publisher colophon



    [1]   A. Abanov and A. V. Chubukov, Spin-Fermion Model near the Quantum Critical Point: One-Loop Renormalization Group Results, Phys. Rev. Lett. 84 (2000) 5608, [cond-mat/0002122].

    [2]   A. Abanov, A. V. Chubukov, and A. M. Finkel’stein, Coherent vs. incoherent pairing in 2D systems near magnetic instability, Europhys. Lett. 54 (2001) 488, [cond-mat/9911445].

    [3]   A. Abanov, A. V. Chubukov, and J. Schmalian, Quantum-critical theory of the spin-fermion model and its application to cuprates: Normal state analysis, Adv. Phys. 52 (2003) 119.

    [4]   B. P. Abbott et al., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116 (2016) 061102.

    [5]   A. A. Abrikosov, Calculation of critical indices for zero-gap semiconductors, Sov. Phys. JETP 39 (1974) 709.

    [6]   A. A. Abrikosov and S. D. Beneslavskii, Possible existence of substances intermediate between metals and dielectrics, Sov. Phys. JETP 32 (1971) 699.

    [7]   A. Adam, B. Crampton, J. Sonner, and B. Withers, Bosonic Fractionalisation Transitions, JHEP 01 (2013) 127, [arXiv:1208.3199].

    [8]   A. Adams, K. Balasubramanian, and J. McGreevy, Hot Spacetimes for Cold Atoms, JHEP 11 (2008) 059, [arXiv:0807.1111].

    [9]   A. Adams, P. M. Chesler, and H. Liu, Holographic Vortex Liquids and Superfluid Turbulence, Science 341 (2013) 368, [arXiv:1212.0281].

  [10]   A. Adams, P. M. Chesler, and H. Liu, Holographic turbulence, Phys. Rev. Lett. 112 (2014) 151602, [arXiv:1307.7267].

  [11]   A. Adams, A. Maloney, A. Sinha, and S. E. Vazquez, 1/N Effects in Non-Relativistic Gauge-Gravity Duality, JHEP 03 (2009) 097, [arXiv:0812.0166].

  [12]   A. Adams, D. A. Roberts, and O. Saremi, Hawking-Page transition in holographic massive gravity, Phys. Rev. D91 (2015) 046003, [arXiv:1408.6560].

  [13]   A. Adams and S. Yaida, Disordered holographic systems: Marginal relevance of imperfection, Phys. Rev. D90 (2014) 046007, [arXiv:1201.6366].

  [14]   A. Adams and S. Yaida, Disordered holographic systems: Functional renormalization, Phys. Rev. D92 (2015) 126008, [arXiv:1102.2892].

  [15]   O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091, [arXiv:0806.1218].

  [16]   O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183, [hep-th/9905111].

  [17]   O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas, and M. Van Raamsdonk, The Hagedorn - deconfinement phase transition in weakly coupled large N gauge theories, Adv. Theor. Math. Phys. 8 (2004) 603–696, [hep-th/0310285].

  [18]   T. Albash, V. G. Filev, C. V. Johnson, and A. Kundu, A Topology-changing phase transition and the dynamics of flavour, Phys. Rev. D77 (2008) 066004, [hep-th/0605088].

  [19]   T. Albash and C. V. Johnson, Vortex and Droplet Engineering in Holographic Superconductors, Phys. Rev. D80 (2009) 126009, [arXiv:0906.1795].

  [20]   L. Alberte, M. Baggioli, A. Khmelnitsky, and O. Pujolas, Solid Holography and Massive Gravity, JHEP 02 (2016) 114, [arXiv:1510.09089].

  [21]   L. Alberte and A. Khmelnitsky, Stability of Massive Gravity Solutions for Holographic Conductivity, Phys. Rev. D91 (2015) 046006, [arXiv:1411.3027].

  [22]   I. L. Aleiner, L. Faoro, and L. B. Ioffe, Microscopic model of quantum butterfly effect: out-of-time-order correlators and traveling combustion waves, Ann. Phys. 375 (2016) 378, [arXiv:1609.01251].

  [23]   V. Alexandrov and P. Coleman, Spin and holographic metals, Phys. Rev. B86 (2012) 125145, [arXiv:1204.6310].

  [24]   A. Allais and J. McGreevy, How to construct a gravitating quantum electron star, Phys. Rev. D88 (2013) 066006, [arXiv:1306.6075].

  [25]   A. Allais, J. McGreevy, and S. J. Suh, A quantum electron star, Phys. Rev. Lett. 108 (2012) 231602, [arXiv:1202.5308].

  [26]   A. Almheiri and J. Polchinski, Models of AdS2 backreaction and holography, JHEP 11 (2015) 014, [arXiv:1402.6334].

  [27]   J. Alsup, E. Papantonopoulos, G. Siopsis, and K. Yeter, Duality between zeroes and poles in holographic systems with massless fermions and a dipole coupling, Phys. Rev. D90 (2014) 126013, [arXiv:1404.4010].

  [28]   B. L. Altshuler, A. V. Chubukov, A. Dashevskii, A. M. Finkel’stein, and D. K. Morr, Luttinger theorem for a spin-density-wave state, Europhys. Lett. 41 (1998) 401, [cond-mat/9703120].

  [29]   I. Amado, D. Areán, A. Jiménez-Alba, K. Landsteiner, L. Melgar, and I. Salazar Landea, Holographic Superfluids and the Landau Criterion, JHEP 02 (2014) 063, [arXiv:1307.8100].

  [30]   I. Amado, M. Kaminski, and K. Landsteiner, Hydrodynamics of Holographic Superconductors, JHEP 05 (2009) 021, [arXiv:0903.2209].

  [31]   I. Amado and A. Yarom, Black brane steady states, JHEP 10 (2015) 015, [arXiv:1501.01627].

  [32]   M. Ammon and J. Erdmenger, Gauge/Gravity Duality: Foundations and Applications. Cambridge University Press, 2015.

  [33]   M. Ammon, J. Erdmenger, V. Grass, P. Kerner, and A. O’Bannon, On Holographic p-wave Superfluids with Back-reaction, Phys. Lett. B686 (2010) 192, [arXiv:0912.3515].

  [34]   M. Ammon, J. Leiber, and R. P. Macedo, Phase diagram of 4D field theories with chiral anomaly from holography, JHEP 03 (2016) 164, [arXiv:1601.02125].

  [35]   A. Amoretti, A. Braggio, N. Maggiore, N. Magnoli, and D. Musso, Thermo-electric transport in gauge/gravity models with momentum dissipation, JHEP 09 (2014) 160, [arXiv:1406.4134].

  [36]   A. Amoretti, A. Braggio, N. Maggiore, N. Magnoli, and D. Musso, Analytic dc thermoelectric conductivities in holography with massive gravitons, Phys. Rev. D91 (2015) 025002, [arXiv:1407.0306].

  [37]   A. Amoretti and D. Musso, Magneto-transport from momentum dissipating holography, JHEP 09 (2015) 094, [arXiv:1502.02631].

  [38]   R. J. Anantua, S. A. Hartnoll, V. L. Martin, and D. M. Ramirez, The Pauli exclusion principle at strong coupling: Holographic matter and momentum space, JHEP 03 (2013) 104, [arXiv:1210.1590].

  [39]   P. W. Anderson, Resonating valence bonds: A new kind of insulator?, Mat. Res. Bull. 8 (1973) 153.

  [40]   P. W. Anderson, Hall effect in the two-dimensional Luttinger liquid, Phys. Rev. Lett. 67 (1991) 2092.

  [41]   T. Andrade and S. F. Ross, Boundary conditions for scalars in Lifshitz, Class. Quant. Grav. 30 (2013) 065009, [arXiv:1212.2572].

  [42]   T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP 05 (2014) 101, [arXiv:1311.5157].

  [43]   A. V. Andreev, S. A. Kivelson, and B. Spivak, Hydrodynamic description of transport in strongly correlated electron systems, Phys. Rev. Lett 106 (2011) 256804, [arXiv:1011.3068].

  [44]   D. Anninos, De Sitter Musings, Int. J. Mod. Phys. A27 (2012) 1230013, [arXiv:1205.3855].

  [45]   D. Anninos, T. Anous, F. Denef, and L. Peeters, Holographic Vitrification, JHEP 04 (2015) 027, [arXiv:1309.0146].

  [46]   D. Anninos, S. A. Hartnoll, and N. Iqbal, Holography and the Coleman-Mermin-Wagner theorem, Phys. Rev. D82 (2010) 066008, [arXiv:1005.1973].

  [47]   T. Anous, T. Hartman, A. Rovai, and J. Sonner, Black Hole Collapse in the 1/c Expansion, JHEP 07 (2016) 123, [arXiv:1603.04856].

  [48]   T. Appelquist, D. Nash, and L. Wijewardhana, Critical behavior in (2 + 1)-dimensional QED, Phys. Rev. Lett. 60 (1988) 2575.

  [49]   D. Arean, P. Basu, and C. Krishnan, The Many Phases of Holographic Superfluids, JHEP 10 (2010) 006, [arXiv:1006.5165].

  [50]   D. Arean, M. Bertolini, J. Evslin, and T. Prochazka, On Holographic Superconductors with DC Current, JHEP 07 (2010) 060, [arXiv:1003.5661].

  [51]   D. Arean, M. Bertolini, C. Krishnan, and T. Prochazka, Quantum Critical Superfluid Flows and Anisotropic Domain Walls, JHEP 09 (2011) 131, [arXiv:1106.1053].

  [52]   P. B. Arnold, G. D. Moore, and L. G. Yaffe, Transport coefficients in high temperature gauge theories. 1. Leading log results, JHEP 11 (2000) 001, [hep-ph/0010177].

  [53]   P. B. Arnold and L. G. Yaffe, Effective theories for real time correlations in hot plasmas, Phys. Rev. D57 (1998) 1178, [hep-ph/9709449].

  [54]   X. Arsiwalla, J. de Boer, K. Papadodimas, and E. Verlinde, Degenerate Stars and Gravitational Collapse in AdS/CFT, JHEP 01 (2011) 144, [arXiv:1010.5784].

  [55]   R. Auzzi, S. Elitzur, S. B. Gudnason, and E. Rabinovici, On periodically driven AdS/CFT, JHEP 11 (2013) 016, [arXiv:1308.2132].

  [56]   S. Badoux, W. Tabis, F. Laliberté, G. Grissonnanche, B. Vignolle, D. Vignolles, J. Béard, D. A. Bonn, W. N. Hardy, R. Liang, N. Doiron-Leyraud, L. Taillefer, and C. Proust, Change of carrier density at the pseudogap critical point of a cuprate superconductor, Nature 531 (2016) 210, [arXiv:1511.08162].

  [57]   M. Baggioli, B. Goutéraux, E. Kiritsis, and W.-J. Li, Higher derivative corrections to incoherent metallic transport in holography, arXiv:1612.05500.

  [58]   M. Baggioli and O. Pujolas, Electron-Phonon Interactions, Metal-Insulator Transitions, and Holographic Massive Gravity, Phys. Rev. Lett. 114 (2015) 251602, [arXiv:1411.1003].

  [59]   M. Baggioli and O. Pujolas, On holographic disorder-driven metal-insulator transitions, arXiv:1601.07897.

  [60]   I. Bah, A. Faraggi, J. I. Jottar, and R. G. Leigh, Fermions and Type IIB Supergravity On Squashed Sasaki-Einstein Manifolds, JHEP 01 (2011) 100, [arXiv:1009.1615].

  [61]   I. Bah, A. Faraggi, J. I. Jottar, R. G. Leigh, and L. A. Pando Zayas, Fermions and D = 11 Supergravity On Squashed Sasaki-Einstein Manifolds, JHEP 02 (2011) 068, [arXiv:1008.1423].

  [62]   S. Bai and D.-W. Pang, Holographic charge transport in 2+1 dimensions at finite N, Int. J. Mod. Phys. A29 (2014) 1450061, [arXiv:1312.3351].

  [63]   K. Balasubramanian and C. P. Herzog, Losing Forward Momentum Holographically, Class. Quant. Grav. 31 (2014) 125010, [arXiv:1312.4953].

  [64]   K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601, [arXiv:0804.4053].

  [65]   K. Balasubramanian and J. McGreevy, The Particle number in Galilean holography, JHEP 01 (2011) 137, [arXiv:1007.2184].

  [66]   K. Balasubramanian and K. Narayan, Lifshitz spacetimes from AdS null and cosmological solutions, JHEP 08 (2010) 014, [arXiv:1005.3291].

  [67]   D. A. Bandurin, I. Torre, R. K. Kumar, M. Ben Shalom, A. Tomadin, A. Principi, G. H. Auton, E. Khestanova, K. S. Novoselov, I. V. Grigorieva, L. A. Ponomarenko, A. K. Geim, and M. Polini, Negative local resistance caused by viscous electron backflow in graphene, Science 351 (2016) 1055, [arXiv:1509.04165].

  [68]   N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Dutta, R. Loganayagam, and P. Surowka, Hydrodynamics from charged black branes, JHEP 01 (2011) 094, [arXiv:0809.2596].

  [69]   N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Jain, S. Minwalla, and T. Sharma, Constraints on Fluid Dynamics from Equilibrium Partition Functions, JHEP 09 (2012) 046, [arXiv:1203.3544].

  [70]   E. Banks, A. Donos, and J. P. Gauntlett, Thermoelectric DC conductivities and Stokes flows on black hole horizons, JHEP 10 (2015) 103, [arXiv:1507.00234].

  [71]   E. Banks and J. P. Gauntlett, A new phase for the anisotropic N=4 super Yang-Mills plasma, JHEP 09 (2015) 126, [arXiv:1506.07176].

  [72]   H. Bantilan, J. T. Brewer, T. Ishii, W. E. Lewis, and P. Romatschke, String-theory-based predictions for nonhydrodynamic collective modes in strongly interacting Fermi gases, Phys. Rev. A94 (2016) 033621, [arXiv:1605.00014].

  [73]   N. Bao, X. Dong, S. Harrison, and E. Silverstein, The Benefits of Stress: Resolution of the Lifshitz Singularity, Phys. Rev. D86 (2012) 106008, [arXiv:1207.0171].

  [74]   N. Bao, S. Harrison, S. Kachru, and S. Sachdev, Vortex Lattices and Crystalline Geometries, Phys. Rev. D88 (2013) 026002, [arXiv:1303.4390].

  [75]   R. A. Barankov and L. S. Levitov, Synchronization in the BCS Pairing Dynamics as a Critical Phenomenon, Phys. Rev. Lett. 96 (2006) 230403.

  [76]   J. M. Bardeen, B. Carter, and S. Hawking, The Four laws of black hole mechanics, Commun. Math. Phys. 31 (1973) 161.

  [77]   G. Baskaran and P. W. Anderson, Gauge theory of high-temperature superconductors and strongly correlated Fermi systems, Phys. Rev. B37 (1988) 580.

  [78]   P. Basu, Low temperature properties of holographic condensates, JHEP 03 (2011) 142, [arXiv:1101.0215].

  [79]   P. Basu, J. He, A. Mukherjee, M. Rozali, and H.-H. Shieh, Competing Holographic Orders, JHEP 10 (2010) 092, [arXiv:1007.3480].

  [80]   P. Basu, J. He, A. Mukherjee, and H.-H. Shieh, Hard-gapped Holographic Superconductors, Phys. Lett. B689 (2010) 45, [arXiv:0911.4999].

  [81]   P. Basu, A. Mukherjee, and H.-H. Shieh, Supercurrent: Vector Hair for an AdS Black Hole, Phys. Rev. D79 (2009) 045010, [arXiv:0809.4494].

  [82]   R. Belliard, S. S. Gubser, and A. Yarom, Absence of a Fermi surface in classical minimal four-dimensional gauged supergravity, JHEP 10 (2011) 055, [arXiv:1106.6030].

  [83]   F. Benini, C. P. Herzog, R. Rahman, and A. Yarom, Gauge gravity duality for d-wave superconductors: prospects and challenges, JHEP 11 (2010) 137, [arXiv:1007.1981].

  [84]   F. Benini, C. P. Herzog, and A. Yarom, Holographic Fermi arcs and a d-wave gap, Phys. Lett. B701 (2011) 626, [arXiv:1006.0731].

  [85]   E. Berg, M. A. Metlitski, and S. Sachdev, Sign-Problem-Free Quantum Monte Carlo of the Onset of Antiferromagnetism in Metals, Science 338 (2012) 1606, [arXiv:1206.0742].

  [86]   O. Bergman, N. Jokela, G. Lifschytz, and M. Lippert, Striped instability of a holographic Fermi-like liquid, JHEP 10 (2011) 034, [arXiv:1106.3883].

  [87]   D. Bernard and B. Doyon, Energy flow in non-equilibrium conformal field theory, J. Phys. A45 (2012) 362001, [arXiv:1202.0239].

  [88]   M. J. Bhaseen, B. Doyon, A. Lucas, and K. Schalm, Energy flow in quantum critical systems far from equilibrium, Nature Phys. 11 (2015) 509, [arXiv:1311.3655].

  [89]   M. J. Bhaseen, J. P. Gauntlett, B. D. Simons, J. Sonner, and T. Wiseman, Holographic Superfluids and the Dynamics of Symmetry Breaking, Phys. Rev. Lett. 110 (2013) 015301, [arXiv:1207.4194].

  [90]   J. Bhattacharya, S. Bhattacharyya, and S. Minwalla, Dissipative Superfluid dynamics from gravity, JHEP 04 (2011) 125, [arXiv:1101.3332].

  [91]   J. Bhattacharya, S. Bhattacharyya, S. Minwalla, and A. Yarom, A Theory of first order dissipative superfluid dynamics, JHEP 05 (2014) 147, [arXiv:1105.3733].

