Abstract

This paper presents an eigenvalue algorithm for accurately computing the Hausdorff dimension of limit sets of Kleinian groups and Julia sets of rational maps. The algorithm is applied to Schottky groups, quadratic polynomials and Blaschke products, yielding both numerical and theoretical results. Dimension graphs are presented for (a) the family of Fuchsian groups generated by reflections in 3 symmetric geodesics; (b) the family of polynomials fc(z) = z2+c, c ∈ [-1, 1/2]; and (c) the family of rational maps ft(z) = z/t + 1/z, t ∈ (0, 1]. We also calculate H.dim (Λ) ≈ 1.305688 for the Apollonian gasket, and H.dim (J(f)) ≈ 1.3934 for Douady's rabbit, where f(z) = z2 + c satisfies f3(0) = 0.

pdf

Additional Information

ISSN
1080-6377
Print ISSN
0002-9327
Pages
pp. 691-721
Launched on MUSE
1998-08-01
Open Access
No
Back To Top

This website uses cookies to ensure you get the best experience on our website. Without cookies your experience may not be seamless.