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Abstract

The past two decades have witnessed deep cross-fertilization between the two cultures—
statistics (data/generative modeling) and machine learning (algorithmic modeling), which
is in stark contrast to the scene pictured in Breiman’s inspiring work. In light of this major
confluence, we find it helpful to single out a few salient examples showcasing the impacts of
one to the other, and the research progress out of them. We point out in the end that the
current big data era especially requires joint efforts from both cultures in order to address
some common challenges including decentralized data analysis, privacy, fairness, etc.

Keywords: generative modeling, algorithmic modeling, computational thinking, inferen-
tial thinking, distributed learning

1. Introduction

It has been two decades since the publication of Breiman’s thought-provoking work, and we
find his views still incisive and inspiring. Back then, the gap between the two cultures (i.e.,
the generative1 and algorithmic modeling) was perceived to be huge and Breiman urged
the embrace of algorithmic modeling from the generative modeling side. However, the past
two decades have witnessed deep cross-fertilization of the two cultures of generative and
algorithmic modeling on data analytics: they absorb each other’s advantage and together
underpin the practice of modern data science. In what follows, we first discuss how machine

1. Breiman used the term “data modeling” for this, whereas we refer data modeling to both generative and

algorithmic modeling.
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learning, the modern term for algorithmic modeling, and statistics, with a longstanding
culture of generative modeling, fundamentally impact each other; we then conclude with a
few common challenges for both statistics and machine learning that require joint efforts
from both cultures.

2. How machine learning impacts statistics

2.1 Assumption-lean statistical inference

“With data gathered from uncontrolled observations on complex systems involving unknown
physical, chemical, or biological mechanisms, the a priori assumption that nature would gen-
erate the data through a parametric model selected by the statistician can result in question-
able conclusions that cannot be substantiated by appeal to goodness-of-fit tests and residual
analysis.” — page 204

“The one assumption made in the theory (of machine learning) is that the data is drawn
i.i.d. from an unknown multivariate distribution.” — page 205

Breiman was rightfully skeptical about the (simple) parametric assumptions imposed by
statisticians on the data generating process. By contrast, machine learners strive to make
minimal assumptions on the data at hand. In fact, the desire for assumption lean statistical
inference has existed for a long time in the statistics community; see the transformation
from parametric to nonparametric/semiparametric inference. With that being said, it is
fair to say that the advance of machine learning speeds up this process and has resulted in
immensely useful and scalable methodologies that are capable of handling high-dimensional
big data we are seeing every day. In what follows, we single out two salient examples.

Conformal prediction. Let {(Xi, Yi)}ni=1 be n independent and identically distributed
(i.i.d.) copies of (X,Y ) with X ∈ R

d and Y ∈ R. One crucial task in statistics is to
construct a prediction region C(X) ⊆ R such that, say,

P(Yn+1 ∈ C(Xn+1)) ≈ 0.9. (1)

Here (Xn+1, Yn+1) denotes a new data point under the same law as (X,Y ). To achieve
this goal, conventional statistics relies on parametric models such as Y = β⊤X + ε to make
inference on the linear coefficients β, and hence on the outcome Yn+1. However, without
the help of the parametric assumptions, how shall we construct a valid and tight prediction
band?

The method of split conformal prediction (Vovk et al., 2005; Lei et al., 2018) starts

by randomly splitting the sample into two parts, say D1 := {(Xi, Yi)}n/2i=1 and D2 :=
{(Xi, Yi)}ni=n/2+1. Then on D1, one fits a regression function µ̂(X) using any off-of-shelf

methods (e.g., linear regression, LASSO, random forest, neural network, etc.). Next, one
applies the estimated regression function to the hold-out sample D2 and calculates a par-
ticular quantile q of the residuals {|µ̂(Xi) − Yi|}ni=n/2+1. In the end, a prediction band of
the form

C(X) = [µ̂(X)− q, µ̂(X) + q] (2)

can be constructed. The validity of such a prediction band can be easily verified via an
exchangeability argument, regardless of the actual relationship between X and Y and the
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regression method being used. In light of the assumption-free property of conformal predic-
tion, it has been deployed to perform valid uncertainty quantification for a variety of “black
boxes” including random forest and neural networks.