  [92]   S. Bhattacharyya, V. E. Hubeny, S. Minwalla, and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP 02 (2008) 045, [arXiv:0712.2456].

  [93]   S. Bhattacharyya and S. Minwalla, Weak Field Black Hole Formation in Asymptotically AdS Spacetimes, JHEP 09 (2009) 034, [arXiv:0904.0464].

  [94]   F. Bigazzi, R. Casero, A. Cotrone, E. Kiritsis, and A. Paredes, Non-critical holography and four-dimensional CFT’s with fundamentals, JHEP 10 (2005) 012, [hep-th/0505140].

  [95]   T. P. Billam, M. T. Reeves, and A. S. Bradley, Spectral energy transport in two-dimensional quantum vortex dynamics, Phys. Rev. A91 (2015) 023615, [arXiv:1411.5755].

  [96]   D. Birmingham, I. Sachs, and S. N. Solodukhin, Conformal field theory interpretation of black hole quasinormal modes, Phys. Rev. Lett. 88 (2002) 151301, [hep-th/0112055].

  [97]   K. Bitaghsir Fadafan, Conductivity bound from dirty black holes, Phys. Lett. B762 (2016) 399, [arXiv:1602.05943].

  [98]   M. Blake, Magnetotransport from the fluid/gravity correspondence, JHEP 10 (2015) 078, [arXiv:1507.04870].

  [99]   M. Blake, Momentum relaxation from the fluid/gravity correspondence, JHEP 09 (2015) 010, [arXiv:1505.06992].

[100]   M. Blake, Universal Charge Diffusion and the Butterfly Effect, Phys. Rev. Lett. 117 (2016) 091601, [arXiv:1603.08510].

[101]   M. Blake, Universal Diffusion in Incoherent Black Holes, arXiv:1604.01754.

[102]   M. Blake and A. Donos, Quantum Critical Transport and the Hall Angle, Phys. Rev. Lett. 114 (2015) 021601, [arXiv:1406.1659].

[103]   M. Blake and A. Donos, Diffusion and Chaos from near AdS2 horizons, arXiv:1611.09380.

[104]   M. Blake, A. Donos, and N. Lohitsiri, Magnetothermoelectric Response from Holography, JHEP 08 (2015) 124, [arXiv:1502.03789].

[105]   M. Blake, A. Donos, and D. Tong, Holographic Charge Oscillations, JHEP 04 (2015) 019, [arXiv:1412.2003].

[106]   M. Blake and D. Tong, Universal Resistivity from Holographic Massive Gravity, Phys. Rev. D88 (2013) 106004, [arXiv:1308.4970].

[107]   M. Blake, D. Tong, and D. Vegh, Holographic Lattices Give the Graviton an Effective Mass, Phys. Rev. Lett. 112 (2014) 071602, [arXiv:1310.3832].

[108]   F. Bloch, Über die Quantenmechanik der Elektronen in Kristallgittern, Z. Phys. 52 (1929) 555.

[109]   F. Bloch, Zum elektrischen Widerstandsgesetz bei tiefen Temperaturen, Z. Phys. 59 (1930) 208.

[110]   M. Born and L. Infeld, Foundations of the new field theory, Proc. Roy. Soc. Lond. A144 (1934) 425.

[111]   D. Boyanovsky and J. L. Cardy, Critical behavior of m-component magnets with correlated impurities, Phys. Rev. B26 (1982) 154.

[112]   P. Breitenlohner and D. Z. Freedman, Positive Energy in anti-De Sitter Backgrounds and Gauged Extended Supergravity, Phys. Lett. B115 (1982) 197.

[113]   J. D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207.

[114]   J. A. N. Bruin, H. Sakai, R. S. Perry, and A. P. Mackenzie, Similarity of scattering rates in metals showing T-linear resistivity, Science 339 (2013) 804.

[115]   Y.-Y. Bu, J. Erdmenger, J. P. Shock, and M. Strydom, Magnetic field induced lattice ground states from holography, JHEP 03 (2013) 165, [arXiv:1210.6669].

[116]   A. Buchel, S. L. Liebling, and L. Lehner, Boson stars in AdS spacetime, Phys. Rev. D87 (2013) 123006, [arXiv:1304.4166].

[117]   A. Buchel, R. C. Myers, and A. van Niekerk, Universality of Abrupt Holographic Quenches, Phys. Rev. Lett. 111 (2013) 201602, [arXiv:1307.4740].

[118]   R.-G. Cai, L. Li, L.-F. Li, and R.-Q. Yang, Introduction to Holographic Superconductor Models, Sci. China Phys. Mech. Astron. 58 (2015) 060401, [arXiv:1502.00437].

[119]   R.-G. Cai, L. Li, Y.-Q. Wang, and J. Zaanen, Intertwined order and holography: the case of the pair density wave, arXiv:1706.01470.

[120]   R.-G. Cai and R.-Q. Yang, Paramagnetism-Ferromagnetism Phase Transition in a Dyonic Black Hole, Phys. Rev. D90 (2014) 081901, [arXiv:1404.2856].

[121]   P. Calabrese and J. L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. (2004) P06002, [hep-th/0405152].

[122]   M. M. Caldarelli, A. Christodoulou, I. Papadimitriou, and K. Skenderis, Phases of planar AdS black holes with axionic charge, arXiv:1612.07214.

[123]   X. O. Camanho, J. D. Edelstein, J. Maldacena, and A. Zhiboedov, Causality Constraints on Corrections to the Graviton Three-Point Coupling, JHEP 02 (2016) 020, [arXiv:1407.5597].

[124]   S. Caron-Huot and O. Saremi, Hydrodynamic long-time tails from anti-de-Sitter space, JHEP 11 (2010) 013, [arXiv:0909.4525].

[125]   J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, and U. A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions, arXiv:1101.0618.

[126]   A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81 (2009) 109.

[127]   P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics. Cambridge University Press, Cambridge, 1995.

[128]   S. K. Chakrabarti, S. Chakrabortty, and S. Jain, Proof of universality of electrical conductivity at finite chemical potential, JHEP 02 (2011) 073, [arXiv:1011.3499].

[129]   A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D60 (1999) 064018, [hep-th/9902170].

[130]   H. Chamblin and H. Reall, Dynamic dilatonic domain walls, Nucl. Phys. B562 (1999) 133, [hep-th/9903225].

[131]   H.-C. Chang, A. Karch, and A. Yarom, An ansatz for one dimensional steady state configurations, J. Stat. Mech. (2014) P06018, [arXiv:1311.2590].

[132]   C. Charmousis, B. Gouteraux, B. S. Kim, E. Kiritsis, and R. Meyer, Effective Holographic Theories for low-temperature condensed matter systems, JHEP 11 (2010) 151, [arXiv:1005.4690].

[133]   C.-F. Chen and A. Lucas, Origin of the Drude peak and of zero sound in probe brane holography, arXiv:1709.01520.

[134]   J.-W. Chen, Y.-J. Kao, D. Maity, W.-Y. Wen, and C.-P. Yeh, Towards A Holographic Model of D-Wave Superconductors, Phys. Rev. D81 (2010) 106008, [arXiv:1003.2991].

[135]   J.-W. Chen, Y.-S. Liu, and D. Maity, d + id Holographic Superconductors, JHEP 05 (2011) 032, [arXiv:1103.1714].

[136]   K. Chen, L. Liu, Y. Deng, L. Pollet, and N. Prokof’ev, Universal conductivity in a two-dimensional superfluid-to-insulator quantum critical system, Phys. Rev. Lett. 112 (2014) 030402.

[137]   W. Chen, M. P. Fisher, and Y.-S. Wu, Mott transition in an anyon gas, Phys. Rev. B48 (1993) 13749, [cond-mat/9301037].

[138]   P. Chesler, A. Lucas, and S. Sachdev, Conformal field theories in a periodic potential: results from holography and field theory, Phys. Rev. D89 (2014) 026005, [arXiv:1308.0329].

[139]   P. M. Chesler, A. M. Garcia-Garcia, and H. Liu, Defect Formation beyond Kibble-Zurek Mechanism and Holography, Phys. Rev. X5 (2015) 021015, [arXiv:1407.1862].

[140]   P. M. Chesler and A. Lucas, Vortex annihilation and inverse cascades in two dimensional superfluid turbulence, arXiv:1411.2610.

[141]   P. M. Chesler and L. G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601, [arXiv:0812.2053].

[142]   P. M. Chesler and L. G. Yaffe, Numerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimes, JHEP 07 (2014) 086, [arXiv:1309.1439].

[143]   T. R. Chien, Z. Z. Wang, and N. P. Ong, Effect of Zn impurities on the normal-state Hall angle in single-crystal YBa2Cu3−xZnxO7−δ, Phys. Rev. Lett. 67 (1991) 2088.

[144]   E. Chow, H. P. Wei, S. M. Girvin, and M. Shayegan, Phonon Emission from a 2D Electron Gas: Evidence of Transition to the Hydrodynamic Regime, Phys. Rev. Lett. 77 (1996) 1143, [cond-mat/9605055].

[145]   D. Chowdhury, S. Raju, S. Sachdev, A. Singh, and P. Strack, Multipoint correlators of conformal field theories: implications for quantum critical transport, Phys. Rev. B87 (2013) 085138, [arXiv:1210.5247].

[146]   S. D. Chowdhury, J. R. David, and S. Prakash, Spectral sum rules for conformal field theories in arbitrary dimensions, arXiv:1612.00609.

[147]   A. V. Chubukov and D. L. Maslov, Optical conductivity of a two-dimensional metal near a quantum-critical point: the status of the “extended Drude formula”, arXiv:1707.07352.

[148]   A. V. Chubukov, D. L. Maslov, and V. I. Yudson, Optical conductivity of a two-dimensional metal at the onset of spin-density-wave order, Phys. Rev. B89 (Apr., 2014) 155126, [arXiv:1401.1461].

[149]   P. Coleman, Theory Perspective: SCES 2016, arXiv:1608.02925.

[150]   P. Coleman, I. Paul, and J. Rech, Sum rules and Ward identities in the Kondo lattice, Phys. Rev. B72 (2005) 094430, [cond-mat/0503001].

[151]   S. R. Coleman, 1/N, in Aspects of symmetry. Cambridge University Press, 1985. Available online through KEK preprint server.

[152]   C. Cosnier-Horeau and S. S. Gubser, Holographic Fermi surfaces at finite temperature in top-down constructions, Phys. Rev. D91 (2015) 066002, [arXiv:1411.5384].

[153]   S. Cremonini, The Shear Viscosity to Entropy Ratio: A Status Report, Mod. Phys. Lett. B25 (2011) 1867, [arXiv:1108.0677].

[154]   S. Cremonini and L. Li, Criteria For Superfluid Instabilities of Geometries with Hyperscaling Violation, arXiv:1606.02745.

[155]   S. Cremonini, L. Li, and J. Ren, Holographic Pair and Charge Density Waves, Phys. Rev. D95 (2017) 041901, [arXiv:1612.04385].

[156]   S. Cremonini, L. Li, and J. Ren, Intertwined Orders in Holography: Pair and Charge Density Waves, arXiv:1705.05390.

[157]   S. Cremonini and A. Sinkovics, Spatially Modulated Instabilities of Geometries with Hyperscaling Violation, JHEP 01 (2014) 099, [arXiv:1212.4172].

[158]   M. Crossley, P. Glorioso, and H. Liu, Effective field theory of dissipative fluids, arXiv:1511.03646.

[159]   J. Crossno, J. K. Shi, K. Wang, X. Liu, A. Harzheim, A. Lucas, S. Sachdev, P. Kim, T. Taniguchi, K. Watanabe, T. A. Ohki, and K. C. Fong, Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene, Science 351 (2016) 1058, [arXiv:1509.04713].

[160]   M. Cubrovic, Y. Liu, K. Schalm, Y.-W. Sun, and J. Zaanen, Spectral probes of the holographic Fermi groundstate: dialing between the electron star and AdS Dirac hair, Phys. Rev. D84 (2011) 086002, [arXiv:1106.1798].

[161]   M. Cubrovic, J. Zaanen, and K. Schalm, String Theory, Quantum Phase Transitions and the Emergent Fermi-Liquid, Science 325 (2009) 439, [arXiv:0904.1993].

[162]   M. Cvetič, M. Duff, P. Hoxha, J. T. Liu, H. Lu, et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B558 (1999) 96, [hep-th/9903214].

[163]   M. Cvetič and S. S. Gubser, Phases of R charged black holes, spinning branes and strongly coupled gauge theories, JHEP 04 (1999) 024, [hep-th/9902195].

[164]   M. Cvetič and I. Papadimitriou, AdS2 holographic dictionary, JHEP 12 (2016) 008, [arXiv:1608.07018].

[165]   D. Dalidovich and S.-S. Lee, Perturbative non-Fermi liquids from dimensional regularization, Phys. Rev. B88 (2013) 245106, [arXiv:1307.3170].

[166]   K. Damle and S. Sachdev, Spin dynamics and transport in gapped one-dimensional Heisenberg antiferromagnets at nonzero temperatures, Phys. Rev. B57 (1998) 8307, [cond-mat/9711014].

[167]   K. Damle and S. Sachdev, Nonzero-temperature transport near quantum critical points, Phys. Rev. B56 (1997) 8714.

[168]   S. R. Das, D. A. Galante, and R. C. Myers, Universal scaling in fast quantum quenches in conformal field theories, Phys. Rev. Lett. 112 (2014) 171601, [arXiv:1401.0560].

[169]   S. R. Das, D. A. Galante, and R. C. Myers, Universality in fast quantum quenches, JHEP 02 (2015) 167, [arXiv:1411.7710].

[170]   K. B. Dave, P. W. Phillips, and C. L. Kane, Absence of Luttinger’s Theorem due to Zeros in the Single-Particle Green Function, Phys. Rev. Lett. 110 (2013) 090403, [arXiv:1207.4201].

[171]   P. A. Davison, Turbulence: An Introduction for Scientists and Engineers. Oxford University Press, 2005.

[172]   R. A. Davison, L. V. Delacrétaz, B. Goutéraux, and S. A. Hartnoll, Unpublished,.

[173]   R. A. Davison, Momentum relaxation in holographic massive gravity, Phys. Rev. D88 (2013) 086003, [arXiv:1306.5792].

[174]   R. A. Davison, L. V. Delacrétaz, B. Goutéraux, and S. A. Hartnoll, Hydrodynamic theory of quantum fluctuating superconductivity, Phys. Rev. B94 (2016) 054502, [arXiv:1602.08171].

[175]   R. A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen, and S. Sachdev, Thermoelectric transport in disordered metals without quasiparticles: The Sachdev-Ye-Kitaev models and holography, Phys. Rev. B95 (2017) 155131, [arXiv:1612.00849].

[176]   R. A. Davison and B. Goutéraux, Dissecting holographic conductivities, JHEP 09 (2015) 090, [arXiv:1505.05092].

[177]   R. A. Davison and B. Goutéraux, Momentum dissipation and effective theories of coherent and incoherent transport, JHEP 01 (2015) 039, [arXiv:1411.1062].

[178]   R. A. Davison, B. Goutéraux, and S. A. Hartnoll, Incoherent transport in clean quantum critical metals, JHEP 10 (2015) 112, [arXiv:1507.07137].

[179]   R. A. Davison, M. Goykhman, and A. Parnachev, AdS/CFT and Landau Fermi liquids, JHEP 07 (2014) 109, [arXiv:1312.0463].

[180]   R. A. Davison and N. K. Kaplis, Bosonic excitations of the AdS4 Reissner-Nordstrom black hole, JHEP 12 (2011) 037, [arXiv:1111.0660].

[181]   R. A. Davison and A. Parnachev, Hydrodynamics of cold holographic matter, JHEP 06 (2013) 100, [arXiv:1303.6334].

[182]   R. A. Davison, K. Schalm, and J. Zaanen, Holographic duality and the resistivity of strange metals, Phys. Rev. B89 (2014), no. 24 245116, [arXiv:1311.2451].

[183]   R. A. Davison and A. O. Starinets, Holographic zero sound at finite temperature, Phys. Rev. D85 (2012) 026004, [arXiv:1109.6343].

[184]   J. de Boer, K. Papadodimas, and E. Verlinde, Holographic Neutron Stars, JHEP 10 (2010) 020, [arXiv:0907.2695].

[185]   J. de Boer, E. P. Verlinde, and H. L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003, [hep-th/9912012].

[186]   L. De Cesare and M. T. Mercaldo, Exotic quantum phase transition in systems with quenched disorder, Phys. Rev. B65 (2001) 024202.

[187]   S. de Haro, S. N. Solodukhin, and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS / CFT correspondence, Commun. Math. Phys. 217 (2001) 595, [hep-th/0002230].

[188]   M. J. M. de Jong and L. W. Molenkamp, Hydrodynamic electron flow in high-mobility wires, Phys. Rev. B51 (1995) 13389, [cond-mat/9411067].

[189]   L. V. Delacrétaz, B. Goutéraux, S. A. Hartnoll, and A. Karlsson, Bad Metals from Fluctuating Density Waves, arXiv:1612.04381.

[190]   L. Dell’Anna and W. Metzner, Electrical Resistivity near Pomeranchuk Instability in Two Dimensions, Phys. Rev. Lett. 98 (2007) 136402, [cond-mat/0611723].

[191]   F. Denef, M. R. Douglas, and S. Kachru, Physics of String Flux Compactifications, Ann.Rev.Nucl.Part.Sci. 57 (2007) 119, [hep-th/0701050].

[192]   F. Denef and S. A. Hartnoll, Landscape of superconducting membranes, Phys. Rev. D79 (2009) 126008, [arXiv:0901.1160].

