Is Cancer Inevitable?

Wendel, Tim, Weeraratna, Ashani T.

Published by Johns Hopkins University Press

Wendel, Tim and Ashani T. Weeraratna.
Is Cancer Inevitable?

For additional information about this book
https://muse.jhu.edu/book/98272

For content related to this chapter
https://muse.jhu.edu/related_content?type=book&id=3031963
Index

Abu Bakr Muhammad ibn Zakariya al-Razi, 1–2
acral lentiginous melanoma, 13
Afeyan, Noubar, 61
aging: and bone marrow, 77; and cancer mortality, 51; and cancer prevalence, 2, 3, 51, 52, 53, 82; and cell senescence, 40–41, 45, 55, 56; damage from, 81; and fibroblasts, 76–80; and immune system, 51, 56, 77, 83; and immunotherapy, 57–58; and increased risk of mutations, 42, 52, 53, 81; and inflammation, 53, 56–57; and metastasis, 51, 58, 76–77, 86; and microenvironment, 41, 51, 53–54, 58, 77; and pancreatic cancer, 99; percent of population as aged, 3; research findings on melanoma, 50–58, 76–79; as research focus, 40, 41–42, 45–52, 67–68, 76–79; and research subjects, 48, 50, 52–53, 57; and screenings, 88; of skin, 7, 10–11, 50, 76–80; and therapy resistance, 51, 54; and treatment, 5, 10, 48, 51–58, 79, 83, 95–96; and UV exposure, 90–91
Alicea, Gretchen, 78
Allison, Jim, 94
angiogenesis, 17
antigens, 38–39
APE1, 53
Arteaga, Carlos, 64
artificial skin, 70, 72–74
B cells, 84
behavioral factors: genetic damage from, 87, 95; prevention tips, 86–94; risk from, 85
Behera, Reeti, 59
Benacerraf, Baruj, 64
beta-catenin, 36, 38, 53
biopsy, 14–15
Bissell, Mina, 49–50, 64
blood tests, screening with, 93
bone marrow and aging, 77
Bourla, Albert, 61
Boveri, Theodor, 3
BRAF gene, 54
breast cancer: and claudins, 43; historical accounts and research, 1, 3; and immunotherapy, 57–58; and microenvironment and tissue architecture, 49–50; screening, 88, 92; staging, 43; survival rates, 85
Burke, John, 71
INDEX

Camilli, Tura, 59
Campisi, Judith, 40–41, 55, 56

cancer: age and mortality, 51; age and prevalence of, 51; cellular life cycle of, 20; childhood cancers, 23–24, 51; defined, 4; etymology of, 1; historical accounts of, 1–4; as many diseases in one, 4. See also melanoma; microenvironment; research; treatment; tumors

carcinogenesis, chromium-induced, 29

cardiovascular disease, 91
Carey, Alexis, 77
Carter, Jimmy, 96–97
Casero, Bob, xxvii, xxviii, 25
Celano, Paul, xxvii

cell plasticity and microenvironment, 49–50

cell senescence, 40–41, 45, 55, 56

ceramides, 78

cervical cancer, screening for, 88, 92
checkpoint inhibitors, 94–95, 96
chemotherapy, 2, 23–24
Chen, Lieping, 64
Chhabra, Yash, 79–80
children: childhood cancers, 23–24, 51; melanoma awareness programs, 66

cadmium-induced molecular carcinogenesis, 29
chronic inflammation, 56
claudins, 43

collaboration: in grant writing, 47, 100; in research, 31, 34, 40, 68–69, 70–71, 74–75, 100

collagen, 7, 10, 80

colon cancer: and beta-catenin, 36; of De Bruyn, xxi, xxii; genetic evolution of, 27; immunotherapy, 99; increase in young people, 88; screening, 88, 92
communication, cellular: and dynamic reciprocity, 50; with exosomes, 19, 21, 77; and fibroblasts, 9, 10, 19–21, 55–56; and metastasis, 16, 17, 18–21, 29–30; as research focus, 45, 99–100; and Wnt5A and Wnt family, 36–39, 53
congenital nevi, 14
Cori, Carl, 61
Cori, Gerty, 61
costs of research, 46–47
COVID-19, 61, 76
cutaneous melanoma, 13

cutaneous system. See skin

Daniels, Ron, 66
De Bruyn, Carla, xxi–xxii
dendritic cells, 83, 84
dermis: and aging, 10; and metastasis, 8, 10, 13; structure of, 6–7
detection, early, 85, 88, 92–93
diagnosis, biopsy for, 14–15
Diaz, Luis, 99
diet, 86, 88–89, 96
Dissanayake, Samudra, 59
diversity in research, 59, 60–61, 62, 68, 78
DNA: and APE1, 53; damage and cancer risk, 20, 22; damage from UV exposure, 90; experiment at first job, xxvii; and gene modification, 11–12
INDEX

