the effect is significant only for the opposition. Finally, urbanization has a positive impact on strategic coordination. In sum, it is clear that when the district is contested by one quality challenger, levels of voter strategic coordination are higher than in cases when the incumbent faces no or multiple quality challengers.

Empirical Findings at the Individual Level

Finally, I use survey information about voter preferences and expectations to predict the type of vote choice—that is, sincere versus strategic—and evaluate the findings of the aggregate-level analysis. Voter coordination around a main challenger by deserting lower-ranked candidates might result from personal support for the quality challenger, which qualifies as sincere voting rather than as an attempt to influence the electoral results.

TABLE 6.4. Multinomial Treatment Effects Model: Second-Stage

<table>
<thead>
<tr>
<th></th>
<th>Dependent Variable: mSF Ratio</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Second Stage</td>
<td>Naive OLS Model</td>
<td></td>
</tr>
<tr>
<td>Ref: 1 Quality Challenger</td>
<td>0.120* (0.059)</td>
<td>0.024* (0.012)</td>
<td></td>
</tr>
<tr>
<td>Treatment: No Quality Challenger</td>
<td>0.461*** (0.089)</td>
<td>0.185*** (0.021)</td>
<td></td>
</tr>
<tr>
<td>Treatment: >1 Quality Challenger</td>
<td>0.281*** (0.026)</td>
<td>0.073*** (0.007)</td>
<td></td>
</tr>
<tr>
<td>Ncands</td>
<td>−0.001 (0.003)</td>
<td>−0.001 (0.001)</td>
<td></td>
</tr>
<tr>
<td>PrevMargin</td>
<td>−0.014 (0.042)</td>
<td>0.007 (0.012)</td>
<td></td>
</tr>
<tr>
<td>Coordination_LDP</td>
<td>−0.438*** (0.057)</td>
<td>−0.088*** (0.016)</td>
<td></td>
</tr>
<tr>
<td>Coordination_opposition</td>
<td>0.269*** (0.068)</td>
<td>0.052** (0.019)</td>
<td></td>
</tr>
<tr>
<td>Urbanization</td>
<td>−3.528*** (0.128)</td>
<td>−0.016 (0.031)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1,048 (1,048)</td>
<td>1.035*** (0.041)</td>
<td>0.251</td>
</tr>
<tr>
<td>Adj. R^2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIC</td>
<td>709.88 (−763.553)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIC</td>
<td>605.83 (−803.198)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LL</td>
<td>−281.92 (409.599)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note: Standard errors in parentheses; * $p < 0.1$, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.
To test whether the patterns observed result from strategic coordination rather than personal voting, I employ survey data from the JES III project. While the JES survey was conducted in ten waves, I am interested only in those waves covering the pre- and postelectoral periods of the lower house elections, so I use Waves D, E, J, and K for the 2003 and the 2005 national elections. Japanese surveys contain district identifiers, enabling researchers to link survey responses to aggregate-level district information. Also, for each election, each respondent was interviewed both before and after the election. The pre-electoral wave allows us to measure preferences and expectations, while the postelectoral wave is used to measure vote choice, thus minimizing the potential problem that answers given after the elections may be affected by the electoral outcome.

At the start of the pre-electoral interview, respondents are shown a card with the pictures of the candidates running in the district and are asked which candidates they know. Table 6.5 reports the mentions by type of candidates. Incumbents are among the most well-known types of candidates: nearly 69% of them are mentioned in 2003 and 66% in 2005. However, the rates of mention are not much lower for the different types of challengers except for the challengers of no quality, who are least known. Respondents
are also asked to score known candidates using a feeling thermometer from 0 (very much dislike) to 100 (like the candidate very much). The table shows that average feeling scores are very similar across mentioned candidates, and none of the specific types of candidates enjoys a surplus in terms of feelings, although non-quality challengers again average lower values.

Model Setup

As chapter 1 discusses, a sincere vote describes a situation in which the voter chooses the most preferred candidate from a menu of alternatives. Nonsincere voting instead describes a situation in which voting goes against sincere preferences. I define a vote in the SMD as sincere when the voter supports the most preferred candidate and 0 otherwise. In our data, about 74% of the respondents voted sincerely in the SMD, choosing the most preferred candidate with the SMD vote, and about 26% voted for a less preferred candidate.