Double machine learning. Treatment effect estimation is of great importance in obser-
vational studies. To accommodate the effect of confounders, a strong parametric assumption
(e.g., a linear and additive form) is normally imposed on the functional norm of the model.
However, nowadays one can measure an increasingly large number of covariates, which
renders a precise parametric form improbable.

Without specifying the exact form of the model, it is tempting to apply machine learning
methods to nonparametrically learn the functional form. To make things concrete, let us
consider a partially linear regression model

Y = θ0T + f0(X) + ε, E[ε | X, T ] = 0, (3a)

T = g0(X) + η, E[η | X] = 0. (3b)

Here T denotes the treatment (e.g., years of education) whose effect θ0 on the response Y
(e.g., income) is to be evaluated, but the response depends also on the measured covari-
ates X (e.g., age, gender, SES) which might also have impact on the treatment T . Let
Z := (T, Y,X). One can apply machine learning in a plain fashion to the data {Zi}ni=1 and
obtain estimates θ̂ML and f̂ML for θ0 and f0, respectively. However, due to the nonparamet-
ric nature of f0, the estimation rate is typically slower than n−1/2, which fails to achieve√
n-consistency for θ0. As a remedy, double machine learning—proposed in the work Cher-

nozhukov et al. (2018)—splits the data {Zi}ni=1 into two parts {Zi}n/2i=1 and {Zi}ni=n/2+1.

One uses the first sample {Zi}n/2i=1 to estimate the nuisance parameters, in this case the

functions f0 and g0, and obtain f̂ and ĝ. This step of estimation can be performed using
any nonparametric or high-dimensional regression methods including random forest and
neural networks. Then, the second sample {Zi}ni=n/2+1 is used to perform Neyman orthog-

onalization. More specifically, one regresses Yi − f̂(Xi) on Ti − ĝ(Xi) to secure an estimate
θ̂DML of the treatment effect θ0.

To appreciate the idea, we note by substituting (3b) into (3a) that

Y − f(X) = θ0η + ε, with f(X) = f0(X) + θ0g0(X).

Hence f(X) = E(Y |X) and is estimated by f̂(X) via a machine learning algorithm and η
is analogously estimated by T − ĝ(X). Now a simple regression of the residuals gives an
estimate of the target parameter θ0. The idea of this kind of residual-regression dates back
to the work by Robinson (1988). It has been shown in Chernozhukov et al. (2018) that
the estimator θ̂DML resulting from the double machine learning procedure is

√
n-consistent

whenever both f0 and g0 are estimated with an n−1/4 rate.

2.2 Discriminative modeling

According to Breiman, algorithmic modelers preferred discriminative models targeting the
response given the input while statisticians preferred generative models to explain the whole
data generation mechanism. Things have changed dramatically over the past two decades.
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Statistics has indeed benefited a lot from the incorporation of discriminative modeling.
As an example, consider the binary classification problem. Suppose that our training data
{(xi, yi)}ni=1 are i.i.d. pairs of features and labels from a joint distribution over Rd×{−1, 1}.
The optimal Bayes classifier

f∗(x) =

{

1, if P(Y = 1|X = x) ≥ 1/2

−1, if P(Y = 1|X = x) < 1/2

achieves the minimum misclassification error (Friedman et al., 2001). A canonical statistical
approach usually starts with a probabilistic model of the joint distribution (X, Y ) or the
conditional distribution Y |X, followed by parameter estimation or density estimation in
order to approximate the optimal Bayes classifier. Traditional statistics provides numerous
consistency results given a well-specified model class. Yet the true model is rarely known in
practice and different model assumptions may yield very different estimators. One wonders
whether there exist methods that achieve consistency under general conditions.

