
		
 	

 [Skip to Content]
		
		
		
			
				
					
						
							[image: institution icon]

							Institutional Login

						

					

					
						
							[image: account icon]

							LOG IN

						

						
 						
 						[image: accessibility icon]
 						Accessibility
 				
						

					

				

			

			
			
			
			
				
					
						
							[image: Project MUSE]
							[image: Project MUSE]							
						

					

									
						
							
								Browse
							

							
								
									OR
								

							

							
								
 								
 								
										
 Search:
										
										
										
										
																				

										

									

								
																											
								

							

						
				
					

				
					
						
	
		
			
			 menu
				
			

		

		
			Advanced Search
			Browse
			
				MyMUSE Account
				
					Log In / Sign Up
					Change My Account
					User Settings
					Access via Institution
					MyMUSE Library
					Search History
					View History
					Purchase History
					MyMUSE Alerts
					Individual Subscriptions
																
				

			
									
			
				Contact Support
			

		

	

		

					

				

			

			
			
			
		

	
		
	

 		
			
	
				
					
						Algorithmic Composition: A Guide to Composing Music with Nyquist

					

				

				
				
					
						
							
								
								
								
								
							
							
					
							
					
					
							
								
								

							
							

						

					

				

				
		

			
	
		

 	
 		
 		
 		
 		

 		
 		
 			
 			
 			
 			
				
						
						
						
						[image: restricted access] Chapter 14. Hierarchical and Recursive Musical Structure
						
						

						
	
						
						
						

						 Roger B Dannenberg
						 ,
						
						

						 Mary Simoni
						
												
						
	
							University of Michigan Press
							
	Chapter
	
						
 						 	
 							 View Citation
							
	
 							
 							 [image: Related Content]
 Related Content
 							
 							

							

						
	
							Additional Information
						

				

 		
 		

 		
 		
		
		
 		
 		
			

			
			
			 In lieu of an abstract, here is a brief excerpt of the content:
			 187 Chapter 14 Hierarchical and Recursive Musical Structure Most programs are hierarchical. We have already seen many examples of nested expressions and function calls. Complex programming problems should always be decomposed hierarchically into understandable units that can be implemented as functions. Music is often hierarchical. We can decompose traditional music into movements, sections, voices, phrases, chords, and notes. Musical structures can be reflected in software structures of algorithmic compositions. In this chapter, we look at some of the issues of moving from “flat” musical structures to hierarchical and recursive ones. 14.1 Structure from Nested Patterns Pattern generators can be nested hierarchically to create interesting musical structure. In this section, we present a very simple rhythm generator based on nested patterns. Rhythmic patterns can be perceived only if there is repetition involved. Interestingly, almost any rhythmic pattern becomes interesting (or at least salient) when it is repeated. Thus, to make a rhythmic pattern, we only need to create a sequence of rhythmic intervals and then repeat them. An interesting way to generate a rhythmic pattern is to divide a time span into equal intervals and flip a coin to decide whether each interval will contain a sound or not. We can model this as a simple random pattern: make-random({#t #f}). Example 14.1.1 uses make-random with a for: to keyword parameter to make a rhythmic pattern of length 12. Example 14.1.1: Rhythmic pattern generation SAL> set rp = make-random({#t #f}, for: 12) SAL> print next(rp, #t) {#f #t #t #f #f #f #t #f #f #t #t #f} If we were to play this pattern once, it would not really sound like a pattern since every element is random. However, if we use makecopier to repeat periods, they become recognizable and suddenly 188 Chapter 14 ⋅ Hierarchical and Recursive Musical Structure sound very rhythmic. Example 14.1.2 uses make-copier to repeat each pattern twice, and a loop prints 6 periods of patterns. Example 14.1.2: make-copier repeats patterns SAL> set cp = make-copier(rp, repeat: 2) SAL> loop repeat 6 print next(cp, t) end {#t #f #f #f #f #t #f #f #t #t #f #t} {#t #f #f #f #f #t #f #f #t #t #f #t} {#t #t #t #t #t #f #f #t #f #f #f #t} {#t #t #t #t #t #f #f #t #f #f #f #t} {#f #t #t #t #f #t #f #t #t #f #f #t} {#f #t #t #t #f #t #f #t #t #f #f #t} In this example, a blank line was inserted manually between groups to illustrate that that the pattern changes every two periods of length 12. Using these ideas, we can make a random, rhythmic drum machine. We will use bass drum, snare, and cymbal samples (included in Nyquist), each with a different pattern. The patterns will be 8 time intervals each and the patterns will change every 4 repetitions. In Example 14.1.3, one-drum generates a score for one of the drum sounds, using copies of periods as described above. The drummer function calls one-drum three times for the bass drum, snare, and cymbal scores, and merges them. The drum sounds themselves are loaded from files, e.g. kit/snare-1.wav contains a stereo snare drum sound. The drumsound function appends the file name to a path obtained from the global variable *plight-drumpath * and loads the file using s-read. The *plight-drum-path* is set by loading "../demos/plight/drum.lsp", which is part of the Nyquist software distribution. Experiment with this program. There is no need to make all of the patterns the same length. Other sounds can be used. Try latin percussion sounds or record your voice. The patterns generated here tend to have “anchor points” where the listener feels a downbeat, but since all choices are random, these “anchor points” might not be at the beginning of the cycle. Think about what cues indicate the beginning of a repeating pattern. Modify the program to either generate patterns that seem to begin on the first beat, or rotate patterns generated by make-random so that a good candidate for the first beat is in the first beat position. [3.91.10.104] Project MUSE (2024-04-11 01:34 GMT) 14.2 Hierarchy in Scores 189 Example 14.1.3: drummer.sal load "../demos/plight/drum.lsp" define function one-drum(name, beats, copies, phrases...