The empirical models include a variable that takes into account the number of quality challengers running in each district. To confirm the results at the aggregate level, we should find that voters are less likely to

TABLE 6.5. Candidates, Quality, and Respondents’ Knowledge

<table>
<thead>
<tr>
<th></th>
<th>2003 Election</th>
<th>Feeling Score Mean (SD)¹</th>
<th>2005 Election</th>
<th>Feeling Score Mean (SD)¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mention</td>
<td></td>
<td>Mention</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Incumbent</td>
<td>68.9%</td>
<td>31.1%</td>
<td>65.7%</td>
<td>34.3%</td>
</tr>
<tr>
<td>Obs</td>
<td>1,560</td>
<td>705</td>
<td>1,015</td>
<td>992</td>
</tr>
<tr>
<td>Tag</td>
<td>67.5%</td>
<td>32.5%</td>
<td>70.3%</td>
<td>29.7%</td>
</tr>
<tr>
<td>Obs</td>
<td>110</td>
<td>53</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Zombie</td>
<td>49.9%</td>
<td>50.1%</td>
<td>52.3%</td>
<td>47.7%</td>
</tr>
<tr>
<td>Obs</td>
<td>252</td>
<td>253</td>
<td>287</td>
<td>262</td>
</tr>
<tr>
<td>Shadow</td>
<td>63.3%</td>
<td>36.7%</td>
<td>52.9%</td>
<td>47.1%</td>
</tr>
<tr>
<td>Obs</td>
<td>295</td>
<td>171</td>
<td>126</td>
<td>112</td>
</tr>
<tr>
<td>Fading</td>
<td>48.4%</td>
<td>51.6%</td>
<td>43.5%</td>
<td>56.5%</td>
</tr>
<tr>
<td>Obs</td>
<td>106</td>
<td>113</td>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td>Star</td>
<td>55.2%</td>
<td>44.8%</td>
<td>52.2%</td>
<td>47.8%</td>
</tr>
<tr>
<td>Obs</td>
<td>262</td>
<td>213</td>
<td>129</td>
<td>118</td>
</tr>
<tr>
<td>No Quality Challenger</td>
<td>25.8%</td>
<td>74.1%</td>
<td>27.5%</td>
<td>72.5%</td>
</tr>
<tr>
<td>Obs</td>
<td>1,215</td>
<td>3,481</td>
<td>751</td>
<td>1,983</td>
</tr>
</tbody>
</table>

Note: Since some respondents refuse to score candidates, the number of rated candidates is always lower than the number of mentioned candidates.

¹ Feeling scored of mentioned candidate.
vote sincerely where the incumbent faces a quality challenger than in districts where the incumbent faces multiple or no quality candidates. The models also include a series of important individual- and aggregate-level variables. At the aggregate level, I include a commonly employed measure of district competitiveness: the more competitive the district, the more likely voters are to vote strategically.

At the individual level, I control for feelings for the top party and the top candidate as well as the differences in score between the first and the second scored candidates. These variables are measured using a feeling thermometer from 0 (very much dislike) to 100 (like the candidate or the party very much). I expect that the higher the feelings for the most preferred party or candidate, the more utility the voter gets in voting sincerely. The models also include voter expectations about the electoral outcome. One way of measuring expectations is by using an indirect measure that captures the most preferred candidate’s margin of contention. The margin of contention is measured by taking the difference between the votes gained by the most preferred candidate and the candidate who finished second. By definition, this variable is positive when the preferred candidate is in third position or lower, 0 when the preferred candidate finishes second, and negative if the preferred candidate wins (e.g., Fisher 2004). The larger the value, the less likely the voter should be to vote sincerely, since the most preferred candidate is unlikely to win. Japanese surveys also allow us to directly measure expectations. The survey asked respondents a closed-ended question about their perceptions of their preferred candidates’ chances of winning the SMD: “How close of a race do you think the SMD where you live will be?” I categorize the most preferred candidate as noncompetitive when the respondent chose “Even if I vote, the candidate I support will have a hard time winning” and 0 otherwise. Since it is quite likely that voting strategically is related to voters’ interest, I also control for interest in politics.