Douglass, Stephen, 77

dysplastic nevi, 14

Edgar, Rich, xxv

effector T cells, 20, 56

elastin, 7

Engeblad, Mikala, 64

environmental factors: genetic damage from, 87, 95; and prevention, 87–94

epidermis: and aging, 10; and melanoma staging, 15–16; and metastasis, 8, 10; structure of, 6–7

excisional biopsy, 15

exercise, 86, 88–89, 91, 96

exosomes, 19, 21, 77

extracellular matrix: and artificial skin, 73; research history, 64; role of fibroblasts in, 80; in skin structure, 7; and tumor growth, 50

family histories, 11, 92

Fane, Mitchell, 76–77

Farber, Sidney, 23

FATP2, 21, 78

fats, 21, 52, 78

fatty acid oxidation, 78

fatty acid uptake, 78

fibroblasts: and aging, 76–80; and artificial skin, 71, 72–73; in cellular life cycle, 20; communication with cancer cells, 9, 10, 19–21, 55–56; and gender, 79–80; and metastasis, 9, 10, 58; and metastasis locations, 58; role of, 9, 55, 80

foreskins, artificial skin from, 72–73

frogs, Wnt5A in, 37

funding of research, 46–47

gender: and melanoma, 12–13, 79–80; and skin, 79–80

genes: defined, 11; gene expression, 11–12, 30, 31, 34; gene modification, 11–12; genetic damage and age, 42, 52, 53, 81; genetic damage from behavioral and environmental factors, 87, 95; genetic evolution of colon cancer, 27

genetic factors: and cancer risk, 11, 85; genetic damage from behavioral and environmental factors, 87, 95; in historical research, 3; and immune system, 85; and metastasis, 8

George Washington University, 26, 29–30

Ghobrial, Irene, 64

glutamine, 78

grants, 44–45, 46–47, 100

Green, W. T., 71

“Grow or Go” paradox, 35–39

health care plans and screening, 92

Herlyn, Meenhard, 34, 72

Heuser, Laura, 77

histones, 11–12

Hong, Waun Ki, 64

Hong Ge, 1

Honjo, Tasuku, 94

Hortobagyi, Gabriel, 64
immigrants: role in research, 46, 59–64, 77; and visas, 26, 46, 59–60, 62

immune-cell therapy. See immunotherapy

immune checkpoint inhibitors, 94–95, 96

immune system: adaptive, 84–85; and aging, 51, 56, 77, 83; and antigens, 38–39; and cellular communication, 19; effectiveness of, 84–85; hiding/dormancy of tumors, xvi, 38–39, 77, 86; innate, 84; macrophages, 56, 84; mechanism of, 84–85; monocytes, 82; neutrophils, 56, 84; and skin, 6; suppressor cells, 19. See also microenvironment; T cells