In algorithmic modeling, one looks for a function f from a function class F to make the
misclassification error P[sgn(f(X)) 6= Y ] small. While it is natural to estimate the optimal
classifier f∗ by minimizing the empirical misclassification rate

1

n

n
∑

i=1

1[sgn(f(Xi)) 6= Yi] =
1

n

n
∑

i=1

1[Yif(Xi) < 0] (4)

over a function class F , the discontinuity of the step function makes optimization hard.
Instead, a common practice is to choose a continuous surrogate loss function ℓ : R → R

and then minimize
1

n

n
∑

i=1

ℓ[Yif(Xi)].

Popular choices of ℓ include the hinge function max{1 − x, 0}, exponential loss e−x, the
logistic loss log(1 + e−x), among others (Boucheron et al., 2005; Fan et al., 2020). The
new loss reduces to the empirical misclassification rate (4) when ℓ(x) = 1(x < 0). If F is
the family of all linear functions and ℓ is convex, then the new loss function is convex in
the model parameters and it can be minimized efficiently. One may wonder whether the
estimation procedure enjoys Fisher consistency even with ℓ not chosen according to the
true model. A series of works (Zhang, 2004; Bartlett et al., 2006) by statisticians answer
the question in the affirmative under minimal assumptions. These algorithms manage to
approximate the Bayes optimal classifier without fitting the model. They greatly enriched
the arsenal of statisticians.

2.3 Computational thinking

“Some ingenious algorithms make finding the optimal separating hyperplane computationally
feasible. These devices reduce the search to a solution of a quadratic programming problem
with linear inequality constraints that are of the order of the number N of cases, independent
of the dimension of the feature space.” — page 209

Though not the main focus of Breiman’s paper, computational efficiency indeed lies at at
the heart of algorithmic modeling in modern machine learning, due to the ever-increasing
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Figure 1: The pursuit of computational efficiency in low-rank matrix completion.

scale of the data set we encounter in practice. In sharp contrast, conventional statisti-
cal theory and practice do not include the notion of computational complexity, i.e., the
runtime of statistical procedures. The last two decades witnessed statisticians’ quest for
computationally-efficient statistical methods and desire to establish statistical properties
for computable estimators. Below, we use two vignettes to showcase the impact of compu-
tational considerations in statistics.

Matrix completion: a journey towards computational efficiency. Given partial
entries of a low-rank matrix, can one fill in the missing entries faithfully? This problem,
often dubbed as low-rank matrix completion (Candès and Recht, 2009), finds numerous
applications in recommendation systems, sensor localization, causal inference, to name a
few. To fix ideas, letM⋆ ∈ R

m×n be the unknown rank-r matrix of interest, and Ω ⊆ [m]×[n]
be the index set for the observed entries. A natural statistical solution is given by the rank
minimization approach:

minimizeM rank(M), subject to Mi,j = M⋆
i,j , for (i, j) ∈ Ω. (5)

Under certain incoherence assumptions, M⋆ can be shown to be the unique minimizer
of the above rank minimization problem. Consequently, from a statistical perspective, the
problem of matrix completion is “solved”. However, a major drawback of this approach is its
computational efficiency: the above program is NP hard to solve in the worst case. With this
computational considerations in mind, statisticians started the pursuit of computationally-
efficient methods for matrix completion.

Inspired by the success story of ℓ1 minimization in compressed sensing and sparse re-
gression, the following nuclear norm minimization approach arises:

minimizeM ‖M‖∗, subject to Mi,j = M⋆
i,j , for (i, j) ∈ Ω. (6)

It turns out that this convex relaxation method retains the desired statistical property—
M⋆ is still the unique minimizer of the problem (6). What is more important is that now
the nuclear norm minimization problem is a convex problem that is solvable in polynomial
times. Though polynomial-time solvable, the convex relaxation approach (6) oftentimes
requires super-linear computational and memory footprints, which makes it challenging to
scale to huge data matrices.