Results

Table 6.6 shows the results of two parsimonious models of sincere vote, one in which expectations are measured indirectly (Model 1) and one when a direct measure is used (Model 2). Focusing first on the key independent variable, the type of district competition has a significant effect on sincere voting. All else being equal, Model 1 shows that the odds of casting a sincere vote are 33% higher ($\exp(0.288) = 1.33$) where there are no quality challengers contesting the election than in situations where the incum-
bent faces a quality challenger, holding preferences and expectations constant. The odds of casting a sincere vote are 52% higher \((\exp(0.417) = 1.52) \) where there is more than one quality challenger than in situations where there is only one quality challenger, although the results are significant only at \(p > 0.1 \). Model 2, where I control for direct expectations, shows that the odds of casting a sincere vote are 38% higher \((\exp(0.325) = 1.38) \) where there are no quality challengers contesting the elections and 45% higher \((\exp(0.376) = 1.45) \) where there is more than one quality challenger than in situations where there is only one quality challenger. These findings confirm the results gathered using aggregate-level data.

Both models find that personal feelings for the top-ranked candidate have a positive effect on voting sincerely, as do the other two feeling ther-

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable: Sincere Vote</td>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td>Model 2</td>
</tr>
<tr>
<td>Ref. 1 Quality Challenger</td>
<td></td>
</tr>
<tr>
<td>No Quality Challenger</td>
<td>0.288* (0.120)</td>
</tr>
<tr>
<td>> 1 Quality Challenger</td>
<td>0.417+ (0.221)</td>
</tr>
<tr>
<td>Feeling for Top Party</td>
<td>0.015*** (0.003)</td>
</tr>
<tr>
<td>Feeling for Top Candidate</td>
<td>0.049*** (0.004)</td>
</tr>
<tr>
<td>Score Second-Best Candidate</td>
<td>0.020*** (0.001)</td>
</tr>
<tr>
<td>Interest in Politics</td>
<td>−0.046 (0.072)</td>
</tr>
<tr>
<td>Margin of Contention</td>
<td>−2.096*** (0.514)</td>
</tr>
<tr>
<td>Expected Performance</td>
<td>−0.601*** (0.140)</td>
</tr>
<tr>
<td>PrevMargin</td>
<td>0.004 (0.008)</td>
</tr>
<tr>
<td>Constant</td>
<td>−4.541*** (0.321)</td>
</tr>
</tbody>
</table>

Note: Standard errors in parentheses: + \(p < 0.1 \), * \(p < .05 \), ** \(p < .01 \), *** \(p < .001 \). Logit random effect models by district. The models include fixed effect by year (not shown).
mometer variables. For every one unit increase in the 0–100 scale of feeling for candidates, the odds of casting a sincere vote grow by 5% ($\exp(0.049) = 1.05$). The effect of feeling for parties and the difference score is lower but is still positive and significant. Interest, however, has no effect on vote choice. Concerning expectations, the less competitive the preferred candidate, the less likely the respondent is to vote sincerely, as expected. The results hold for both indirect (Model 1) and direct (Model 2) measurements of expectations. The previous vote margin has the expected positive effect on sincere voting, but the coefficient is not statistically significant. The evidence points to the conclusion that the rate of strategic coordination is higher in those districts where one quality challenger faces an incumbent compared to those districts where zero or multiple quality challengers run for elections, a result that provides support for the findings at the aggregate level.

Conclusion

Without common knowledge about who is trailing in the electoral race, voter coordination on the strongest two alternatives is unlikely to succeed (Cox 1997; Myatt 2007). Studying where and how voters get the information they need to make informed decisions is key to understanding strategic voting and ultimately election outcomes (Blais et al., this vol.). This chapter showed that the resources and talents of challenger candidates have a significant impact on vote choice. The presence of one quality challenger significantly increases competition, thereby increasing voter strategic coordination. However, the presence of multiple quality challengers hinders voter strategic coordination by creating noise in the electoral race. The findings are corroborated at the individual level, indicating that the observed patterns result from strategic coordination, not merely from personal votes for specific candidates. Candidate quality operates as one important heuristic voters use to understand the competition at the district level and avoid wasting their votes. Knowing who contests the elections helps voters to make inferences about the distribution of support for the district-level candidates. This has important implications for democratic elections and party strategy.

