In the first part, we determine conditions on spectra X and Y under which either every map from X to Y is phantom, or no nonzero maps are. We also address the question of whether such all or nothing behavior is preserved when X is replaced with V Λ X for V finite. In the second part, we introduce chromatic phantom maps. A map is n-phantom if it is null when restricted to finite spectra of type at least n. We define divisibility and finite type conditions which are suitable for studying n-phantom maps. We show that the duality functor Wn-1 defined by Mahowald and Rezk is the analog of Brown-Comenetz duality for chromatic phantom maps, and give conditions under which the natural map YW2n-1Y is an isomorphism.


Additional Information

Print ISSN
pp. 275-293
Launched on MUSE
Open Access
Back To Top

This website uses cookies to ensure you get the best experience on our website. Without cookies your experience may not be seamless.