[193]   F. Denef, S. A. Hartnoll, and S. Sachdev, Quantum oscillations and black hole ringing, Phys. Rev. D80 (2009) 126016, [arXiv:0908.1788].

[194]   F. Denef, S. A. Hartnoll, and S. Sachdev, Black hole determinants and quasinormal modes, Class. Quant. Grav. 27 (2010) 125001, [arXiv:0908.2657].

[195]   O. DeWolfe, D. Z. Freedman, and H. Ooguri, Holography and defect conformal field theories, Phys. Rev. D66 (2002) 025009, [hep-th/0111135].

[196]   O. DeWolfe, S. S. Gubser, O. Henriksson, and C. Rosen, Fermionic Response in Finite-Density ABJM Theory with Broken Symmetry, Phys. Rev. D93 (2016) 026001, [arXiv:1509.00518].

[197]   O. DeWolfe, S. S. Gubser, O. Henriksson, and C. Rosen, Gapped Fermions in Top-down Holographic Superconductors, arXiv:1609.07186.

[198]   O. DeWolfe, S. S. Gubser, and C. Rosen, Fermi Surfaces in Maximal Gauged Supergravity, Phys. Rev. Lett. 108 (2012) 251601, [arXiv:1112.3036].

[199]   O. DeWolfe, S. S. Gubser, and C. Rosen, Fermi surfaces in N=4 Super-Yang-Mills theory, Phys. Rev. D86 (2012) 106002, [arXiv:1207.3352].

[200]   O. DeWolfe, S. S. Gubser, and C. Rosen, Fermionic response in a zero entropy state of 𝒩 = 4 super-Yang-Mills, Phys. Rev. D91 (2015) 046011, [arXiv:1312.7347].

[201]   O. DeWolfe, O. Henriksson, and C. Rosen, Fermi surface behavior in the ABJM M2-brane theory, Phys. Rev. D91 (2015) 126017, [arXiv:1410.6986].

[202]   P. Dey and S. Roy, Zero sound in strange metals with hyperscaling violation from holography, Phys. Rev. D88 (2013) 046010, [arXiv:1307.0195].

[203]   E. D’Hoker, J. Estes, and M. Gutperle, Gravity duals of half-BPS Wilson loops, JHEP 06 (2007) 063, [arXiv:0705.1004].

[204]   E. D’Hoker and P. Kraus, Magnetic Brane Solutions in AdS, JHEP 10 (2009) 088, [arXiv:0908.3875].

[205]   E. D’Hoker and P. Kraus, Charged Magnetic Brane Solutions in AdS (5) and the fate of the third law of thermodynamics, JHEP 03 (2010) 095, [arXiv:0911.4518].

[206]   E. D’Hoker and P. Kraus, Holographic Metamagnetism, Quantum Criticality, and Crossover Behavior, JHEP 05 (2010) 083, [arXiv:1003.1302].

[207]   E. D’Hoker and P. Kraus, Magnetic Field Induced Quantum Criticality via new Asymptotically AdS (5) Solutions, Class. Quant. Grav. 27 (2010) 215022, [arXiv:1006.2573].

[208]   E. D’Hoker and P. Kraus, Quantum Criticality via Magnetic Branes, Lect. Notes Phys. 871 (2013) 469, [arXiv:1208.1925].

[209]   O. J. C. Dias, G. T. Horowitz, N. Iqbal, and J. E. Santos, Vortices in holographic superfluids and superconductors as conformal defects, JHEP 04 (2014) 096, [arXiv:1311.3673].

[210]   O. J. C. Dias, G. T. Horowitz, D. Marolf, and J. E. Santos, On the Nonlinear Stability of Asymptotically Anti-de Sitter Solutions, Class. Quant. Grav. 29 (2012) 235019, [arXiv:1208.5772].

[211]   O. J. C. Dias, J. E. Santos, and B. Way, Numerical Methods for Finding Stationary Gravitational Solutions, Class. Quant. Grav. 33 (2016) 133001, [arXiv:1510.02804].

[212]   V. Dobrosavljevic, Introduction to Metal-Insulator Transitions, in Conductor-Insulator Quantum Phase Transitions (V. Dobrosavljevic, N. Trivedi, and J. M. V. Jr., eds.). OUP, 2012. arXiv:1112.6166.

[213]   N. Doiron-Leyraud, M. Sutherland, S. Y. Li, L. Taillefer, R. Liang, D. A. Bonn, and W. N. Hardy, Onset of a Boson Mode at the Superconducting Critical Point of Underdoped YBa2Cu3Oy, Phys. Rev. Lett. 97 (2006) 207001.

[214]   O. Domenech, M. Montull, A. Pomarol, A. Salvio, and P. J. Silva, Emergent Gauge Fields in Holographic Superconductors, JHEP 08 (2010) 033, [arXiv:1005.1776].

[215]   X. Dong, S. Harrison, S. Kachru, G. Torroba, and H. Wang, Aspects of holography for theories with hyperscaling violation, JHEP 06 (2012) 041, [arXiv:1201.1905].

[216]   A. Donos, Striped phases from holography, JHEP 05 (2013) 059, [arXiv:1303.7211].

[217]   A. Donos and J. P. Gauntlett, Lifshitz Solutions of D=10 and D=11 supergravity, JHEP 12 (2010) 002, [arXiv:1008.2062].

[218]   A. Donos and J. P. Gauntlett, Holographic helical superconductors, JHEP 12 (2011) 091, [arXiv:1109.3866].

[219]   A. Donos and J. P. Gauntlett, Holographic striped phases, JHEP 08 (2011) 140, [arXiv:1106.2004].

[220]   A. Donos and J. P. Gauntlett, Black holes dual to helical current phases, Phys. Rev. D86 (2012) 064010, [arXiv:1204.1734].

[221]   A. Donos and J. P. Gauntlett, Helical superconducting black holes, Phys. Rev. Lett. 108 (2012) 211601, [arXiv:1203.0533].

[222]   A. Donos and J. P. Gauntlett, Holographic charge density waves, Phys. Rev. D87 (2013) 126008, [arXiv:1303.4398].

[223]   A. Donos and J. P. Gauntlett, Holographic Q-lattices, JHEP 04 (2014) 040, [arXiv:1311.3292].

[224]   A. Donos and J. P. Gauntlett, Novel metals and insulators from holography, JHEP 06 (2014) 007, [arXiv:1401.5077].

[225]   A. Donos and J. P. Gauntlett, Thermoelectric DC conductivities from black hole horizons, JHEP 11 (2014) 081, [arXiv:1406.4742].

[226]   A. Donos and J. P. Gauntlett, Navier-Stokes Equations on Black Hole Horizons and DC Thermoelectric Conductivity, Phys. Rev. D92 (2015) 121901, [arXiv:1506.01360].

[227]   A. Donos and J. P. Gauntlett, The thermoelectric properties of inhomogeneous holographic lattices, JHEP 01 (2015) 035, [arXiv:1409.6875].

[228]   A. Donos and J. P. Gauntlett, Minimally packed phases in holography, JHEP 03 (2016) 148, [arXiv:1512.06861].

[229]   A. Donos, J. P. Gauntlett, T. Griffin, and L. Melgar, DC Conductivity of Magnetised Holographic Matter, JHEP 01 (2016) 113, [arXiv:1511.00713].

[230]   A. Donos, J. P. Gauntlett, and C. Pantelidou, Magnetic and Electric AdS Solutions in String- and M-Theory, Class. Quant. Grav. 29 (2012) 194006, [arXiv:1112.4195].

[231]   A. Donos, J. P. Gauntlett, and C. Pantelidou, Spatially modulated instabilities of magnetic black branes, JHEP 01 (2012) 061, [arXiv:1109.0471].

[232]   A. Donos, J. P. Gauntlett, and C. Pantelidou, Competing p-wave orders, Class. Quant. Grav. 31 (2014) 055007, [arXiv:1310.5741].

[233]   A. Donos, J. P. Gauntlett, J. Sonner, and B. Withers, Competing orders in M-theory: superfluids, stripes and metamagnetism, JHEP 03 (2013) 108, [arXiv:1212.0871].

[234]   A. Donos, B. Goutéraux, and E. Kiritsis, Holographic Metals and Insulators with Helical Symmetry, JHEP 09 (2014) 038, [arXiv:1406.6351].

[235]   A. Donos and S. A. Hartnoll, Universal linear in temperature resistivity from black hole superradiance, Phys. Rev. D86 (2012) 124046, [arXiv:1208.4102].

[236]   A. Donos and S. A. Hartnoll, Interaction-driven localization in holography, Nature Phys. 9 (2013) 649, [arXiv:1212.2998].

[237]   A. Donos and C. Pantelidou, Holographic Magnetisation Density Waves, JHEP 10 (2016) 038, [arXiv:1607.01807].

[238]   Y. Du, C. Niu, Y. Tian, and H.-b. Zhang, Holographic Vortex Pair Annihilation in Superfluid Turbulence, arXiv:1412.8417.

[239]   P. T. Dumitrescu, M. Serbyn, R. T. Scalettar, and A. Vishwanath, Superconductivity and Nematic Fluctuations in a model of FeSe monolayers: A Determinant Quantum Monte Carlo Study, arXiv:1512.08523.

[240]   A. Eberlein, I. Mandal, and S. Sachdev, Hyperscaling violation at the Ising-nematic quantum critical point in two-dimensional metals, Phys. Rev. B94 (2016) 045133, [arXiv:1605.00657].

[241]   M. Edalati, J. I. Jottar, and R. G. Leigh, Holography and the sound of criticality, JHEP 10 (2010) 058, [arXiv:1005.4075].

[242]   M. Edalati, J. I. Jottar, and R. G. Leigh, Shear Modes, Criticality and Extremal Black Holes, JHEP 04 (2010) 075, [arXiv:1001.0779].

[243]   M. Edalati, J. I. Jottar, and R. G. Leigh, Transport Coefficients at Zero Temperature from Extremal Black Holes, JHEP 01 (2010) 018, [arXiv:0910.0645].

[244]   M. Edalati, R. G. Leigh, K. W. Lo, and P. W. Phillips, Dynamical Gap and Cuprate-like Physics from Holography, Phys. Rev. D83 (2011) 046012, [arXiv:1012.3751].

[245]   M. Edalati, R. G. Leigh, and P. W. Phillips, Dynamically Generated Mott Gap from Holography, Phys. Rev. Lett. 106 (2011) 091602, [arXiv:1010.3238].

[246]   J. Eisert, Entanglement and tensor network states, arXiv:1308.3318.

[247]   S. El-Showk and K. Papadodimas, Emergent Spacetime and Holographic CFTs, JHEP 10 (2012) 106, [arXiv:1101.4163].

[248]   S. El-Showk, M. F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, et al., Solving the 3D Ising Model with the Conformal Bootstrap, Phys. Rev. D86 (2012) 025022, [arXiv:1203.6064].

[249]   S. Elsässer, D. Wu, M. Dressel, and J. A. Schlueter, Power-law dependence of the optical conductivity observed in the quantum spin-liquid compound κ-(BEDT-TTF)2Cu2(CN)3, Phys. Rev. B86 (2012) 155150.

[250]   V. J. Emery, A. Luther, and I. Peschel, Solution of the one-dimensional electron gas on a lattice, Phys. Rev. B13 (1976) 1272.

[251]   R. Emparan, R. Suzuki, and K. Tanabe, The large D limit of General Relativity, JHEP 06 (2013) 009, [arXiv:1302.6382].

[252]   R. Emparan, R. Suzuki, and K. Tanabe, Quasinormal modes of (Anti-)de Sitter black holes in the 1/D expansion, JHEP 04 (2015) 085, [arXiv:1502.02820].

[253]   M. Endres, T. Fukuhara, D. Pekker, M. Cheneau, P. Schauss, C. Gross, E. Demler, S. Kuhr, and I. Bloch, The Higgs Amplitude Mode at the Two-Dimensional Superfluid-Mott Insulator Transition, Nature 487 (2012) 454, [arXiv:1204.5183].

[254]   J. Engelsoy, T. G. Mertens, and H. Verlinde, An investigation of AdS2 backreaction and holography, JHEP 07 (2016) 139, [arXiv:1606.03438].

[255]   J. Erdmenger, Z. Guralnik, and I. Kirsch, Four-dimensional superconformal theories with interacting boundaries or defects, Phys. Rev. D66 (2002) 025020, [hep-th/0203020].

[256]   J. Erdmenger, M. Haack, M. Kaminski, and A. Yarom, Fluid dynamics of R-charged black holes, JHEP 01 (2009) 055, [arXiv:0809.2488].

[257]   J. Erdmenger, C. Hoyos, A. O’Bannon, and J. Wu, A Holographic Model of the Kondo Effect, JHEP 12 (2013) 086, [arXiv:1310.3271].

[258]   M. H. Ernst, J. Machta, J. R. Dorfman, and H. van Beijeren, Long time tails in stationary random media: I. Theory, J. Stat. Phys. 34 (1984) 477.

[259]   T. Faulkner, G. T. Horowitz, J. McGreevy, M. M. Roberts, and D. Vegh, Photoemission ’experiments’ on holographic superconductors, JHEP 03 (2010) 121, [arXiv:0911.3402].

[260]   T. Faulkner, G. T. Horowitz, and M. M. Roberts, Holographic quantum criticality from multi-trace deformations, JHEP 04 (2011) 051, [arXiv:1008.1581].

[261]   T. Faulkner and N. Iqbal, Friedel oscillations and horizon charge in 1D holographic liquids, JHEP 07 (2013) 060, [arXiv:1207.4208].

[262]   T. Faulkner, N. Iqbal, H. Liu, J. McGreevy, and D. Vegh, Strange metal transport realized by gauge/gravity duality, Science 329 (2010) 1043.

[263]   T. Faulkner, N. Iqbal, H. Liu, J. McGreevy, and D. Vegh, Holographic non-Fermi liquid fixed points, Phil. Trans. Roy. Soc. A369 (2011) 1640, [arXiv:1101.0597].

[264]   T. Faulkner, N. Iqbal, H. Liu, J. McGreevy, and D. Vegh, Charge transport by holographic Fermi surfaces, Phys. Rev. D88 (2013) 045016, [arXiv:1306.6396].

[265]   T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, Emergent quantum criticality, Fermi surfaces, and AdS(2), Phys. Rev. D83 (2011) 125002, [arXiv:0907.2694].

[266]   T. Faulkner, H. Liu, and M. Rangamani, Integrating out geometry: Holographic Wilsonian RG and the membrane paradigm, JHEP 08 (2011) 051, [arXiv:1010.4036].

[267]   T. Faulkner and J. Polchinski, Semi-Holographic Fermi Liquids, JHEP 06 (2011) 012, [arXiv:1001.5049].

[268]   E. Fermi, Un Metodo Statistico per la determinazione di Alcune priorieta dell’ atome, Rend. Accad. Naz. Lincei 6 (1927) 602.

[269]   G. Festuccia and H. Liu, A Bohr-Sommerfeld quantization formula for quasinormal frequencies of AdS black holes, Adv. Sci. Lett. 2 (2009) 221, [arXiv:0811.1033].

[270]   M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, Boson localization and the superfluid-insulator transition, Phys. Rev. B40 (1989) 546.

[271]   A. L. Fitzpatrick, S. Kachru, J. Kaplan, and S. Raghu, Non-Fermi-liquid behavior of large-NB quantum critical metals, Phys. Rev. B89 (2014) 165114, [arXiv:1312.3321].

[272]   A. L. Fitzpatrick and J. Kaplan, AdS Field Theory from Conformal Field Theory, JHEP 02 (2013) 054, [arXiv:1208.0337].

[273]   A. L. Fitzpatrick, J. Kaplan, D. Li, and J. Wang, On information loss in AdS3/CFT2, JHEP 05 (2016) 109, [arXiv:1603.08925].

[274]   A. L. Fitzpatrick, E. Katz, D. Poland, and D. Simmons-Duffin, Effective Conformal Theory and the Flat-Space Limit of AdS, JHEP 07 (2011) 023, [arXiv:1007.2412].

[275]   D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions. Perseus Books, 1995.

[276]   M. S. Foster and I. L. Aleiner, Slow imbalance relaxation and thermoelectric transport in graphene, Phys. Rev. B79 (2009) 085415, [arXiv:0810.4342].

[277]   E. Fradkin and S. A. Kivelson, Short range resonating valence bond theories and superconductivity, Mod. Phys. Lett. B4 (1990) 225.

[278]   S. Franco, A. Garcia-Garcia, and D. Rodriguez-Gomez, A General class of holographic superconductors, JHEP 04 (2010) 092, [arXiv:0906.1214].

[279]   S. Franco, A. M. Garcia-Garcia, and D. Rodriguez-Gomez, A Holographic approach to phase transitions, Phys. Rev. D81 (2010) 041901, [arXiv:0911.1354].

[280]   D. Z. Freedman, S. D. Mathur, A. Matusis, and L. Rastelli, Correlation functions in the CFT(d) / AdS(d+1) correspondence, Nucl. Phys. B546 (1999) 96–118, [hep-th/9804058].

[281]   D. Freedman, S. Gubser, K. Pilch, and N. Warner, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363, [hep-th/9904017].

[282]   L. Fritz, J. Schmalian, M. Müller, and S. Sachdev, Quantum critical transport in clean graphene, Phys. Rev. B78 (2008) 085416.

[283]   W. Fu and S. Sachdev, Numerical study of fermion and boson models with infinite-range random interactions, Phys. Rev. B94 (2016) 035135, [arXiv:1603.05246].

[284]   A. M. Garcia-Garcia and B. Loureiro, Marginal and Irrelevant Disorder in Einstein-Maxwell backgrounds, Phys. Rev. D93 (2016) 065025, [arXiv:1512.00194].