First, the common view that citizens barely engage with the complexity of the political world should not discourage scholars from examining where and how voters gather the information they need to make informed decisions. The local environment in general and the presence
of a quality challenger in particular can convey important information to voters and can greatly help them to form reasonable expectations about the electoral outcome. In addition, a party’s capacity to win elections is related not only to its ability to run the right number of candidates but also to its ability to find the right candidate for each district, which may increase voter coordination across the board. In this regard, politicians also have good incentives to behave strategically via enhanced allocation of resources to the district or the selection of more appealing candidates. This issue merits future investigation, since even sincere supporters of minority parties may vote for one of the two main contenders not because they are strategic but because the strategic behavior of parties has accommodated their preferences.

There are good reasons to believe that inferences can be made from plurality to PR systems with regard to the effect of candidate quality and voter strategic coordination. In fact, voters can use the quality of national candidates to make inferences about the distribution of support for the different parties at the national level, especially in those instances where new leaders or new parties contest the elections for the first time (Lago, this vol.). Focusing on voter information may provide explanations for previously unexplored cases and in general may explain all those cases where objective predictions cannot be made but where coordination on two parties or candidates is found.

NOTES

The author thanks André Blais and Susumu Shikano for their helpful comments and Koji Kagotani, Taehye Kim, and Yuki Yanai for their assistance in data collection.

1. The literature has often stressed that people also form expectations about a candidate’s chances of winning a district on the basis of personal preferences. In this case, perceptions about who is trailing in the race are distorted by existing political preferences (e.g., Price 2000).

2. Japan has had many party mergers and splits, but they are beyond the scope of this chapter. See Reed 2005; Reed, Scheiner, and Thies 2012.

3. In this chapter I look at competition in about 1,500 districts covering the elections of 1996, 2000, 2003, 2005, and 2009. Of these, about 0.2% were contested by only two candidates, about 3% were open-seat elections with no incumbent running, and about 7% had more than two incumbents. The two-incumbent cases exist only for the 1996 elections, the first election following the end of the single nontransferable-vote system, which used multimember districts.

4. Tag-team members run for the same SMD. One candidate runs in the SMD, while the other runs only in the PR contest, and they switch positions for the next election (Dabney 2009). The LDP and Koumei, for example, make such arrangements.

6. Hence, a candidate who was a star challenger at \(t - 1 \) at time \(t \) will be considered an incumbent if she won the SMD, a zombie if she won in the PR, and still a star challenger if she lost.

7. In Japan, the practice of inheriting districts is common within families of very successful politicians. Inheriting a seat effectively provides a candidate with the entire existing organization of the deceased candidate (Scheiner 2005).

8. Disclosure of campaign spending usually is not very accurate (Dabney 2009). Yet, the ceiling on spending typically is set high enough that candidates do not usually reach or exceed the limits (Carlson 2007).

9. Since the number of districts without an incumbent and with more than one is very low, including all districts produces very similar results.

10. In 83% of the district election observations, the mSF equates the SF ratio. Hence, using the SF ratio would not change substantive conclusions.

11. The analysis uses the \textit{mtreatreg} command in Stata 14, which estimates the two steps simultaneously (Deb 2006). The model is estimated using maximum simulated likelihood.

12. I do not need to control for whether the district is an open seat or for the presence of more than one incumbent candidate because such cases exist only for the 1996 elections.

13. Coordination takes into account whether the Democratic Party of Japan candidate has been “recommended” by another party in the same camp. Data from Steven Reed’s dataset available at: http://www.fps.chuo-u.ac.jp/~sreed/DataPage.html

15. The JES III Project is run by Kenichi Ikeda, University of Tokyo; Yoshiaki Kobayashi, Keio University; and Hiroshi Hirano, Gakushuin University; data are available at http://www.coeccc.keio.ac.jp/data_archive_en/data_archive_jesIII.html

17. For the 10% of respondents who gave equal rankings to multiple candidates, a sincere vote is a vote for one of these candidates.

18. The category of 0 includes the following answers: (a) “Even if I don't vote, the candidate I support will be elected”; (b) “Even if I don't vote, the candidate I support will gather just enough votes to be elected”; (c) “If I vote, the candidate I support will be elected”; and (d) “If I don't vote, the candidate I support may have a hard time winning.” “Don’t know” and unclear answers (e.g., “I have not decided which candidate to support” and “There are no candidates I support”) are
dropped from the analysis. However, since they constitute a small percentage of respondents, including “Don’t Know” and unclear answers as 0 does not change the substantive conclusions.

REFERENCES