immunotherapy, 57–58, 84, 94–98, 99

implantation in cellular life cycle, 20

incisional biopsy, 15

inflammaging, 56–57

inflammation, 53, 56–57

initiation in cellular life cycle, 20

Integra, 71

invasion in cellular life cycle, 20

Isaacs, John, 30

Issa, Jean-Pierre, 64

Jaffee, Liz, 99

Jain, Rakesh, 64

Johns Hopkins University: author’s early research at, 30–39; move to, 65–68

Kang, Yibin, 64

Kariko, Katalin, 61

Kaur, Aman, 59

keratinocytes, 13, 73

Kugel, Curt, III, 59

lab organization and equipment, 69–70, 73–74

Lane-Claypon, Janet, 3

Langer, Robert, 71–72

Langerhans cells, 6–7

Leotlela, Poloko, 59

leukemia, childhood, 23–24

Li, Min Chiu, 64

life expectancy: average, 3; and increase in cancer, 2, 3, 52, 53, 82

Longo, Dan, 40

lung cancer, screening for, 88, 92

lymph nodes: biopsy of, 15; metastases and age, 58; and staging, 15–16

MacKenzie, Ellen, 66

macrophages, 56, 84

Marino, Gloria, 7, 73–74

Marley, Bob, 13

mast cells, 84

McAllister, Sandra, 58

melanin, 7, 13, 14

melanocytes: and melanoma, 8–11, 13; structure and role of, 7

melanoma: aging, research findings on, 50–58, 76–79; aging and risk of, 3, 9–11; angiogenesis in, 16–17; awareness programs, 66; described, 5–11; diagnosis, 14–15; forms of, 13–14; and gender, 12–13, 79–80; rates of, 5–6, 12; remission
rates, 100; as research focus, 34–35; risk factors, 6, 11–12, 14; screening for, 92; and skin color, 6, 11, 14; staging, 13, 15–16; survival rates, 6, 12–13, 16, 96–97. See also metastasis; treatment

metastasis: and aging, 51, 58, 76–77, 86; biopsy and imaging for, 14–15; and cell senescence, 41; and cellular communication, 16, 17, 18–21, 29–30; in cellular life cycle, 20; defined, 4; distal, 20, 58; dormancy and early spread, xvi, 38–39, 77, 86; and fats, 52, 78; and fibroblasts, 9, 10, 58; “Grow or Go” paradox, 35–39; locations of, 13–14, 17–18, 20, 58, 76–77; mechanism of, 8–11, 17–18; and microenvironment, 8–9, 18, 29–30, 58; in ovarian cancer, 43; as research focus for author, 25, 29–30, 76–77; “seed and soil” hypothesis, 18; and staging, 16; triggers, 8; and Wnt5A, 31, 34, 35–39 mice, age of in research, 48, 50, 57 microarray analysis, 30, 31 microbiome, 56, 96 microenvironment: and aging, 41, 51, 53–54, 58, 77; and cell plasticity, 49–50; defined, 8; and genetic damage, 87; homeostasis, 55; and metastasis, 8–9, 18, 29–30, 58; and metastasis locations, 58; “seed and soil” hypothesis, 18; and therapy resistance, 53–54; and tissue architecture in breast cancer, 49–50 moles, 13–15 monoclonal antibodies, 94 monocytes, 82 Moon, Randall, 37 Morin, Pat J., 31, 32, 36, 43, 62 mortality: and age, 51; cancer deaths in author’s life, xx, xxi–xxii; from cardiovascular disease, 91; and treating vs. curing cancer, 85 mucosal melanoma, 13 Mukherjee, Siddhartha, 3 myeloid-derived suppressor cells, 19, 20, 56 National Institute on Aging, 35, 39–42, 48–49 neutrophils, 56, 84 nevi. See moles Nobel laureates, 61, 62–63, 94 obesity, 85, 88 O’Connell, Michael, 59 ocular melanoma, 13 Olopade, Olufunmilayo, 64 oncogene activation, 95 ovarian cancer and claudins, 43 p53 gene, 27 p53 protein, 56 Paget, Stephen, 18 pancreatic cancer, 99 Patierno, Steve, 29 Paul of Aegina, 1 Pinkel, Donald, 23, 24 plasticity, cell, 49–50
Polyak, Kornelia, 64
Pott, Percivall, 2
prevention tips, 86–94
proliferation in cellular life cycle, 20
prostate cancer: and metastasis locations, 17; as research focus, 30; screening for, 88, 92
pseudo senescence, 41
publishing research, 47, 100