[285]   J. Gath, J. Hartong, R. Monteiro, and N. A. Obers, Holographic Models for Theories with Hyperscaling Violation, JHEP 04 (2013) 159, [arXiv:1212.3263].

[286]   J. P. Gauntlett, J. Sonner, and D. Waldram, Spectral function of the supersymmetry current, JHEP 11 (2011) 153, [arXiv:1108.1205].

[287]   J. P. Gauntlett, J. Sonner, and D. Waldram, Universal fermionic spectral functions from string theory, Phys. Rev. Lett. 107 (2011) 241601, [arXiv:1106.4694].

[288]   J. P. Gauntlett, J. Sonner, and T. Wiseman, Holographic superconductivity in M-Theory, Phys. Rev. Lett. 103 (2009) 151601, [arXiv:0907.3796].

[289]   J. P. Gauntlett, J. Sonner, and T. Wiseman, Quantum Criticality and Holographic Superconductors in M-theory, JHEP 02 (2010) 060, [arXiv:0912.0512].

[290]   J. P. Gauntlett and O. Varela, Consistent Kaluza-Klein reductions for general supersymmetric AdS solutions, Phys. Rev. D76 (2007) 126007, [arXiv:0707.2315].

[291]   S. Gazit, D. Podolsky, and A. Auerbach, Critical Capacitance and Charge-Vortex Duality Near the Superfluid-to-Insulator Transition, Phys. Rev. Lett. 113 (2014) 240601, [arXiv:1407.1055].

[292]   S. Gazit, D. Podolsky, A. Auerbach, and D. P. Arovas, Dynamics and conductivity near quantum criticality, Phys. Rev. B88 (2013) 235108, [arXiv:1309.1765].

[293]   A. Georges, O. Parcollet, and S. Sachdev, Quantum fluctuations of a nearly critical Heisenberg spin glass, Phys. Rev. B63 (2001) 134406, [cond-mat/0009388].

[294]   T. Giamarchi, Quantum Physics in One Dimension. International Series of Monographs on Physics. Clarendon Press, 2003.

[295]   G. W. Gibbons, Aspects of supergravity theories, in Supersymmetry, Supergravity and Related Topics (F. del Aguila, J. de Azcárraga, and L. Ibáñez, eds.), p. 147. World Scientific, 1985.

[296]   G. Gibbons and S. Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev. D15 (1977) 2752.

[297]   G. Gibbons and S. Hawking, Classification of Gravitational Instanton Symmetries, Commun. Math. Phys. 66 (1979) 291.

[298]   D. Gioev and I. Klich, Entanglement entropy of fermions in any dimension and the Widom conjecture, Phys. Rev. Lett. 96 (2006) 100503, [quant-ph/0504151].

[299]   S. Giombi and X. Yin, The Higher Spin/Vector Model Duality, J. Phys. A46 (2013) 214003, [arXiv:1208.4036].

[300]   K. Goldstein, N. Iizuka, S. Kachru, S. Prakash, S. P. Trivedi, and A. Westphal, Holography of Dyonic Dilaton Black Branes, JHEP 10 (2010) 027, [arXiv:1007.2490].

[301]   K. Goldstein, S. Kachru, S. Prakash, and S. P. Trivedi, Holography of Charged Dilaton Black Holes, JHEP 08 (2010) 078, [arXiv:0911.3586].

[302]   J. Gonzalez, F. Guinea, and M. Vozmediano, Non-Fermi liquid behavior of electrons in the half-filled honeycomb lattice (A renormalization group approach) , Nucl. Phys. B424 (1994) 595.

[303]   J. Gooth, F. Menges, C. Shekhar, V. Süß, N. Kumar, Y. Sun, U. Drechsler, R. Zierold, C. Felser, and B. Gotsmann, Electrical and Thermal Transport at the Planckian Bound of Dissipation in the Hydrodynamic Electron Fluid of WP2, arXiv:1706.05925.

[304]   J. Gooth et al., Experimental signatures of the mixed axial-gravitational anomaly in the Weyl semimetal NbP, Nature 547 (2017) 324, [arXiv:1703.10682].

[305]   B. Goutéraux, Charge transport in holography with momentum dissipation, JHEP 04 (2014) 181, [arXiv:1401.5436].

[306]   B. Goutéraux, Universal scaling properties of extremal cohesive holographic phases, JHEP 01 (2014) 080, [arXiv:1308.2084].

[307]   B. Gouteraux and E. Kiritsis, Generalized Holographic Quantum Criticality at Finite Density, JHEP 12 (2011) 036, [arXiv:1107.2116].

[308]   B. Goutéraux and E. Kiritsis, Quantum critical lines in holographic phases with (un)broken symmetry, JHEP 04 (2013) 053, [arXiv:1212.2625].

[309]   B. Goutéraux, E. Kiritsis, and W.-J. Li, Effective holographic theories of momentum relaxation and violation of conductivity bound, JHEP 04 (2016) 122, [arXiv:1602.01067].

[310]   M. Goykhman, A. Parnachev, and J. Zaanen, Fluctuations in finite density holographic quantum liquids, JHEP 10 (2012) 045, [arXiv:1204.6232].

[311]   S. R. Green, F. Carrasco, and L. Lehner, Holographic Path to the Turbulent Side of Gravity, Phys. Rev. X4 (2014) 011001, [arXiv:1309.7940].

[312]   S. Grozdanov, N. Kaplis, and A. O. Starinets, From strong to weak coupling in holographic models of thermalization, JHEP 07 (2016) 151, [arXiv:1605.02173].

[313]   S. Grozdanov, A. Lucas, S. Sachdev, and K. Schalm, Absence of disorder-driven metal-insulator transitions in simple holographic models, Phys. Rev. Lett. 115 (2015) 221601, [arXiv:1507.00003].

[314]   S. Grozdanov, A. Lucas, and K. Schalm, Incoherent thermal transport from dirty black holes, Phys. Rev. D93 (2016) 061901, [arXiv:1511.05970].

[315]   Y. Gu, A. Lucas, and X.-L. Qi, Energy diffusion and the butterfly effect in inhomogeneous Sachdev-Ye-Kitaev chains, SciPost Phys. 2 (2017) 018, [arXiv:1702.08462].

[316]   Y. Gu, X.-L. Qi, and D. Stanford, Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models, JHEP 05 (2017) 125, [arXiv:1609.07832].

[317]   D. Guarrera and J. McGreevy, Holographic Fermi surfaces and bulk dipole couplings, arXiv:1102.3908.

[318]   S. Gubser, I. R. Klebanov, and A. M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B428 (1998) 105, [hep-th/9802109].

[319]   S. S. Gubser, Curvature singularities: The Good, the bad, and the naked, Adv. Theor. Math. Phys. 4 (2000) 679, [hep-th/0002160].

[320]   S. S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D78 (2008) 065034, [arXiv:0801.2977].

[321]   S. S. Gubser, Colorful horizons with charge in anti-de Sitter space, Phys. Rev. Lett. 101 (2008) 191601, [arXiv:0803.3483].

[322]   S. S. Gubser, C. P. Herzog, S. S. Pufu, and T. Tesileanu, Superconductors from Superstrings, Phys. Rev. Lett. 103 (2009) 141601, [arXiv:0907.3510].

[323]   S. S. Gubser and I. R. Klebanov, A Universal result on central charges in the presence of double trace deformations, Nucl. Phys. B656 (2003) 23, [hep-th/0212138].

[324]   S. S. Gubser and A. Nellore, Ground states of holographic superconductors, Phys. Rev. D80 (2009) 105007, [arXiv:0908.1972].

[325]   S. S. Gubser and A. Nellore, Low-temperature behavior of the Abelian Higgs model in anti-de Sitter space, JHEP 04 (2009) 008, [arXiv:0810.4554].

[326]   S. S. Gubser and S. S. Pufu, The Gravity dual of a p-wave superconductor, JHEP 11 (2008) 033, [arXiv:0805.2960].

[327]   S. S. Gubser, S. S. Pufu, and F. D. Rocha, Quantum critical superconductors in string theory and M-theory, Phys. Lett. B683 (2010) 201, [arXiv:0908.0011].

[328]   S. S. Gubser and J. Ren, Analytic fermionic Green’s functions from holography, Phys. Rev. D86 (2012) 046004, [arXiv:1204.6315].

[329]   S. S. Gubser and F. D. Rocha, The gravity dual to a quantum critical point with spontaneous symmetry breaking, Phys. Rev. Lett. 102 (2009) 061601, [arXiv:0807.1737].

[330]   S. S. Gubser and F. D. Rocha, Peculiar properties of a charged dilatonic black hole in AdS5, Phys. Rev. D81 (2010) 046001, [arXiv:0911.2898].

[331]   S. S. Gubser, F. D. Rocha, and P. Talavera, Normalizable fermion modes in a holographic superconductor, JHEP 10 (2010) 087, [arXiv:0911.3632].

[332]   D. R. Gulotta, C. P. Herzog, and M. Kaminski, Sum Rules from an Extra Dimension, JHEP 01 (2011) 148, [arXiv:1010.4806].

[333]   M. Gunaydin, G. Sierra, and P. K. Townsend, The Geometry of N=2 Maxwell-Einstein Supergravity and Jordan Algebras, Nucl. Phys. B242 (1984) 244.

[334]   O. Gunnarsson, M. Calandra, and J. E. Han, Colloquium: Saturation of electrical resistivity, Rev. Mod. Phys. 75 (2003) 1085, [cond-mat/0305412].

[335]   G. Gur-Ari, S. A. Hartnoll, and R. Mahajan, Transport in Chern-Simons-Matter Theories, JHEP 07 (2016) 090, [arXiv:1605.01122].

[336]   U. Gursoy, V. Jacobs, E. Plauschinn, H. Stoof, and S. Vandoren, Holographic models for undoped Weyl semimetals, JHEP 04 (2013) 127, [arXiv:1209.2593].

[337]   U. Gursoy, E. Plauschinn, H. Stoof, and S. Vandoren, Holography and ARPES Sum-Rules, JHEP 05 (2012) 018, [arXiv:1112.5074].

[338]   R. N. Gurzhi, Minimum of resistance in impurity-free conductors, JETP Lett. 44 (1963) 771.

[339]   R. N. Gurzhi, Hydrodynamic effects in solids at low temperature, Sov. Phys. Usp. 11 (1968) 255.

[340]   F. M. Haehl, R. Loganayagam, and M. Rangamani, The Fluid Manifesto: Emergent symmetries, hydrodynamics, and black holes, JHEP 01 (2016) 184, [arXiv:1510.02494].

[341]   T.-H. Han, J. S. Helton, S. Chu, D. G. Nocera, J. A. Rodriguez-Rivera, C. Broholm, and Y. S. Lee, Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet, Nature 492 (2012) 406, [arXiv:1307.5047].

[342]   A. B. Harris, Effect of random defects on the critical behaviour of Ising models, J. Phys. C7 (1974) 1671.

[343]   S. Harrison, S. Kachru, and G. Torroba, A maximally supersymmetric Kondo model, Class. Quant. Grav. 29 (2012) 194005, [arXiv:1110.5325].

[344]   S. Harrison, S. Kachru, and H. Wang, Resolving Lifshitz Horizons, JHEP 02 (2014) 085, [arXiv:1202.6635].

[345]   T. Hartman and S. A. Hartnoll, Cooper pairing near charged black holes, JHEP 06 (2010) 005, [arXiv:1003.1918].

[346]   T. Hartman, S. A. Hartnoll, and R. Mahajan, An upper bound on transport, arXiv:1706.00019.

[347]   T. Hartman, C. A. Keller, and B. Stoica, Universal Spectrum of 2d Conformal Field Theory in the Large c Limit, JHEP 09 (2014) 118, [arXiv:1405.5137].

[348]   T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP 05 (2013) 014, [arXiv:1303.1080].

[349]   S. A. Hartnoll, D. M. Hofman, M. A. Metlitski, and S. Sachdev, Quantum critical response at the onset of spin-density-wave order in two-dimensional metals, Phys. Rev. B84 (2011) 125115, [arXiv:1106.0001].

[350]   S. A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002, [arXiv:0903.3246].

[351]   S. A. Hartnoll, Horizons, holography and condensed matter, arXiv:1106.4324.

[352]   S. A. Hartnoll, Theory of universal incoherent metallic transport, Nature Phys. 11 (2015) 54, [arXiv:1405.3651].

[353]   S. A. Hartnoll and C. P. Herzog, Ohm’s Law at strong coupling: S duality and the cyclotron resonance, Phys. Rev. D76 (2007) 106012, [arXiv:0706.3228].

[354]   S. A. Hartnoll and C. P. Herzog, Impure AdS/CFT correspondence, Phys. Rev. D77 (2008) 106009, [arXiv:0801.1693].

[355]   S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601, [arXiv:0803.3295].

[356]   S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015, [arXiv:0810.1563].

[357]   S. A. Hartnoll and D. M. Hofman, Generalized Lifshitz-Kosevich scaling at quantum criticality from the holographic correspondence, Phys. Rev. B81 (2010) 155125, [arXiv:0912.0008].

[358]   S. A. Hartnoll and D. M. Hofman, Locally Critical Resistivities from Umklapp Scattering, Phys. Rev. Lett. 108 (2012) 241601, [arXiv:1201.3917].

[359]   S. A. Hartnoll, D. M. Hofman, and A. Tavanfar, Holographically smeared Fermi surface: Quantum oscillations and Luttinger count in electron stars, Europhys. Lett. 95 (2011) 31002, [arXiv:1011.2502].

[360]   S. A. Hartnoll, D. M. Hofman, and D. Vegh, Stellar spectroscopy: Fermions and holographic Lifshitz criticality, JHEP 08 (2011) 096, [arXiv:1105.3197].

[361]   S. A. Hartnoll and L. Huijse, Fractionalization of holographic Fermi surfaces, Class. Quant. Grav. 29 (2012) 194001, [arXiv:1111.2606].

[362]   S. A. Hartnoll and A. Karch, Scaling theory of the cuprate strange metals, Phys. Rev. B91 (2015) 155126, [arXiv:1501.03165].

[363]   S. A. Hartnoll and P. Kovtun, Hall conductivity from dyonic black holes, Phys. Rev. D76 (2007) 066001, [arXiv:0704.1160].

[364]   S. A. Hartnoll, P. K. Kovtun, M. Muller, and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter, and in dyonic black holes, Phys. Rev. B76 (2007) 144502, [arXiv:0706.3215].

[365]   S. A. Hartnoll and S. P. Kumar, AdS black holes and thermal Yang-Mills correlators, JHEP 12 (2005) 036, [hep-th/0508092].

[366]   S. A. Hartnoll, R. Mahajan, M. Punk, and S. Sachdev, Transport near the Ising-nematic quantum critical point of metals in two dimensions, Phys. Rev. B89 (2014) 155130, [arXiv:1401.7012].

[367]   S. A. Hartnoll and P. Petrov, Electron star birth: A continuous phase transition at nonzero density, Phys. Rev. Lett. 106 (2011) 121601, [arXiv:1011.6469].

[368]   S. A. Hartnoll, J. Polchinski, E. Silverstein, and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120, [arXiv:0912.1061].

[369]   S. A. Hartnoll and R. Pourhasan, Entropy balance in holographic superconductors, JHEP 07 (2012) 114, [arXiv:1205.1536].

[370]   S. A. Hartnoll and D. Radicevic, Holographic order parameter for charge fractionalization, Phys. Rev. D86 (2012) 066001, [arXiv:1205.5291].

[371]   S. A. Hartnoll, D. M. Ramirez, and J. E. Santos, Emergent scale invariance of disordered horizons, JHEP 09 (2015) 160, [arXiv:1504.03324].

[372]   S. A. Hartnoll, D. M. Ramirez, and J. E. Santos, Entropy production, viscosity bounds and bumpy black holes, JHEP 03 (2016) 170, [arXiv:1601.02757].

[373]   S. A. Hartnoll, D. M. Ramirez, and J. E. Santos, Thermal conductivity at a disordered quantum critical point, JHEP 04 (2016) 022, [arXiv:1508.04435].

[374]   S. A. Hartnoll and J. E. Santos, Cold planar horizons are floppy, Phys. Rev. D89 (2014) 126002, [arXiv:1403.4612].

[375]   S. A. Hartnoll and J. E. Santos, Disordered horizons: Holography of randomly disordered fixed points, Phys. Rev. Lett. 112 (2014) 231601, [arXiv:1402.0872].

[376]   S. A. Hartnoll and E. Shaghoulian, Spectral weight in holographic scaling geometries, JHEP 07 (2012) 078, [arXiv:1203.4236].

[377]   S. A. Hartnoll and A. Tavanfar, Electron stars for holographic metallic criticality, Phys. Rev. D83 (2011) 046003, [arXiv:1008.2828].

[378]   S. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199.

[379]   S. Hawking and D. N. Page, Thermodynamics of Black Holes in anti-De Sitter Space, Commun. Math. Phys. 87 (1983) 577.

[380]   I. M. Hayes, R. D. McDonald, N. P. Breznay, T. Helm, P. J. W. Moll, M. Wartenbe, A. Shekhter, and J. G. Analytis, Scaling between magnetic field and temperature in the high-temperature superconductor BaFe2(As1−xPx)2, Nature Phys. 12 (2016) 916.

[381]   M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D82 (2010) 126010, [arXiv:1006.0047].

[382]   I. Heemskerk, J. Penedones, J. Polchinski, and J. Sully, Holography from Conformal Field Theory, JHEP 10 (2009) 079, [arXiv:0907.0151].

