In lieu of an abstract, here is a brief excerpt of the content:

  • Magnavox and Intel:An Odyssey
  • Stanley Mazor (bio) and Peter Salmon

Today we have high-resolution videogames connected to our television sets, but let us reflect on a pioneering system in this field from 30 years ago. As an Intel applications engineer in 1976, my job (Mazor) was to find new customer applications for microcomputers and to translate customer needs to chip designers like Peter Salmon, who used our technology to solve customer problems. Analog integrated circuits (ICs) were prominently used in the entertainment products, but digital circuits were just making their debut—particularly with digital readouts for time, station, and counters. I visited manufacturers of videogames, gambling machines, pinball machines, and consumer electronics to find new microcomputer applications. Although microcomputers are versatile, they were not fast enough to deliver a video stream in real time. Hence, additional circuitry was needed between a microcomputer and a TV monitor. Arcade videogames and gaming machines used a large amount of video screen buffer memory and ICs, along with microcomputers and ROM resident game-control programs.

Unlike arcade videogames that are produced in the thousands, consumer products are sold in the millions. Accordingly, several special factors strongly differentiate consumer products. First, because these products are mostly bought at Christmas, retail stores make their choices and place orders at the June Consumer Electronic Show (CES) and stock them in September. At CES, retailers are particularly concerned with whether a demonstration is a "real" product that will be available in volume that year. Second, home videogames need Federal Communications Commission (FCC) approval to insure they do not radiate energy, which in addition to normal design and manufacturing issues, causes an unpredictable delay. Missing any of these deadlines would delay a consumer product's release an entire year. Third, consumer products are extremely cost sensitive and there is a sweet spot—usually in the $100 to $150 retail price range—that severely impacts design choices.

Magnavox contracted with Intel for a custom videogame "stunt" chip (8244)1,2 in 1977. As the Intel liaison, my job was to work with the Magnavox designers and project managers to stay within all these restrictions and produce the IC chip for less than $20 each.

Magnavox Odyssey game console

Magnavox enjoyed considerable success with its Odyssey analog home TV Pong game (1973), but they wanted to build a more versatile and programmable console. Based on the proliferation of arcade games by Midway, Bally, and Atari, Magnavox launched the Odyssey2 project (http://odyssey2.classicgaming.gamespy.com/articles/timeline/index.php) to build a home game console featuring ROM game cartridges because the company realized that more money could be made from selling cartridges than from the console itself. This home game console connected to the antenna input on a TV set and used a custom Intel videogame chip, controlled by a microcomputer, that ran a game program from a removable ROM cartridge (see Figure 1). This system had both keyboard and joy stick inputs to allow truly interactive games. Magnavox developed approximately 30 different ROM game cartridges, mostly designed by a contractor. Many of these games were first popularized by arcade videogames (quarter eaters).

A standard TV screen has more than 300,000 pixels, so approximately 4 million RAM bits are needed to store a colored image, and that's just using 4-bits per color. (TV displays use an additive red, blue, green [RBG] color model.) Most arcade videogames had more colors and used more memory. But in 1976, RAM was expensive and was not practical for low-cost home TV games. Intel and Magnavox overcame this problem by having just four one-inch squares of colored video (a sprite) that could be placed anywhere on the screen. This made it possible to deploy colored objects on the screen with a minimum of RAM at a minimum cost. Additional chip facilities included a character generator for text and numbers. The example screen in Figure 2 shows that the graphics were pretty primitive by modern standards, but this was state-of-the art in 1980.

Intel 8244 chip

As the Intel liaison to Magnavox on the Intel 8244 chip, I made monthly trips in 1977 to Fort Wayne Indiana...

pdf

Share