Raza, Azra, 64, 87
research: and age of research subjects, 48, 50, 52–53, 57; challenges of, 22–23; and collaboration, 31, 34, 40, 68–69, 70–71, 74–75, 100; costs and funding of, 46–47; criticism of, 24; diversity in, 59, 60–61, 62, 68, 78; future trends in, 98–101; history and evolution of, 1–4, 23–24, 61–64; publishing, 47, 100; role of immigrants in, 46, 59–64, 77; transferability of between cancer types, 99
retinoblastoma proteins, 56
Rhazes, 1–2
risk factors: aging as, 42, 88; DNA damage as, 20, 22; genetic factors, 11, 85; for melanoma, 6, 11–12, 14
Rosenberg, Steven, 94
Rothman, Paul, 66, 67

salaries, 46
scaffolding and tissue engineering, 71–72
screening and detection, 85, 88, 92–93
scrotum cancer, 2
“seed and soil” hypothesis, 18

self-examination, 92
senescence, cell, 40–41, 45, 55, 56
sFRP2 gene, 53
sFRP2 protein, 53
Sharfstein, Josh, 66
Sharpe, T. J., 97–98
signaling. See communication, cellular
Silastic, 71
skin: and aging, 7, 10–11, 50, 76–80; artificial, 70, 72–74; color and melanin, 7, 14; color and melanoma risk, 6, 11, 14; and gender, 79–80; moles, 13–15; structure and role of, 6–7. See melanoma
skin biopsy, 14–15
skin cancer. See melanoma
smoking, 85, 86, 87, 91
Stage I, 15–16
Stage II, 16
Stage III, 16
Stage IV, 16, 96–97
staging: breast cancer, 43; melanoma, 15–16
St. Mary’s College, xxiii–xxvii
sunscreen, 66, 89–90
survival rates: breast cancer, 85; childhood leukemia, 24; and gender, 12–13; melanoma, 6, 12–13, 16, 96–97
tanning and sun exposure: avoiding, 86, 87, 89–91; damage from, 6, 13, 19, 66, 85
T cells: and aging, 56, 77; in cellular life cycle, 20; effector T cells, 20, 56; exhaustion and Wnt5A, 77; immunother-
apy with, 94–96; role of, 83, 84; T-cell co-stimulatory signal, 95; T regulatory cells, 19
T-cell transfer therapy, 94
therapy resistance: and age, 51, 54; and microenvironment, 53–54; and role of fats and glutamine, 78; and Wnt5A, 31, 36
tissue engineering, 70–72
treatment: and age, 5, 10, 48, 51–58, 79, 83, 95–96; chemotherapy, 2, 23–24; and diet, 89, 96; immunotherapy, 57–58, 84, 94–98, 99; lack of single treatment for all cancers, 4–5; managing vs. curing, 83–84; and microbiome, 96; and research future, 98–101; and survival rates, 96–97; and therapy resistance, 31, 36, 51, 53–54, 78
T regulatory cells, 19
Trent, Jeff, 30–34, 39
Tucker, Grace, xix
tumorigenesis, 57
tumors: angiogenesis, 17; and cell senescence, 41; cellular life cycle, 20; and checkpoints, 95, 96; and extracellular matrix, 50; and fibroblasts, 19–21, 55–56, 78; “Grow or Go” paradox, 35–39; hiding/dormancy of, xvi, 38–39, 77, 86; historical accounts of, 1; and inflammaging, 56–57; and melanoma staging, 13, 15–16; research contributions by immigrants, 61, 64, 77; “seed and soil” hypothesis, 18; tumorigenesis, 57. See communication, cellular; metastasis; microenvironment
ultraviolet rays, 89–91
Vacanti, Joseph “Jay,” 71–72
vaccines, 99
Van Dang, Chi, 64
vegan/vegetarian diet, 89
Vemurafenib, 54
visas, 26, 46, 59–60, 62
Vogelstein, Bert, 26–29, 36, 99
Vuori, Kristiina, 64
Wargo, Jen, 96
Webster, Marie, 59
Weararatna, Gerald William, xi–xii, xxiii–xxiv, 32, 33, 34
Werb, Zena, 61, 64
Wickramasinghe, Carmen Lorette, xix–xx, xxi, xxii, xxiii–xxiv, xxv
Wickramasinghe, Leslie, xix–xx
Wirtz, Denis, 62, 65–66
The Wistar Institute, 43–45, 48, 50–58, 66, 67–68
Wnt5A and Wnt family: and aging, 77; and metastasis, 31, 34, 35–39; as research focus, 31, 34; signaling by, 36–39, 53; and T cell exhaustion, 77; and therapy resistance, 31, 36
Wolverton, Mark, 81
Worrede, Asurayya, 90
Yannas, Ioannis, 71
Yates, Jerry, 24
Zabransky, Dan, 99