[383]   I. Heemskerk and J. Polchinski, Holographic and Wilsonian Renormalization Groups, JHEP 06 (2011) 031, [arXiv:1010.1264].

[384]   J. A. Hertz, Quantum critical phenomena, Phys. Rev. B14 (1976) 1165.

[385]   C. P. Herzog, P. K. Kovtun, and D. T. Son, Holographic model of superfluidity, Phys. Rev. D79 (2009) 066002, [arXiv:0809.4870].

[386]   C. P. Herzog, The Hydrodynamics of M theory, JHEP 12 (2002) 026, [hep-th/0210126].

[387]   C. P. Herzog, The Sound of M theory, Phys. Rev. D68 (2003) 024013, [hep-th/0302086].

[388]   C. P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A42 (2009) 343001, [arXiv:0904.1975].

[389]   C. P. Herzog, An Analytic Holographic Superconductor, Phys. Rev. D81 (2010) 126009, [arXiv:1003.3278].

[390]   C. P. Herzog, I. R. Klebanov, S. S. Pufu, and T. Tesileanu, Emergent Quantum Near-Criticality from Baryonic Black Branes, JHEP 03 (2010) 093, [arXiv:0911.0400].

[391]   C. P. Herzog, P. Kovtun, S. Sachdev, and D. T. Son, Quantum critical transport, duality, and M-theory, Phys. Rev. D75 (2007) 085020, [hep-th/0701036].

[392]   C. P. Herzog, N. Lisker, P. Surowka, and A. Yarom, Transport in holographic superfluids, JHEP 08 (2011) 052, [arXiv:1101.3330].

[393]   C. P. Herzog and S. S. Pufu, The Second Sound of SU(2), JHEP 04 (2009) 126, [arXiv:0902.0409].

[394]   C. P. Herzog, M. Rangamani, and S. F. Ross, Heating up Galilean holography, JHEP 11 (2008) 080, [arXiv:0807.1099].

[395]   C. P. Herzog and J. Ren, The Spin of Holographic Electrons at Nonzero Density and Temperature, JHEP 06 (2012) 078, [arXiv:1204.0518].

[396]   C. P. Herzog and A. Yarom, Sound modes in holographic superfluids, Phys. Rev. D80 (2009) 106002, [arXiv:0906.4810].

[397]   C. Herzog and D. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP 03 (2003) 046, [hep-th/0212072].

[398]   C. W. Hicks, A. S. Gibbs, A. P. Mackenzie, H. Takatsu, Y. Maeno, and E. A. Yelland, Quantum Oscillations and High Carrier Mobility in the Delafossite PdCoO2, Phys. Rev. Lett. 109 (2012) 116401, [arXiv:1207.5402].

[399]   D. M. Hofman, Higher Derivative Gravity, Causality and Positivity of Energy in a UV complete QFT, Nucl. Phys. B823 (2009) 174, [arXiv:0907.1625].

[400]   D. M. Hofman, D. Li, D. Meltzer, D. Poland, and F. Rejon-Barrera, A Proof of the Conformal Collider Bounds, arXiv:1603.03771.

[401]   D. M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations, JHEP 05 (2008) 012, [arXiv:0803.1467].

[402]   G. T. Horowitz, Introduction to Holographic Superconductors, Lect. Notes Phys. 828 (2011) 313, [arXiv:1002.1722].

[403]   G. T. Horowitz and V. E. Hubeny, Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev. D62 (2000) 024027, [hep-th/9909056].

[404]   G. T. Horowitz, N. Iqbal, and J. E. Santos, Simple holographic model of nonlinear conductivity, Phys. Rev. D88 (2013) 126002, [arXiv:1309.5088].

[405]   G. T. Horowitz, N. Iqbal, J. E. Santos, and B. Way, Hovering Black Holes from Charged Defects, Class. Quant. Grav. 32 (2015) 105001, [arXiv:1412.1830].

[406]   G. T. Horowitz and R. C. Myers, The AdS / CFT correspondence and a new positive energy conjecture for general relativity, Phys. Rev. D59 (1998) 026005, [hep-th/9808079].

[407]   G. T. Horowitz and M. M. Roberts, Zero Temperature Limit of Holographic Superconductors, JHEP 11 (2009) 015, [arXiv:0908.3677].

[408]   G. T. Horowitz and S. F. Ross, Naked black holes, Phys. Rev. D56 (1997) 2180, [hep-th/9704058].

[409]   G. T. Horowitz and J. E. Santos, General Relativity and the Cuprates, JHEP 06 (2013) 087, [arXiv:1302.6586].

[410]   G. T. Horowitz, J. E. Santos, and D. Tong, Further Evidence for Lattice-Induced Scaling, JHEP 11 (2012) 102, [arXiv:1209.1098].

[411]   G. T. Horowitz, J. E. Santos, and D. Tong, Optical Conductivity with Holographic Lattices, JHEP 07 (2012) 168, [arXiv:1204.0519].

[412]   G. T. Horowitz, J. E. Santos, and B. Way, A Holographic Josephson Junction, Phys. Rev. Lett. 106 (2011) 221601, [arXiv:1101.3326].

[413]   G. T. Horowitz, J. E. Santos, and B. Way, Evidence for an Electrifying Violation of Cosmic Censorship, Class. Quant. Grav. 33 (2016) 195007, [arXiv:1604.06465].

[414]   G. T. Horowitz and A. Strominger, Black strings and P-branes, Nucl. Phys. B360 (1991) 197–209.

[415]   G. T. Horowitz and B. Way, Complete Phase Diagrams for a Holographic Superconductor/Insulator System, JHEP 11 (2010) 011, [arXiv:1007.3714].

[416]   G. T. Horowitz and B. Way, Lifshitz Singularities, Phys. Rev. D85 (2012) 046008, [arXiv:1111.1243].

[417]   C. Hoyos, B. S. Kim, and Y. Oz, Lifshitz Field Theories at Non-Zero Temperature, Hydrodynamics and Gravity, JHEP 03 (2014) 029, [arXiv:1309.6794].

[418]   C. Hoyos-Badajoz, A. O’Bannon, and J. M. S. Wu, Zero Sound in Strange Metallic Holography, JHEP 09 (2010) 086, [arXiv:1007.0590].

[419]   X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. Weng, Z. Fang, X. Dai, and G. Chen, Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs, Phys. Rev. X5 (2015) 031023, [arXiv:1503.01304].

[420]   V. E. Hubeny, S. Minwalla, and M. Rangamani, The fluid/gravity correspondence, in Black holes in higher dimensions, p. 348, 2012. arXiv:1107.5780.

[421]   Y. Huh and P. Strack, Stress tensor and current correlators of interacting conformal field theories in 2+1 dimensions: fermionic Dirac matter coupled to U(1) gauge field, JHEP 01 (2015) 147, [arXiv:1410.1902].

[422]   Y. Huh, P. Strack, and S. Sachdev, Conserved current correlators of conformal field theories in 2+1 dimensions, Phys. Rev. B88 (2013) 155109, [arXiv:1307.6863].

[423]   L. Huijse and S. Sachdev, Fermi surfaces and gauge-gravity duality, Phys. Rev. D84 (2011) 026001, [arXiv:1104.5022].

[424]   L. Huijse, S. Sachdev, and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B85 (2012) 035121, [arXiv:1112.0573].

[425]   N. Iizuka, S. Kachru, N. Kundu, P. Narayan, N. Sircar, and S. P. Trivedi, Bianchi Attractors: A Classification of Extremal Black Brane Geometries, JHEP 07 (2012) 193, [arXiv:1201.4861].

[426]   N. Iizuka, N. Kundu, P. Narayan, and S. P. Trivedi, Holographic Fermi and Non-Fermi Liquids with Transitions in Dilaton Gravity, JHEP 01 (2012) 094, [arXiv:1105.1162].

[427]   T. N. Ikeda, A. Lucas, and Y. Nakai, Conductivity bounds in probe brane models, JHEP 04 (2016) 007, [arXiv:1601.07882].

[428]   L. B. Ioffe and G. Kotliar, Transport phenomena near the Mott transition, Phys. Rev. B42 (1990) 10348.

[429]   L. B. Ioffe and P. B. Wiegmann, Linear temperature dependence of resistivity as evidence of gauge interaction, Phys. Rev. Lett. 65 (1990) 653.

[430]   N. Iqbal and H. Liu, Real-time response in AdS/CFT with application to spinors, Fortsch. Phys. 57 (2009) 367, [arXiv:0903.2596].

[431]   N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D79 (2009) 025023, [arXiv:0809.3808].

[432]   N. Iqbal and H. Liu, Luttinger’s Theorem, Superfluid Vortices, and Holography, Class. Quant. Grav. 29 (2012) 194004, [arXiv:1112.3671].

[433]   N. Iqbal, H. Liu, and M. Mezei, Lectures on holographic non-Fermi liquids and quantum phase transitions, arXiv:1110.3814.

[434]   N. Iqbal, H. Liu, and M. Mezei, Semi-local quantum liquids, JHEP 04 (2012) 086, [arXiv:1105.4621].

[435]   N. Iqbal, H. Liu, and M. Mezei, Quantum phase transitions in semilocal quantum liquids, Phys. Rev. D91 (2015) 025024, [arXiv:1108.0425].

[436]   N. Iqbal, H. Liu, M. Mezei, and Q. Si, Quantum phase transitions in holographic models of magnetism and superconductors, Phys. Rev. D82 (2010) 045002, [arXiv:1003.0010].

[437]   S. Jain, Universal thermal and electrical conductivity from holography, JHEP 11 (2010) 092, [arXiv:1008.2944].

[438]   S. Janiszewski and A. Karch, Non-relativistic holography from Horava gravity, JHEP 02 (2013) 123, [arXiv:1211.0005].

[439]   K. Jensen, Semi-Holographic Quantum Criticality, Phys. Rev. Lett. 107 (2011) 231601, [arXiv:1108.0421].

[440]   K. Jensen, On the coupling of Galilean-invariant field theories to curved spacetime, arXiv:1408.6855.

[441]   K. Jensen, Chaos in AdS2 Holography, Phys. Rev. Lett. 117 (2016) 111601, [arXiv:1605.06098].

[442]   K. Jensen, M. Kaminski, P. Kovtun, R. Meyer, A. Ritz, and A. Yarom, Towards hydrodynamics without an entropy current, Phys. Rev. Lett. 109 (2012) 101601, [arXiv:1203.3556].

[443]   K. Jensen, A. Karch, D. T. Son, and E. G. Thompson, Holographic Berezinskii-Kosterlitz-Thouless Transitions, Phys. Rev. Lett. 105 (2010) 041601, [arXiv:1002.3159].

[444]   A. Jevicki, K. Suzuki, and J. Yoon, Bi-Local Holography in the SYK Model, JHEP 07 (2016) 007, [arXiv:1603.06246].

[445]   A. Jimenez-Alba, K. Landsteiner, Y. Liu, and Y.-W. Sun, Anomalous magnetoconductivity and relaxation times in holography, JHEP 07 (2015) 117, [arXiv:1504.06566].

[446]   N. Jokela, M. Jarvinen, and M. Lippert, Gravity dual of spin and charge density waves, JHEP 12 (2014) 083, [arXiv:1408.1397].

[447]   S. Kachru, A. Karch, and S. Yaida, Holographic Lattices, Dimers, and Glasses, Phys. Rev. D81 (2010) 026007, [arXiv:0909.2639].

[448]   S. Kachru, A. Karch, and S. Yaida, Adventures in Holographic Dimer Models, New J. Phys. 13 (2011) 035004, [arXiv:1009.3268].

[449]   S. Kachru, X. Liu, and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D78 (2008) 106005, [arXiv:0808.1725].

[450]   L. P. Kadanoff and P. C. Martin, Hydrodynamic equations and correlation functions, Ann. Phys. 24 (1963) 419.

[451]   L. Kadanoff and G. Baym, Quantum Statistical Mechanics. Advanced Books Classics Series. Addison-Wesley, 1994.

[452]   A. Kamenev, Field Theory of Non-Equilibrium Systems. Cambridge University Press, 2011.

[453]   D. B. Kaplan, J.-W. Lee, D. T. Son, and M. A. Stephanov, Conformality Lost, Phys. Rev. D80 (2009) 125005, [arXiv:0905.4752].

[454]   A. Kapustin and M. J. Strassler, On mirror symmetry in three-dimensional Abelian gauge theories, JHEP 04 (1999) 021, [hep-th/9902033].

[455]   A. Karch, D. T. Son, and A. O. Starinets, Zero Sound from Holography, Phys. Rev. Lett. 102 (2009) 051602, [arXiv:0806.3796].

[456]   A. Karch, Conductivities for Hyperscaling Violating Geometries, JHEP 06 (2014) 140, [arXiv:1405.2926].

[457]   A. Karch, Multiband models for field theories with anomalous current dimension, JHEP 07 (2015) 021, [arXiv:1504.02478].

[458]   A. Karch and E. Katz, Adding flavor to AdS / CFT, JHEP 06 (2002) 043, [hep-th/0205236].

[459]   A. Karch, M. Kulaxizi, and A. Parnachev, Notes on Properties of Holographic Matter, JHEP 11 (2009) 017, [arXiv:0908.3493].

[460]   A. Karch and A. O’Bannon, Chiral transition of N=4 super Yang-Mills with flavor on a 3-sphere, Phys. Rev. D74 (2006) 085033, [hep-th/0605120].

[461]   A. Karch and A. O’Bannon, Holographic thermodynamics at finite baryon density: Some exact results, JHEP 11 (2007) 074, [arXiv:0709.0570].

[462]   A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024, [arXiv:0705.3870].

[463]   A. Karch and L. Randall, Open and closed string interpretation of SUSY CFT’s on branes with boundaries, JHEP 06 (2001) 063, [hep-th/0105132].

[464]   A. Karch and S. L. Sondhi, Non-linear, Finite Frequency Quantum Critical Transport from AdS/CFT, JHEP 01 (2011) 149, [arXiv:1008.4134].

[465]   E. Katz, S. Sachdev, E. S. Sørensen, and W. Witczak-Krempa, Conformal field theories at nonzero temperature: Operator product expansions, Monte Carlo, and holography, Phys. Rev. B90 (2014) 245109, [arXiv:1409.3841].

[466]   R. K. Kaul and M. S. Block, Numerical studies of various Néel-VBS transitions in SU(N) anti-ferromagnets, J. Phys. Conf. Ser. 640 (2015) 012041, [arXiv:1502.05128].

[467]   R. K. Kaul, Y. B. Kim, S. Sachdev, and T. Senthil, Algebraic charge liquids, Nature Phys. 4 (2008) 28, [arXiv:0706.2187].

[468]   C. Keeler, Scalar Boundary Conditions in Lifshitz Spacetimes, JHEP 01 (2014) 067, [arXiv:1212.1728].

[469]   C. Keeler, G. Knodel, J. T. Liu, and K. Sun, Universal features of Lifshitz Green’s functions from holography, JHEP 08 (2015) 057, [arXiv:1505.07830].

[470]   B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, From quantum matter to high-temperature superconductivity in copper oxides, Nature 518 (2015) 179, [arXiv:1409.4673].

[471]   V. Keranen, E. Keski-Vakkuri, S. Nowling, and K. P. Yogendran, Inhomogeneous Structures in Holographic Superfluids: II. Vortices, Phys. Rev. D81 (2010) 126012, [arXiv:0912.4280].

[472]   D. V. Khveshchenko, Viable phenomenologies of the normal state of cuprates, Europhys. Lett. 111 (2015) 17003, [arXiv:1502.03375].

[473]   T. W. B. Kibble, Some Implications of a Cosmological Phase Transition, Phys. Rept. 67 (1980) 183.

[474]   K.-Y. Kim, K. K. Kim, and M. Park, A Simple Holographic Superconductor with Momentum Relaxation, JHEP 04 (2015) 152, [arXiv:1501.00446].

[475]   K.-Y. Kim, K. K. Kim, and M. Park, Ward Identity and Homes’ Law in a Holographic Superconductor with Momentum Relaxation, arXiv:1604.06205.

[476]   K.-Y. Kim, K. K. Kim, Y. Seo, and S.-J. Sin, Thermoelectric Conductivities at Finite Magnetic Field and the Nernst Effect, JHEP 07 (2015) 027, [arXiv:1502.05386].

[477]   K.-Y. Kim and M. Taylor, Holographic d-wave superconductors, JHEP 08 (2013) 112, [arXiv:1304.6729].

[478]   Y. B. Kim, A. Furusaki, X.-G. Wen, and P. A. Lee, Gauge-invariant response functions of fermions coupled to a gauge field, Phys. Rev. B50 (1994) 17917, [cond-mat/9405083].

[479]   Y. B. Kim and X.-G. Wen, Large-N renormalization-group study of the commensurate dirty-boson problem, Phys. Rev. B49 (1994) 4043.

[480]   Y. Kim and J. T. Liu, Holographic Lifshitz fermions and exponentially suppressed spectral weight, JHEP 07 (2016) 117, [arXiv:1603.06959].

[481]   E. Kiritsis and L. Li, Holographic Competition of Phases and Superconductivity, JHEP 01 (2016) 147, [arXiv:1510.00020].

[482]   E. Kiritsis and J. Ren, On Holographic Insulators and Supersolids, JHEP 09 (2015) 168, [arXiv:1503.03481].

[483]   S. Kirkpatrick, Classical transport in disordered media: scaling and effective-medium theory, Phys. Rev. Lett. 27 (1971) 1722.

[484]   A. Y. Kitaev, Talks at KITP, University of California, Santa Barbara, Entanglement in Strongly-Correlated Quantum Matter (2015).

[485]   I. R. Klebanov and J. M. Maldacena, Superconformal gauge theories and non-critical superstrings, Int.J.Mod.Phys. A19 (2004) 5003, [hep-th/0409133].