To further improve the computational efficiency, one can apply the least-squares prin-
ciple to the factorized parametrization M = XY⊤ and arrive at the following nonconvex
optimization problem

minimizeX∈Rm×r,Y∈Rn×r

∑

i,j∈Ω

{

(XY⊤)i,j −M⋆
i,j

}2
. (7)
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q Though nonconvex, the above problem can be solved in linear time—in time proportional
to read the data matrix—via simple gradient descent method; see e.g., the work Ma et al.
(2019). Figure 1 illustrates the evolution of computational efforts.

The pursuit of computationally efficient statistical methods is not unique to matrix
completion. Similar endeavor has been made in problems including folded-concave penalized
likelihood, mixed linear regression, tensor recovery and community detection.

Sparse principal component analysis: a computational-statistical gap. In ad-
dition to the search for computationally-efficient statistical methods, the introduction of
computational complexity to statistics also brings about an interesting phenomenon called
the computational-statistical gap. Informally, there exists a range of signal-to-noise ra-
tios (SNRs) such that statistical inference is information-theoretically possible, while no
computationally-efficient methods exist.

To illustrate the ideas, we use the example of sparse principal component analysis from
the paper Berthet et al. (2013). Let X1, X2, . . . , Xn be n i.i.d. copies of X ∈ R

d. One would
like to perform the following hypothesis testing:

H0 : X ∼ N (0, Id), H1 : X ∼ N (0, Id + θvv⊤) with ‖v‖2 = 1, ‖v‖0 ≤ k, (8)

with θ > 0 a measure of SNR. In words, one wishes to detect whether the data arise
from an isotropic Gaussian model (cf. H0) or a spiked one (cf. H1). It turns out that, the
statistical limit for the detection threshold is θstat ≍

√

k log d/n, namely, nontrivial power
of testing is possible if and only if θ &

√

k log d/n. In comparison, the computational limit

is θcomp ≍
√

k2 log d/n, i.e., when λ .
√

k2 log d/n, there is no computationally efficient
algorithm that can faithfully detect the sparse eigenvector v. Figure 2 depicts the results.

Such an intriguing computation-statistics gap has also been observed in problems in-
cluding community detection, spiked tensor models, sparse phase retrieval.

3. How statistics impacts machine learning

3.1 Generative models

Generative models, perhaps a namecard of statistics, has had a huge impact on machine
learning. Physicist Richard Feynman once said, “what I cannot create, I do not under-
stand”. Being able to generate data as well as the nature does is a crucial step towards full
understanding of it. Generative models also come in handy when handling incomplete (e.g.

Figure 2: The computational-statistical gap in sparse principle component detection.
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missing, unlabeled) data and quantifying uncertainty. To generate high-quality data, the
model needs to see through the raw training data and capture their underlying structure. A
common belief is that many high-dimensional datasets are intrinsically low-dimensional: the
overall variability can be explained by a few key factors. Statisticians have been studying
such phenomena for over a century, resulting in powerful tools such as Principal Compo-
nent Analysis (PCA) (Pearson, 1901) and factor analysis (Thurstone, 1931). Nonlinear
generalizations of these classical methods (Kramer, 1991) enjoy better flexibility. Recent
developments of deep neural networks have furthered their success.

Two of the most popular deep generative models are autoencoders and Generative Ad-
versarial Networks (GANs). As the name suggests, an autoencoder first “encodes” raw
inputs x ∈ R

d to a low-dimensional vector f(x) ∈ R
K and then “decodes” that to get a

data point g[f(x)] ∈ R
d back in the original space. Given a training sample {Xi}ni=1 from

a distribution P, a natural loss function is the mean squared reconstruction error

L(f, g) =
1

n

n
∑

i=1

‖Xi − g[f(Xi)]‖22.

The functions f and g are parametrized by neural networks. In particular, if both of them
are linear, then PCA gives the optimal solution. Extensions include variational autoencoders
(Kingma and Welling, 2019) and sparse autoencoders (Ranzato et al., 2007).