			

			

			
			
			
			
			
			

			
			
			
						
			
				
					collapse
				
				
					
					You are not currently authenticated.
									
					If you would like to authenticate using a different subscribed institution or have your own login and password to Project MUSE

					Authenticate
				

			

			
			
			
 	

 	
 	

	
		

		

		
		

		

		

	 Share

 		
 		

		

		

		
			
			
		

	

 	
 	
 	
 	
 	

 	
	
		
			Additional Information

		

				
			
			
							
			
				
					ISBN
				

				
					9780472029051
				

			

			
			
			
				
					Related ISBN(s)
				

				
					9780472035236, 9780472118687
				

			

			
			
			
			
				
					MARC Record
				

				
					Download
				

			

			

			
			
				
					OCLC
				

				
					829713909
				

			

			
			
			
				
					Pages
				

				
					264
				

			

									
			
			
				
					Launched on MUSE
				

				
					2013-05-20
				

			

			
			
			
			
				
					Language
				

				
					English
				

			

			
			
			
				
					Open Access
				

				
					
					No
					
				

			

			
			
			
			
		

	

	
		
		
		
			Copyright

		

		
			2013

		

		

		

	

		
			
				
					
						Project MUSE Mission

						Project MUSE promotes the creation and dissemination of essential humanities and social science resources through collaboration with libraries, publishers, and scholars worldwide. Forged from a partnership between a university press and a library, Project MUSE is a trusted part of the academic and scholarly community it serves.

					

					
						[image: MUSE logo]
					

				

			

			
			
				
					
						
							
								About

									MUSE Story
	Publishers
	Discovery Partners
	Journal Subscribers
	Book Customers
	Conferences

							
							
								What's on Muse

									Open Access
	Journals
	Books
	The Complete Prose of T. S. Eliot
	MUSE in Focus

							
							

						

						
						
								Resources

									News & Announcements
	Email Sign-Up
	Promotional Materials
	Presentations
	Get Alerts

							
							
								Information For

									Publishers
	Librarians
	Individuals
	Instructors

							
							

						

					

					
						
							
								Contact

									Contact Us
	Help

									
											[image: Facebook]
	[image: Linkedin]
	[image: Twitter]

									

							
							
								Policy & Terms

									Accessibility
	Privacy Policy
	Terms of Use

							
							

						

						
							
								2715 North Charles Street
Baltimore, Maryland, USA 21218

								+1 (410) 516-6989

								muse@jh.edu

								©2024 Project MUSE. Produced by Johns Hopkins University Press in collaboration with The Sheridan Libraries.

							

							
								Now and Always,
The Trusted Content Your Research Requires

								
								
								[image: Project MUSE logo]
								
								[image: Project MUSE logo]

								Now and Always, The Trusted Content Your Research Requires

								Built on the Johns Hopkins University Campus

							

							

						

					

					

				

			

			
				Built on the Johns Hopkins University Campus
		
				©2024 Project MUSE. Produced by Johns Hopkins University Press in collaboration with The Sheridan Libraries.
			
			
		
		

		
		
		
		
		
			Back To Top
		

		
		
		
		
		
		
		
			
				This website uses cookies to ensure you get the best experience on our website. Without cookies your experience may not be seamless.

				
				
				
				
				
				 Accept
				

				

			

		
		
		
		
		
		
		
		
		
		
		
		
		
	