[486]   I. R. Klebanov and M. J. Strassler, Supergravity and a confining gauge theory: Duality cascades and chi SB resolution of naked singularities, JHEP 08 (2000) 052, [hep-th/0007191].

[487]   I. R. Klebanov and E. Witten, AdS / CFT correspondence and symmetry breaking, Nucl. Phys. B556 (1999) 89, [hep-th/9905104].

[488]   S. Kobayashi, D. Mateos, S. Matsuura, R. C. Myers, and R. M. Thomson, Holographic phase transitions at finite baryon density, JHEP 02 (2007) 016, [hep-th/0611099].

[489]   H. Kodama and A. Ishibashi, Master equations for perturbations of generalized static black holes with charge in higher dimensions, Prog. Theor. Phys. 111 (2004) 29, [hep-th/0308128].

[490]   W. Kohn, Cyclotron Resonance and de Haas-van Alphen Oscillations of an Interacting Electron Gas, Phys. Rev. 123 (1961) 1242.

[491]   W. Kohn and J. M. Luttinger, New Mechanism for Superconductivity, Phys. Rev. Lett. 15 (1965) 524.

[492]   T. Kondo, M. Nakayama, R. Chen, J. J. Ishikawa, E.-G. Moon, T. Yamamoto, Y. Ota, W. Malaeb, H. Kanai, Y. Nakashima, Y. Ishida, R. Yoshida, H. Yamamoto, M. Matsunami, S. Kimura, N. Inami, K. Ono, H. Kumigashira, S. Nakatsuji, L. Balents, and S. Shin, Quadratic Fermi node in a 3D strongly correlated semimetal, Nature Commun. 6 (2015) 10042, [arXiv:1510.07977].

[493]   R. M. Konik, T. M. Rice, and A. M. Tsvelik, Doped Spin Liquid: Luttinger Sum Rule and Low Temperature Order, Phys. Rev. Lett. 96 (2006) 086407, [cond-mat/0511268].

[494]   Y. Korovin, K. Skenderis, and M. Taylor, Lifshitz as a deformation of Anti-de Sitter, JHEP 08 (2013) 026, [arXiv:1304.7776].

[495]   P. Kovtun, D. T. Son, and A. O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601, [hep-th/0405231].

[496]   P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys. A45 (2012) 473001, [arXiv:1205.5040].

[497]   P. Kovtun and D. Nickel, Black holes and non-relativistic quantum systems, Phys. Rev. Lett. 102 (2009) 011602, [arXiv:0809.2020].

[498]   P. Kovtun, D. T. Son, and A. O. Starinets, Holography and hydrodynamics: Diffusion on stretched horizons, JHEP 10 (2003) 064, [hep-th/0309213].

[499]   P. Kovtun and L. G. Yaffe, Hydrodynamic fluctuations, long time tails, and supersymmetry, Phys. Rev. D68 (2003) 025007, [hep-th/0303010].

[500]   P. K. Kovtun and A. O. Starinets, Quasinormal modes and holography, Phys. Rev. D72 (2005) 086009, [hep-th/0506184].

[501]   M. Kulaxizi and A. Parnachev, Comments on Fermi Liquid from Holography, Phys. Rev. D78 (2008) 086004, [arXiv:0808.3953].

[502]   M. Kulaxizi and A. Parnachev, Holographic Responses of Fermion Matter, Nucl. Phys. B815 (2009) 125, [arXiv:0811.2262].

[503]   S. Kuperstein and J. Sonnenschein, Noncritical supergravity (d > 1) and holography, JHEP 07 (2004) 049, [hep-th/0403254].

[504]   W. J. Kwon, G. Moon, J. Choi, S. W. Seo, and Y. Shin, Vortex pair annihilation in two-dimensional superfluid turbulence, Phys. Rev. A90 (2014) 063627, [arXiv:1403.4658].

[505]   L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Second Edition: Volume 6 (Course of Theoretical Physics). Butterworth-Heinemann, 1987.

[506]   R. Landauer, The electrical resistance of binary metallic mixtures, J. Appl. Phys. 23 (1952) 779.

[507]   K. Landsteiner, Y. Liu, and Y.-W. Sun, Negative magnetoresistivity in chiral fluids and holography, JHEP 03 (2015) 127, [arXiv:1410.6399].

[508]   K. Landsteiner, Y. Liu, and Y.-W. Sun, Odd viscosity in the quantum critical region of a holographic Weyl semimetal, Phys. Rev. Lett. 117 (2016) 081604, [arXiv:1604.01346].

[509]   K. Landsteiner, Y. Liu, and Y.-W. Sun, Quantum phase transition between a topological and a trivial semimetal from holography, Phys. Rev. Lett. 116 (2016) 081602, [arXiv:1511.05505].

[510]   A. I. Larkin and Y. N. Ovchinnikov, Quasiclassical method in the theory of superconductivity, JETP 28 (1969) 1200.

[511]   E. W. Leaver, Quasinormal modes of reissner-nordström black holes, Phys. Rev. D41 (1990) 2986.

[512]   S. Lederer, Y. Schattner, E. Berg, and S. A. Kivelson, Enhancement of Superconductivity near a Nematic Quantum Critical Point, Phys. Rev. Lett. 114 (2015) 097001, [arXiv:1406.1193].

[513]   S. Lederer, Y. Schattner, E. Berg, and S. A. Kivelson, Superconductivity and bad metal behavior near a nematic quantum critical point, Proc. Natl. Acad. Sci. 114 (2017) 4905, [arXiv:1612.01542].

[514]   P. A. Lee, Gauge field, Aharonov-Bohm flux, and high-Tc superconductivity, Phys. Rev. Lett. 63 (1989) 680.

[515]   S. Lee, K. Hippalgaonkar, F. Yang, J. Hong, C. Ko, J. Suh, K. Liu, K. Wang, J. J. Urban, X. Zhang, C. Dames, S. A. Hartnoll, O. Delaire, and J. Wu, Anomalously low electronic thermal conductivity in metallic vanadium dioxide, Science 355 (2017), no. 6323 371.

[516]   S.-S. Lee, A Non-Fermi Liquid from a Charged Black Hole: A Critical Fermi Ball, Phys. Rev. D79 (2009) 086006, [arXiv:0809.3402].

[517]   S.-S. Lee, Low-energy effective theory of Fermi surface coupled with U(1) gauge field in 2+1 dimensions, Phys. Rev. B80 (2009) 165102, [arXiv:0905.4532].

[518]   S.-S. Lee, Quantum Renormalization Group and Holography, JHEP 01 (2014) 076, [arXiv:1305.3908].

[519]   Y. Lei and S. F. Ross, Extending the non-singular hyperscaling violating spacetimes, Class. Quant. Grav. 31 (2014) 035007, [arXiv:1310.5878].

[520]   A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090, [arXiv:1304.4926].

[521]   Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, Dirac charge dynamics in graphene by infrared spectroscopy, Nature Phys. 4 (2008) 532, [arXiv:0807.3780].

[522]   Z.-X. Li, F. Wang, H. Yao, and D.-H. Lee, Quantum Monte Carlo study of the Tc enhancement mechanism in FeSe on SrTiO3, arXiv:1512.06179.

[523]   Z.-X. Li, F. Wang, H. Yao, and D.-H. Lee, The nature of effective interaction in cuprate superconductors: a sign-problem-free quantum Monte-Carlo study, arXiv:1512.04541.

[524]   L. M. Lifshitz and A. M. Kosevich, Theory of magnetic susceptibility in metals at low temperatures, Sov. Phys. JETP 2 (1956) 636.

[525]   K. Limtragool and P. W. Phillips, Anomalous Dimension of the Electrical Current in the Normal State of the Cuprates from the Fractional Aharonov-Bohm Effect, arXiv:1601.02340.

[526]   H. Lin, O. Lunin, and J. M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025, [hep-th/0409174].

[527]   J. Lindgren, I. Papadimitriou, A. Taliotis, and J. Vanhoof, Holographic Hall conductivities from dyonic backgrounds, JHEP 07 (2015) 094, [arXiv:1505.04131].

[528]   Y. Ling, P. Liu, C. Niu, J.-P. Wu, and Z.-Y. Xian, Holographic Superconductor on Q-lattice, JHEP 02 (2015) 059, [arXiv:1410.6761].

[529]   Y. Ling, C. Niu, J.-P. Wu, and Z.-Y. Xian, Holographic Lattice in Einstein-Maxwell-Dilaton Gravity, JHEP 11 (2013) 006, [arXiv:1309.4580].

[530]   H. Liu, J. McGreevy, and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D83 (2011) 065029, [arXiv:0903.2477].

[531]   J. T. Liu, P. Szepietowski, and Z. Zhao, Supersymmetric massive truncations of IIb supergravity on Sasaki-Einstein manifolds, Phys. Rev. D82 (2010) 124022, [arXiv:1009.4210].

[532]   Y. Liu, K. Schalm, Y.-W. Sun, and J. Zaanen, Lattice Potentials and Fermions in Holographic non Fermi-Liquids: Hybridizing Local Quantum Criticality, JHEP 10 (2012) 036, [arXiv:1205.5227].

[533]   L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos, and M. Soljačić, Experimental observation of Weyl points, Science 349 (2015) 622, [arXiv:1502.03438].

[534]   A. Lucas, Sound waves and resonances in electron-hole plasma, Phys. Rev. B93 (2016) 245153, [arXiv:1604.03955].

[535]   A. Lucas, S. Sachdev, and K. Schalm, Scale-invariant hyperscaling-violating holographic theories and the resistivity of strange metals with random-field disorder, Phys. Rev. D89 (2014) 066018, [arXiv:1401.7993].

[536]   A. Lucas, Conductivity of a strange metal: from holography to memory functions, JHEP 03 (2015) 071, [arXiv:1501.05656].

[537]   A. Lucas, Hydrodynamic transport in strongly coupled disordered quantum field theories, New J. Phys. 17 (2015) 113007, [arXiv:1506.02662].

[538]   A. Lucas, J. Crossno, K. C. Fong, P. Kim, and S. Sachdev, Transport in inhomogeneous quantum critical fluids and in the Dirac fluid in graphene, Phys. Rev. B93 (2016) 075426, [arXiv:1510.01738].

[539]   A. Lucas, R. A. Davison, and S. Sachdev, Hydrodynamic theory of thermoelectric transport and negative magnetoresistance in Weyl semimetals, Proc. Nat. Acad. Sci. 113 (2016) 9463, [arXiv:1604.08598].

[540]   A. Lucas, S. Gazit, D. Podolsky, and W. Witczak-Krempa, Dynamical response near quantum critical points, Phys. Rev. Lett. 118 (2017) 056601, [arXiv:1608.02586].

[541]   A. Lucas and S. A. Hartnoll, Kinetic theory of transport for inhomogeneous electron fluids, arXiv:1706.04621.

[542]   A. Lucas and S. A. Hartnoll, Resistivity bound for hydrodynamic bad metals, arXiv:1704.07384.

[543]   A. Lucas and S. Sachdev, Conductivity of weakly disordered strange metals: from conformal to hyperscaling-violating regimes, Nucl. Phys. B892 (2015) 239, [arXiv:1411.3331].

[544]   A. Lucas and S. Sachdev, Memory matrix theory of magnetotransport in strange metals, Phys. Rev. B91 (2015) 195122, [arXiv:1502.04704].

[545]   A. Lucas, K. Schalm, B. Doyon, and M. J. Bhaseen, Shock waves, rarefaction waves, and nonequilibrium steady states in quantum critical systems, Phys. Rev. D94 (2016) 025004, [arXiv:1512.09037].

[546]   A. Lucas, T. Sierens, and W. Witczak-Krempa, Quantum critical response: from conformal perturbation theory to holography, arXiv:1704.05461.

[547]   A. Lucas and J. Steinberg, Charge diffusion and the butterfly effect in striped holographic matter, JHEP 10 (2016) 143, [arXiv:1608.03286].

[548]   C. Luciuk, S. Smale, F. Böttcher, H. Sharum, B. A. Olsen, S. Trotzky, T. Enss, and J. H. Thywissen, Observation of quantum-limited spin transport in strongly interacting two-dimensional Fermi gases, arXiv:1612.00815.

[549]   J. M. Luttinger, Quantum theory of cyclotron resonance in semiconductors: General theory, Phys. Rev. 102 (1956) 1030.

[550]   J. M. Luttinger, Theory of Thermal Transport Coefficients, Phys. Rev. 135 (1964) A1505.

[551]   B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Experimental Discovery of Weyl Semimetal TaAs, Phys. Rev. X5 (2015) 031013, [arXiv:1502.04684].

[552]   K. Maeda, M. Natsuume, and T. Okamura, Universality class of holographic superconductors, Phys. Rev. D79 (2009) 126004, [arXiv:0904.1914].

[553]   K. Maeda, M. Natsuume, and T. Okamura, Vortex lattice for a holographic superconductor, Phys. Rev. D81 (2010) 026002, [arXiv:0910.4475].

[554]   R. Mahajan, M. Barkeshli, and S. A. Hartnoll, Non-Fermi liquids and the Wiedemann-Franz law, Phys. Rev. B88 (2013) 125107, [arXiv:1304.4249].

[555]   G. Mahan, Many-Particle Physics. Springer US, 2013.

[556]   S. A. Maier and P. Strack, Universality in antiferromagnetic strange metals, arXiv:1510.01331.

[557]   J. Maldacena, The Gauge/gravity duality, arXiv:1106.6073.

[558]   J. Maldacena, D. Martelli, and Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry, JHEP 10 (2008) 072, [arXiv:0807.1100].

[559]   J. Maldacena, S. H. Shenker, and D. Stanford, A bound on chaos, JHEP 08 (2016) 106, [arXiv:1503.01409].

[560]   J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D94 (2016) 106002, [arXiv:1604.07818].

[561]   J. Maldacena, D. Stanford, and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104, [arXiv:1606.01857].

[562]   J. M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113, [hep-th/9711200].

[563]   J. M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021, [hep-th/0106112].

[564]   J. M. Maldacena and C. Nunez, Towards the large N limit of pure N=1 superYang-Mills, Phys. Rev. Lett. 86 (2001) 588, [hep-th/0008001].

[565]   D. v. d. Marel, H. J. A. Molegraaf, J. Zaanen, Z. Nussinov, F. Carbone, A. Damascelli, H. Eisaki, M. Greven, P. H. Kes, and M. Li, Quantum critical behaviour in a high-Tc superconductor, Nature 425 (2003) 271.

[566]   D. Marolf and M. Rangamani, Causality and the AdS Dirichlet problem, JHEP 04 (2012) 035, [arXiv:1201.1233].

[567]   D. Marolf and S. F. Ross, Boundary Conditions and New Dualities: Vector Fields in AdS/CFT, JHEP 11 (2006) 085, [hep-th/0606113].

[568]   D. L. Maslov, V. I. Yudson, and A. V. Chubukov, Resistivity of a Non-Galilean-Invariant Fermi Liquid near Pomeranchuk Quantum Criticality, Phys. Rev. Lett. 106 (2011) 106403, [arXiv:1012.0069].

[569]   D. Mateos, String Theory and Quantum Chromodynamics, Class. Quant. Grav. 24 (2007) S713–S740, [arXiv:0709.1523].

[570]   D. Mateos, R. C. Myers, and R. M. Thomson, Holographic phase transitions with fundamental matter, Phys. Rev. Lett. 97 (2006) 091601, [hep-th/0605046].

[571]   M. Matusiak, K. Rogacki, and B. W. Veal, Enhancement of the Hall-Lorenz number in optimally doped YBa2Cu3O7−δ, Europhys. Lett. 88 (2009) 47005.

[572]   M. Matusiak and T. Wolf, Lorenz number in the optimally doped and underdoped superconductor EuBa2Cu3Oy, Phys. Rev. B72 (2005) 054508.

[573]   M. Matusiak, J. Hori, and T. Suzuki, The Hall-Lorenz number in the La1.855Sr0.145CuO4 single crystal, Solid State Commun. 139 (2006) 376.

[574]   P. Mazur, Non-ergodicity of phase functions in certain systems, Physica 43 (1969) 533.

[575]   A. J. M. Medved, D. Martin, and M. Visser, Dirty black holes: Symmetries at stationary nonstatic horizons, Phys. Rev. D70 (2004) 024009, [gr-qc/0403026].

[576]   E. Mefford and G. T. Horowitz, Simple holographic insulator, Phys. Rev. D90 (2014) 084042, [arXiv:1406.4188].

[577]   M. A. Metlitski and S. Sachdev, Quantum phase transitions of metals in two spatial dimensions. I. Ising-nematic order, Phys. Rev. B82 (2010) 075127, [arXiv:1001.1153].

[578]   M. A. Metlitski and S. Sachdev, Quantum phase transitions of metals in two spatial dimensions. II. Spin density wave order, Phys. Rev. B82 (2010) 075128, [arXiv:1005.1288].

[579]   M. A. Metlitski, D. F. Mross, S. Sachdev, and T. Senthil, Cooper pairing in non-Fermi liquids, Phys. Rev. B91 (2015) 115111, [arXiv:1403.3694].

[580]   L. Mezincescu and P. K. Townsend, Stability at a Local Maximum in Higher Dimensional Anti-de Sitter Space and Applications to Supergravity, Ann. Phys. 160 (1985) 406.

[581]   M. Mitrano, A. Husain, S. Vig, A. Kogar, M. Rak, S. Rubeck, J. Schneeloch, R. Zhong, G. Gu, C. Varma, and P. Abbamonte, Singular density fluctuations in the strange metal phase of a copper-oxide superconductor, arXiv:1708.01929.

[582]   P. J. W. Moll, P. Kushwaha, N. Nandi, B. Schmidt, and A. P. Mackenzie, Evidence for hydrodynamic electron flow in PdCoO2, Science 351 (2016) 1061, [arXiv:1509.05691].

[583]   M. Montull, A. Pomarol, and P. J. Silva, The Holographic Superconductor Vortex, Phys. Rev. Lett. 103 (2009) 091601, [arXiv:0906.2396].

[584]   E.-G. Moon, C. Xu, Y. B. Kim, and L. Balents, Non-Fermi-Liquid and Topological States with Strong Spin-Orbit Coupling, Phys. Rev. Lett. 111 (2013) 206401, [arXiv:1212.1168].

[585]   L. Motl and A. Neitzke, Asymptotic black hole quasinormal frequencies, Adv. Theor. Math. Phys. 7 (2003) 307, [hep-th/0301173].

[586]   O. Motrunich, S.-C. Mau, D. A. Huse, and D. S. Fisher, Infinite-randomness quantum Ising critical fixed points, Phys. Rev. B61 (2000) 1160.

[587]   O. I. Motrunich and A. Vishwanath, Emergent photons and new transitions in the O(3) sigma model with hedgehog suppression, Phys. Rev. B70 (2003) 075104, [cond-mat/0311222].

[588]   D. F. Mross, J. McGreevy, H. Liu, and T. Senthil, Controlled expansion for certain non-Fermi-liquid metals, Phys. Rev. B82 (2010) 045121, [arXiv:1003.0894].

[589]   W. Mueck and K. S. Viswanathan, Conformal field theory correlators from classical field theory on anti-de Sitter space. 2. Vector and spinor fields, Phys. Rev. D58 (1998) 106006, [hep-th/9805145].

[590]   M. Müller, L. Fritz, and S. Sachdev, Quantum-critical relativistic magnetotransport in graphene, Phys. Rev. B78 (2008) 115406, [arXiv:0805.1413].

[591]   M. Müller, J. Schmalian, and L. Fritz, Graphene - a nearly perfect fluid, Phys. Rev. Lett. 103 (2009) 025301, [arXiv:0903.4178].

[592]   M. Muller and S. Sachdev, Collective cyclotron motion of the relativistic plasma in graphene, Phys. Rev. B78 (2008) 115419, [arXiv:0801.2970].

[593]   D. Musso, Introductory notes on holographic superconductors, Proc. Sci. 201 (2013) 004, [arXiv:1401.1504].

[594]   R. C. Myers, S. Sachdev, and A. Singh, Holographic Quantum Critical Transport without Self-Duality, Phys. Rev. D83 (2011) 066017, [arXiv:1010.0443].

[595]   R. C. Myers, T. Sierens, and W. Witczak-Krempa, A Holographic Model for Quantum Critical Responses, JHEP 05 (2016) 073, [arXiv:1602.05599]. [Addendum: JHEP09,066(2016)].

[596]   S. Nakamura, H. Ooguri, and C.-S. Park, Gravity Dual of Spatially Modulated Phase, Phys. Rev. D81 (2010) 044018, [arXiv:0911.0679].

[597]   R. Nandkishore and D. A. Huse, Many body localization and thermalization in quantum statistical mechanics, Ann. Rev. Cond. Mat. Phys. 6 (2015) 15, [arXiv:1404.0686].

[598]   K. Narayan, On Lifshitz scaling and hyperscaling violation in string theory, Phys. Rev. D85 (2012) 106006, [arXiv:1202.5935].

[599]   J. Natario and R. Schiappa, On the classification of asymptotic quasinormal frequencies for d-dimensional black holes and quantum gravity, Adv. Theor. Math. Phys. 8 (2004) 1001, [hep-th/0411267].

[600]   T. W. Neely and et al, Characteristics of two-dimensional quantum turbulence in a compressional superfluid, Phys. Rev. Lett. 111 (2013) 235301, [arXiv:1204.1102].

[601]   Y. Neiman and Y. Oz, Relativistic Hydrodynamics with General Anomalous Charges, JHEP 03 (2011) 023, [arXiv:1011.5107].

[602]   D. Nickel and D. T. Son, Deconstructing holographic liquids, New J. Phys. 13 (2011) 075010, [arXiv:1009.3094].

[603]   H. B. Nielsen and M. Ninomiya, A no-go theorem for regularizing chiral fermions, Phys. Lett. B105 (1982) 219.

[604]   T. Nishioka, S. Ryu, and T. Takayanagi, Holographic Entanglement Entropy: An Overview, J. Phys. A42 (2009) 504008, [arXiv:0905.0932].

[605]   T. Nishioka, S. Ryu, and T. Takayanagi, Holographic Superconductor/Insulator Transition at Zero Temperature, JHEP 03 (2010) 131, [arXiv:0911.0962].

[606]   A. O’Bannon, Hall Conductivity of Flavor Fields from AdS/CFT, Phys. Rev. D76 (2007) 086007, [arXiv:0708.1994].

[607]   N. Ogawa, T. Takayanagi, and T. Ugajin, Holographic Fermi Surfaces and Entanglement Entropy, JHEP 01 (2012) 125, [arXiv:1111.1023].

[608]   H. Ooguri and C.-S. Park, Holographic End-Point of Spatially Modulated Phase Transition, Phys. Rev. D82 (2010) 126001, [arXiv:1007.3737].

[609]   H. Ooguri and C. Vafa, Non-supersymmetric AdS and the Swampland, arXiv:1610.01533.

[610]   J. R. Oppenheimer and G. M. Volkoff, On Massive neutron cores, Phys. Rev. 55 (1939) 374.

[611]   D.-W. Pang, Conductivity and Diffusion Constant in Lifshitz Backgrounds, JHEP 01 (2010) 120, [arXiv:0912.2403].

[612]   D.-W. Pang, Probing holographic semilocal quantum liquids with D-branes, Phys. Rev. D88 (2013) 046002, [arXiv:1306.3816].

[613]   D. Pappadopulo, S. Rychkov, J. Espin, and R. Rattazzi, OPE Convergence in Conformal Field Theory, Phys. Rev. D86 (2012) 105043, [arXiv:1208.6449].

[614]   A. Paramekanti and A. Vishwanath, Extending Luttinger’s theorem to 2 fractionalized phases of matter, Phys. Rev. B70 (2004) 245118, [cond-mat/0406619].

[615]   O. Parcollet and A. Georges, Non-Fermi-liquid regime of a doped Mott insulator, Phys. Rev. B59 (1999) 5341, [cond-mat/9806119].

[616]   M. Parikh and F. Wilczek, An Action for black hole membranes, Phys. Rev. D58 (1998) 064011, [gr-qc/9712077].

[617]   F. Parisen Toldin, M. Hohenadler, F. F. Assaad, and I. F. Herbut, Fermionic quantum criticality in honeycomb and π -flux Hubbard models: Finite-size scaling of renormalization-group-invariant observables from quantum Monte Carlo, Phys. Rev. B91 (2015) 165108, [arXiv:1411.2502].

[618]   F. Pastawski, B. Yoshida, D. Harlow, and J. Preskill, Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence, arXiv:1503.06237.

[619]   A. A. Patel, P. Strack, and S. Sachdev, Hyperscaling at the spin density wave quantum critical point in two-dimensional metals, Phys. Rev. B92 (2015) 165105, [arXiv:1507.05962].

[620]   A. A. Patel, A. Eberlein, and S. Sachdev, Shear viscosity at the Ising-nematic quantum critical point in two dimensional metals, Phys. Rev. B95 (2017) 075127, [arXiv:1607.03894].

[621]   A. A. Patel and S. Sachdev, DC resistivity at the onset of spin density wave order in two-dimensional metals, Phys. Rev. B90 (2014) 165146, [arXiv:1408.6549].

[622]   A. A. Patel and S. Sachdev, Quantum chaos on a critical Fermi surface, Proc. Nat. Acad. Sci. 114 (2017) 1844, [arXiv:1611.00003].

[623]   L. Pauling, A resonating-valence-bond theory of metals and intermetallic compounds, Proc. R. Soc. London A196 (1949) 343.

[624]   R. E. Peierls, Zur Theorie der elektrischen und thermischen Leitfähigkeit von Metallen, Ann. Phys. (Berlin) 4 (1930) 121.

[625]   R. E. Peierls, Zur Frage des elektrischen Widerstandsgesetzes für tiefe Temperaturen, Ann. Phys. (Berlin) 12 (1932) 154.

[626]   P. W. Phillips, B. W. Langley, and J. A. Hutasoit, Un-Fermi Liquids: Unparticles in Strongly Correlated Electron Matter, Phys. Rev. B88 (2013) 115129, [arXiv:1305.0006].

[627]   D. V. Pilon, C. H. Lui, T. H. Han, D. Shrekenhamer, A. J. Frenzel, W. J. Padilla, Y. S. Lee, and N. Gedik, Spin-Induced Optical Conductivity in the Spin-Liquid Candidate Herbertsmithite, Phys. Rev. Lett. 111 (2013) 127401.

[628]   D. Pines and P. Nozières, Theory of Quantum Liquids: Normal Fermi Liquids. Advanced book classics. Addison-Wesley, 1994.

[629]   B. Pioline and J. Troost, Schwinger pair production in AdS2, JHEP 03 (2005) 043, [hep-th/0501169].

[630]   N. W. M. Plantz, H. T. C. Stoof, and S. Vandoren, Order parameter fluctuations in the holographic superconductor, arXiv:1511.05112.

[631]   J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string. Cambridge University Press, 2007.

[632]   J. Polchinski, String theory. Vol. 2: Superstring theory and beyond. Cambridge University Press, 2007.

[633]   J. Polchinski, Effective field theory and the Fermi surface, in Theoretical Advanced Study Institute (TASI 92): From Black Holes and Strings to Particles Boulder, Colorado, June 3-28, 1992, 1992. hep-th/9210046.

[634]   J. Polchinski and V. Rosenhaus, The Spectrum in the Sachdev-Ye-Kitaev Model, JHEP 04 (2016) 001, [arXiv:1601.06768].

[635]   J. Polchinski and E. Silverstein, Dual Purpose Landscaping Tools: Small Extra Dimensions in AdS/CFT, in Strings, gauge fields, and the geometry behind: The legacy of Maximilian Kreuzer (A. Rebhan, L. Katzarkov, J. Knapp, R. Rashkov, and E. Scheidegger, eds.), p. 365. World Scientific, 2009. arXiv:0908.0756.

[636]   J. Polchinski and E. Silverstein, Large-density field theory, viscosity, and ’2kF’ singularities from string duals, Class. Quant. Grav. 29 (2012) 194008, [arXiv:1203.1015].

[637]   G. Policastro, D. T. Son, and A. O. Starinets, The Shear viscosity of strongly coupled N=4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601, [hep-th/0104066].

[638]   G. Policastro, D. T. Son, and A. O. Starinets, From AdS / CFT correspondence to hydrodynamics, JHEP 09 (2002) 043, [hep-th/0205052].

[639]   G. Policastro, D. T. Son, and A. O. Starinets, From AdS / CFT correspondence to hydrodynamics. 2. Sound waves, JHEP 12 (2002) 054, [hep-th/0210220].

[640]   A. M. Polyakov, The Wall of the cave, Int.J.Mod.Phys. A14 (1999) 645, [hep-th/9809057].

[641]   S. Powell, S. Sachdev, and H. P. Büchler, Depletion of the Bose-Einstein condensate in Bose-Fermi mixtures, Phys. Rev. B72 (2005) 024534, [cond-mat/0502299].

[642]   R. Price and K. Thorne, Membrane Viewpoint on Black Holes: Properties and Evolution of the Stretched Horizon, Phys. Rev. D33 (1986) 915.

[643]   C. Proust, K. Behnia, R. Bel, D. Maude, and S. I. Vedeneev, Heat transport in Bi2+xSr2−xCuO6+δ: Departure from the Wiedemann-Franz law in the vicinity of the metal-insulator transition, Phys. Rev. B72 (2005) 214511.

[644]   V. G. M. Puletti, S. Nowling, L. Thorlacius, and T. Zingg, Holographic metals at finite temperature, JHEP 01 (2011) 117, [arXiv:1011.6261].

[645]   M. Punk and S. Sachdev, Fermi surface reconstruction in hole-doped t-J models without long-range antiferromagnetic order, Phys. Rev. B85 (2012) 195123, [arXiv:1202.4023].

[646]   M. Punk, A. Allais, and S. Sachdev, A quantum dimer model for the pseudogap metal, Proc. Nat. Acad. Sci. 112 (2015) 9552, [arXiv:1501.00978].

[647]   S. Raghu, G. Torroba, and H. Wang, Metallic quantum critical points with finite BCS couplings, Phys. Rev. B92 (2015) 205104, [arXiv:1507.06652].

[648]   B. J. Ramshaw, S. E. Sebastian, R. D. McDonald, J. Day, B. S. Tan, Z. Zhu, J. B. Betts, R. Liang, D. A. Bonn, W. N. Hardy, and N. Harrison, Quasiparticle mass enhancement approaching optimal doping in a high-Tc superconductor, Science 348 (2015) 317.

[649]   M. Rangamani, M. Rozali, and D. Smyth, Spatial Modulation and Conductivities in Effective Holographic Theories, JHEP 07 (2015) 024, [arXiv:1505.05171].

[650]   N. Read, S. Sachdev, and J. Ye, Landau theory of quantum spin glasses of rotors and Ising spins, Phys. Rev. B52 (1995) 384, [cond-mat/9412032].

[651]   N. Read and S. Sachdev, Valence-bond and spin-Peierls ground states of low-dimensional quantum antiferromagnets, Phys. Rev. Lett. 62 (1989) 1694.

[652]   N. Read and S. Sachdev, Spin-Peierls, valence-bond solid, and Néel ground states of low-dimensional quantum antiferromagnets, Phys. Rev. B42 (1990) 4568.

[653]   T. J. Reber, X. Zhou, N. C. Plumb, S. Parham, J. A. Waugh, Y. Cao, Z. Sun, H. Li, Q. Wang, J. S. Wen, et al., Power Law Liquid-A Unified Form of Low-Energy Nodal Electronic Interactions in Hole Doped Cuprate Superconductors, arXiv:1509.01611.

[654]   M. T. Reeves, T. P. Billam, B. P. Anderson, and A. S. Bradley, Inverse energy cascade in forced 2D quantum turbulence, Phys. Rev. Lett. 110 (2013) 104501, [arXiv:1209.5824].

[655]   M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Relaxation in a Completely Integrable Many-Body Quantum System: An Ab Initio Study of the Dynamics of the Highly Excited States of Lattice Hard-Core Bosons, Phys. Rev. Lett. 98 (2007) 050405, [cond-mat/0604476].

[656]   A. Ritz and J. Ward, Weyl corrections to holographic conductivity, Phys. Rev. D79 (2009) 066003, [arXiv:0811.4195].

[657]   D. A. Roberts, D. Stanford, and L. Susskind, Localized shocks, JHEP 03 (2015) 051, [arXiv:1409.8180].

[658]   M. M. Roberts and S. A. Hartnoll, Pseudogap and time reversal breaking in a holographic superconductor, JHEP 08 (2008) 035, [arXiv:0805.3898].

[659]   P. Romatschke, Retarded Correlators in Kinetic Theory: Branch Cuts, Poles and Transport Phase Transitions, arXiv:1512.02641.

[660]   M. Rozali, D. Smyth, E. Sorkin, and J. B. Stang, Holographic Stripes, Phys. Rev. Lett. 110 (2013) 201603, [arXiv:1211.5600].

[661]   M. Rozali, D. Smyth, E. Sorkin, and J. B. Stang, Striped order in AdS/CFT correspondence, Phys. Rev. D87 (2013) 126007, [arXiv:1304.3130].

[662]   R. Ruffini and S. Bonazzola, Systems of selfgravitating particles in general relativity and the concept of an equation of state, Phys. Rev. 187 (1969) 1767.

[663]   S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045, [hep-th/0605073].

[664]   S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602, [hep-th/0603001].

[665]   S. Ryu, T. Takayanagi, and T. Ugajin, Holographic Conductivity in Disordered Systems, JHEP 04 (2011) 115, [arXiv:1103.6068].

[666]   S. Sachdev, Quantum phase transitions and conserved charges, Zeit. Phys. B94 (1994) 469.

[667]   S. Sachdev, Bekenstein-Hawking Entropy and Strange Metals, Phys. Rev. X5 (2015) 041025, [arXiv:1506.05111].

[668]   S. Sachdev, Emergent gauge fields and the high-temperature superconductors, Phil.Trans.Roy.Soc.London A374 (2016) 20150248, [arXiv:1512.00465].

[669]   S. Sachdev and D. Chowdhury, The novel metallic states of the cuprates: Topological Fermi liquids and strange metals, Prog. Theor. Exp. Phys. 2016 (2016) 12C102, [arXiv:1605.03579].

[670]   S. Sachdev and A. Georges, Charge- and spin-density-wave ordering transitions in strongly correlated metals, Phys. Rev. B52 (1995) 9520, [cond-mat/9503158].

[671]   S. Sachdev and J. Ye, Gapless spin-fluid ground state in a random quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339, [cond-mat/9212030].

[672]   S. Sachdev, Non-zero temperature transport near fractional quantum Hall critical points, Phys. Rev. B57 (1998) 7157.

[673]   S. Sachdev, Quantum Phase Transitions. Cambridge University Press, Cambridge, UK, 1 ed., 1999.

[674]   S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105 (2010) 151602, [arXiv:1006.3794].

[675]   S. Sachdev, Strange metals and the AdS/CFT correspondence, J. Stat. Mech. (2010) P11022, [arXiv:1010.0682].

[676]   S. Sachdev, A model of a Fermi liquid using gauge-gravity duality, Phys. Rev. D84 (2011) 066009, [arXiv:1107.5321].

[677]   S. Sachdev, Compressible quantum phases from conformal field theories in 2+1 dimensions, Phys. Rev. D86 (2012) 126003, [arXiv:1209.1637].

[678]   S. Sachdev, The Quantum phases of matter, in Proceedings, 25th Solvay Conference on Physics: The Theory of the Quantum World, 2012. arXiv:1203.4565.

[679]   S. Sachdev and B. Keimer, Quantum Criticality, Physics Today 64N2 (2011) 29, [arXiv:1102.4628].

[680]   Y. Schattner, M. H. Gerlach, S. Trebst, and E. Berg, Competing Orders in a Nearly Antiferromagnetic Metal, Phys. Rev. Lett. 117 (2016) 097002, [arXiv:1512.07257].

[681]   B. F. Schutz, Perfect Fluids in General Relativity: Velocity Potentials and a Variational Principle, Phys. Rev. D2 (1970) 2762.

[682]   S. E. Sebastian, N. Harrison, M. M. Altarawneh, R. Liang, D. A. Bonn, W. N. Hardy, and G. G. Lonzarich, Fermi-liquid behavior in an underdoped high-Tc superconductor, Phys. Rev. B81 (2010) 140505.

[683]   A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity, JHEP 09 (2005) 038, [hep-th/0506177].

[684]   T. Senthil, L. Balents, S. Sachdev, A. Vishwanath, and M. P. A. Fisher, Quantum criticality beyond the Landau-Ginzburg-Wilson paradigm, Phys. Rev. B70 (2004) 144407, [cond-mat/0312617].

[685]   T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and M. P. A. Fisher, Deconfined Quantum Critical Points, Science 303 (2004) 1490, [cond-mat/0311326].

[686]   T. Senthil, M. Vojta, and S. Sachdev, Weak magnetism and non-Fermi liquids near heavy-fermion critical points, Phys. Rev. B69 (2004) 035111, [cond-mat/0305193].

[687]   Y. Seo, G. Song, P. Kim, S. Sachdev, and S.-J. Sin, Holography of the Dirac Fluid in Graphene with two currents, arXiv:1609.03582.

[688]   E. Shaghoulian, Holographic Entanglement Entropy and Fermi Surfaces, JHEP 05 (2012) 065, [arXiv:1112.2702].

[689]   R. Shankar, Renormalization-group approach to interacting fermions, Rev. Mod. Phys. 66 (1994) 129, [cond-mat/9307009].

[690]   J.-H. She, B. J. Overbosch, Y.-W. Sun, Y. Liu, K. Schalm, J. A. Mydosh, and J. Zaanen, Observing the origin of superconductivity in quantum critical metals, Phys. Rev. B84 (2011) 144527, [arXiv:1105.5377].

[691]   S. H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067, [arXiv:1306.0622].

[692]   T. Shibauchi, A. Carrington, and Y. Matsuda, A Quantum Critical Point Lying Beneath the Superconducting Dome in Iron Pnictides, Ann. Rev. Cond. Mat. Phys. 5 (2014) 113, [arXiv:1304.6387].

[693]   Q. Si, Quantum criticality and global phase diagram of magnetic heavy fermions, Phys. Stat. Sol. B247 (2010) 476, [arXiv:0912.0040].

[694]   K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849, [hep-th/0209067].

[695]   K. Skenderis and P. K. Townsend, Gravitational stability and renormalization group flow, Phys. Lett. B468 (1999) 46, [hep-th/9909070].

[696]   K. Skenderis and B. C. van Rees, Real-time gauge/gravity duality, Phys. Rev. Lett. 101 (2008) 081601, [arXiv:0805.0150].

[697]   D. T. Son, Superconductivity by long range color magnetic interaction in high density quark matter, Phys. Rev. D59 (1999) 094019, [hep-ph/9812287].

[698]   D. T. Son and B. Z. Spivak, Chiral anomaly and classical negative magnetoresistance of Weyl metals, Phys. Rev. B88 (2013), no. 10 104412, [arXiv:1206.1627].

[699]   D. T. Son and A. O. Starinets, Minkowski space correlators in AdS / CFT correspondence: Recipe and applications, JHEP 09 (2002) 042, [hep-th/0205051].

[700]   D. T. Son and A. O. Starinets, Hydrodynamics of r-charged black holes, JHEP 03 (2006) 052, [hep-th/0601157].

[701]   D. T. Son and A. O. Starinets, Viscosity, Black Holes, and Quantum Field Theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95, [arXiv:0704.0240].

[702]   D. T. Son and P. Surowka, Hydrodynamics with Triangle Anomalies, Phys. Rev. Lett. 103 (2009) 191601, [arXiv:0906.5044].

[703]   D. Son, Toward an AdS/cold atoms correspondence: A Geometric realization of the Schrodinger symmetry, Phys. Rev. D78 (2008) 046003, [arXiv:0804.3972].

[704]   J. Sonner, A. del Campo, and W. H. Zurek, Universal far-from-equilibrium Dynamics of a Holographic Superconductor, Nature Commun. 6 (2015) 7406, [arXiv:1406.2329].

[705]   J. Sonner and A. G. Green, Hawking Radiation and Non-equilibrium Quantum Critical Current Noise, Phys. Rev. Lett. 109 (2012) 091601, [arXiv:1203.4908].

[706]   J. Sonner and B. Withers, A gravity derivation of the Tisza-Landau Model in AdS/CFT, Phys. Rev. D82 (2010) 026001, [arXiv:1004.2707].

[707]   M. Spillane and C. P. Herzog, Relativistic Hydrodynamics and Non-Equilibrium Steady States, arXiv:1512.09071.

[708]   B. Spivak and S. A. Kivelson, Transport in two dimensional electronic micro-emulsions, Ann. Phys. 321 (2006) 2071.

[709]   M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666, [hep-th/9303048].

[710]   D. Stanford, The Sachdev-Ye-Kitaev model and AdS2, Talk at Strings 2016, Beijing (2016).

[711]   A. O. Starinets, Quasinormal modes of near extremal black branes, Phys. Rev. D66 (2002) 124013, [hep-th/0207133].

[712]   A. O. Starinets, Quasinormal spectrum and the black hole membrane paradigm, Phys. Lett. B670 (2009) 442, [arXiv:0806.3797].

[713]   X. F. Sun, B. Lin, X. Zhao, L. Li, S. Komiya, I. Tsukada, and Y. Ando, Deviation from the Wiedemann-Franz law induced by nonmagnetic impurities in overdoped La2−xSrxCuO4, Phys. Rev. B80 (2009) 104510.

[714]   Y.-W. Sun and Q. Yang, Negative magnetoresistivity in holography, JHEP 09 (2016) 122, [arXiv:1603.02624].

[715]   S. Sur and S.-S. Lee, Chiral non-Fermi liquids, Phys. Rev. B90 (2014) 045121, [arXiv:1310.7543].

[716]   S. Sur and S.-S. Lee, Quasilocal strange metal, Phys. Rev. B91 (2015) 125136, [arXiv:1405.7357].

[717]   L. Susskind and E. Witten, The Holographic bound in anti-de Sitter space, hep-th/9805114.

[718]   M. Suzuki, Ergodicity, constants of motion, and bounds for susceptibilities, Physica 51 (1971) 277.

[719]   B. Swingle, Entanglement Entropy at Finite Density from Extremal Black Holes, arXiv:0908.1737.

[720]   B. Swingle, Entanglement Entropy and the Fermi Surface, Phys. Rev. Lett. 105 (2010) 050502, [arXiv:0908.1724].

[721]   B. Swingle, Constructing holographic spacetimes using entanglement renormalization, arXiv:1209.3304.

[722]   B. Swingle, Entanglement Renormalization and Holography, Phys. Rev. D86 (2012) 065007, [arXiv:0905.1317].

[723]   B. Swingle and D. Chowdhury, Slow scrambling in disordered quantum systems, Phys. Rev. B95 (2017) 060201, [arXiv:1608.03280].

[724]   W. Sybesma and S. Vandoren, Lifshitz quasinormal modes and relaxation from holography, JHEP 05 (2015) 021, [arXiv:1503.07457].

[725]   G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl. Phys. B72 (1974) 461.

[726]   B. S. Tan, Y.-T. Hsu, B. Zeng, M. C. Hatnean, N. Harrison, Z. Zhu, M. Hartstein, M. Kiourlappou, A. Srivastava, M. D. Johannes, T. P. Murphy, J.-H. Park, L. Balicas, G. G. Lonzarich, G. Balakrishnan, and S. E. Sebastian, Unconventional Fermi surface in an insulating state, Science 349 (2015) 287.

[727]   M. A. Tanatar, J. Paglione, C. Petrovic, and L. Taillefer, Anisotropic Violation of the Wiedemann-Franz Law at a Quantum Critical Point, Science 316 (2007) 1320.

[728]   M. Taylor, Non-relativistic holography, arXiv:0812.0530.

[729]   M. Taylor, Lifshitz holography, Class. Quant. Grav. 33 (2016), no. 3 033001, [arXiv:1512.03554].

[730]   M. Taylor and W. Woodhead, Inhomogeneity simplified, Eur. Phys. J. C74 (2014) 3176, [arXiv:1406.4870].

[731]   L. H. Thomas, The calculation of atomic fields, Math. Proc. Camb. Phil. Soc. 23 (1927) 542.

[732]   K. S. Thorne, R. Price, and D. Macdonald, Black Holes: The Membrane Paradigm. Yale University Press, 1986.

[733]   M. Tinkham, Introduction to Superconductivity; 2nd ed. Dover books on physics. Dover, Mineola, NY, 2004.

[734]   R. C. Tolman, Static solutions of Einstein’s field equations for spheres of fluid, Phys. Rev. 55 (1939) 364.

[735]   T. Tomita, K. Kuga, Y. Uwatoko, P. Coleman, and S. Nakatsuji, Strange metal without magnetic criticality, Science 349 (2015) 506, [arXiv:1508.02536].

[736]   J. Šmakov and E. S. Sørensen, Universal Scaling of the Conductivity at the Superfluid-Insulator Phase Transition, Phys. Rev. Lett. 95 (2005) 180603, [cond-mat/0509671].

[737]   P. C. Vaidya, The external field of a radiating star in general relativity, Curr. Sci. 12 (1943) 183.

[738]   T. Valla, A. V. Fedorov, P. D. Johnson, B. O. Wells, S. L. Hulbert, Q. Li, G. D. Gu, and N. Koshizuka, Evidence for Quantum Critical Behavior in the Optimally Doped Cuprate Bi2Sr2CaCu2O8+δ, Science 285 (1999) 2110.

[739]   G. Vanacore and P. W. Phillips, Minding the Gap in Holographic Models of Interacting Fermions, Phys. Rev. D90 (2014) 044022, [arXiv:1405.1041].

[740]   C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams, and A. E. Ruckenstein, Phenomenology of the normal state of Cu-O high-temperature superconductors, Phys. Rev. Lett. 63 (1989) 1996.

[741]   D. Vegh, Fermi arcs from holography, arXiv:1007.0246.

[742]   D. Vegh, Holographic Fermi Surfaces Near Quantum Phase Transitions, arXiv:1112.3318.

[743]   D. Vegh, Holography without translational symmetry, arXiv:1301.0537.

[744]   G. Vidal, Entanglement Renormalization: an introduction, arXiv:0912.1651.

[745]   J. Villain, Theory of one- and two-dimensional magnets with an easy magnetization plane. II. The planar, classical, two-dimensional magnet , J. de Phys. (Paris) 36 (1975) 581.

[746]   C. V. Vishveshwara, Scattering of Gravitational Radiation by a Schwarzschild Black-hole, Nature 227 (1970) 936.

[747]   X. Wang, Y. Schattner, E. Berg, and R. M. Fernandes, Superconductivity mediated by quantum critical antiferromagnetic fluctuations: the rise and fall of hot spots, arXiv:1609.09568.

[748]   Y. Wang, A. Abanov, B. L. Altshuler, E. A. Yuzbashyan, and A. V. Chubukov, Superconductivity near a Quantum-Critical Point: The Special Role of the First Matsubara Frequency, Phys. Rev. Lett. 117 (2016) 157001, [arXiv:1606.01252].

[749]   A. Wasserman and M. Springford, The influence of many-body interactions on the de haas-van alphen effect, Adv. Phys. 45 (1996) 471.

[750]   A. Weinrib and B. I. Halperin, Critical phenomena in systems with long-range-correlated quenched disorder, Phys. Rev. B27 (1983) 413.

[751]   X.-G. Wen, Scaling theory of conserved current and universal amplitudes at anisotropic critical points, Phys. Rev. B46 (1992) 2655.

[752]   X.-G. Wen and Y.-S. Wu, Transitions between the quantum Hall states and insulators induced by periodic potentials, Phys. Rev. Lett. 70 (1993) 1501.

[753]   J. Wildeboer, A. Seidel, and R. G. Melko, Entanglement Entropy and Topological Order in Resonating Valence-Bond Quantum Spin Liquids, Phys. Rev. B95 (2016) 100402, [arXiv:1510.07682].

[754]   K. G. Wilson and M. E. Fisher, Critical exponents in 3.99 dimensions, Phys. Rev. Lett. 28 (1972) 240.

[755]   W. Witczak-Krempa, P. Ghaemi, T. Senthil, and Y. B. Kim, Universal transport near a quantum critical Mott transition in two dimensions, Phys. Rev. B86 (2012) 245102, [arXiv:1206.3309].

[756]   W. Witczak-Krempa, E. S. Sørensen, and S. Sachdev, The dynamics of quantum criticality revealed by quantum Monte Carlo and holography, Nature Phys. 10 (2014) 361, [arXiv:1309.2941].

[757]   W. Witczak-Krempa, Quantum critical charge response from higher derivatives in holography, Phys. Rev. B89 (2014) 161114, [arXiv:1312.3334].

[758]   W. Witczak-Krempa, Constraining Quantum Critical Dynamics: (2+1)D Ising Model and Beyond, Phys. Rev. Lett. 114 (2015) 177201, [arXiv:1501.03495].

[759]   W. Witczak-Krempa and S. Sachdev, The quasi-normal modes of quantum criticality, Phys. Rev. B86 (2012) 235115, [arXiv:1210.4166].

[760]   B. Withers, Black branes dual to striped phases, Class. Quant. Grav. 30 (2013) 155025, [arXiv:1304.0129].

[761]   B. Withers, Holographic Checkerboards, JHEP 09 (2014) 102, [arXiv:1407.1085].

[762]   E. Witten, Chiral Symmetry, the 1/n Expansion, and the SU(N) Thirring Model, Nucl. Phys. B145 (1978) 110.

[763]   E. Witten, The 1/N Expansion In Atomic And Particle Physics, in Recent Developments in Gauge Theories, p. 403. Springer, 1980.

[764]   E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253, [hep-th/9802150].

[765]   E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505, [hep-th/9803131].

[766]   E. Witten, Multitrace operators, boundary conditions, and AdS / CFT correspondence, hep-th/0112258.

[767]   E. Witten, SL(2,Z) action on three-dimensional conformal field theories with Abelian symmetry, hep-th/0307041.

[768]   M. M. Wolf, Violation of the entropic area law for Fermions, Phys. Rev. Lett. 96 (2006) 010404, [quant-ph/0503219].

[769]   J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan, M. Hirschberger, W. Wang, R. J. Cava, and N. P. Ong, Evidence for the chiral anomaly in the Dirac semimetal Na3Bi, Science 350 (2015) 412.

[770]   S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, Discovery of a Weyl fermion semimetal and topological Fermi arcs, Science 349 (2015) 613, [arXiv:1502.03807].

[771]   J. Zaanen, Y. Liu, Y. Sun, and K. Schalm, Holographic Duality in Condensed Matter Physics. Cambridge University Press, 2015.

[772]   J. Zaanen, Superconductivity: Why the temperature is high, Nature 430 (2004) 512.

[773]   J. Zaanen, Theoretical physics: A black hole full of answers, Nature 448 (2007) 1000.

[774]   H. B. Zeng and J.-P. Wu, Holographic superconductors from the massive gravity, Phys. Rev. D90 (2014) 046001, [arXiv:1404.5321].

[775]   J. C. Zhang, E. M. Levenson-Falk, B. J. Ramshaw, D. A. Bonn, R. Liang, W. N. Hardy, S. A. Hartnoll, and A. Kapitulnik, Anomalous Thermal Diffusivity in Underdoped YBa2Cu3O6+x, arXiv:1610.05845.

[776]   X. Zhang, C.-L. Hung, S.-K. Tung, and C. Chin, Observation of Quantum Criticality with Ultracold Atoms in Optical Lattices, Science 335 (2012) 1070, [arXiv:1109.0344].

[777]   Y. Zhang, N. P. Ong, Z. A. Xu, K. Krishana, R. Gagnon, and L. Taillefer, Determining the Wiedemann-Franz Ratio from the Thermal Hall Conductivity: Application to Cu and YBa2Cu3O6.95, Phys. Rev. Lett. 84 (2000) 2219.

[778]   J. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids. International series of monographs on physics. OUP Oxford, 1960.

[779]   J. Zinn-Justin, Quantum field theory and critical phenomena, Int. Ser. Monogr. Phys. 113 (2002) 1.

[780]   W. H. Zurek, Cosmological Experiments in Superfluid Helium?, Nature 317 (1985) 505.

Next Chapter


Additional Information

Related ISBN
MARC Record
Launched on MUSE
Open Access
Creative Commons
Back To Top

This website uses cookies to ensure you get the best experience on our website. Without cookies your experience may not be seamless.