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014a), on the other hand,
mostly focus on generating data from low-dimensional representations (the decoding step
above). Suppose that the data distribution P concentrates around a K-dimensional mani-
fold. Let PZ be a source distribution over RK , usually set to be N(0, IK). Then, one aims
for a function g : R

K → R
d (called a generator) such that the distribution of a random fake

sample g(Z) with Z ∼ PZ is close to P. In particular, the vanilla GAN seeks to minimize
their Jensen-Shannon (JS) divergence via a two-player game between the generator g and
a discriminator d : R

d → [0, 1] that evaluates the likelihood of a sample x ∈ R
d being real

(coming from P) or fake. Eventually, the discriminator d becomes sharp and the generator
g produces samples that are hard to distinguish from the real ones. Again, both g and d
are neural networks. One can also choose other discrepancy measures between the learned
distribution and the truth, such as the Wasserstein distance (Arjovsky et al., 2017).

3.2 Robust statistics

Robust statistics (Box, 1953; Tukey, 1960; Huber, 2004) have also made profound impact
in the culture of algorithmic modelling, especially the machine learning community. Since
Tukey (1960) observed the extreme sensitivity of some conventional statistical methods to
model deviation, there have been massive endeavors in developing stable statistical proce-
dures in the presence of outliers or model misspecification. Robust statistics substantially
broaden the capacity of traditional data models so that they can embrace real-world exam-
ples. For instance, a recent series of works such as Catoni (2012); Minsker (2015); Devroye
et al. (2016); Fan et al. (2017, 2020+); Lugosi and Mendelson (2019) study how to handle
heavy-tailed data in point estimation and regression analysis. These works do not assume
any parametric form of the data distribution but a bounded moment, and they show that the
estimator based on median-of-means or robustified risk minimization exhibits sub-Gaussian
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behavior around the truth. Ironically, modern sophisticated supervised learning architec-
tures may still suffer from similar sensitivity problems as conventional statistical procedures.
Goodfellow et al. (2014b) found that an imperceptibly small perturbation of the pixel values
can change GoogLeNet’s (Szegedy et al., 2015) classification of an image (see Figure 3). To
achieve robustness against adversarial perturbation, Goodfellow et al. (2014b) proposed to
train the architecture by minimizing an adversarial objective that combines both clean and
adversarial instances. This technique reduced the original error rate of 89.4% on adversarial
examples to 17.9%.

Figure 3: Adversarial perturbation: GoogLeNet classifies the left panda correctly, but mis-
classifies the right panda as a gibbon.

3.3 Interpretability, causal inference and uncertainty quantification

Interpretability, cause inference, and uncertainty quantification have always been a top pri-
ority in the generative modeling culture. In high-dimensional setups, pursuit of simple and
interpretable models has inspired a myriad of dimension reduction tools, such as princi-
pal component analysis (PCA) and kernel PCA, and variable selection techniques such as
LASSO, SCAD and MCP (Fan et al., 2020). Variable selection and its associated infer-
ence also provide useful tools for causal inference. Nevertheless, as Breiman said in the
beginning of Section 9, “Accuracy and simplicity (interpretability) are in conflict.” The
past two decades have witnessed revolutionary success of black-box algorithmic models, in
particular deep neural nets, in computer vision, natural language processing, among others.
A natural question thus arises: Is the sacrifice on interpretability necessary to achieve high
prediction accuracy? Recently the so-called interpretable AI has become an increasingly
heated topic; the goal is seeking for an interpretable model that yields the state-of-the-art
prediction accuracy.

Statistics traditionally places more emphasis on causal inference and uncertainty quan-
tifications via generative models; a modern example is the statistical inference for predicted
entries in matrix completion (Chen et al., 2019). Whereas machine learning focuses more on
predictive tasks via algorithmic modeling. Bootstrap and cross-validations are frequently
used in machine learning to quantify uncertainties and to increase stabilities. The commu-
nity nowadays has frequently employed statistical models for understanding causal relation
in disciplinary science with uncertainty quantification.
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4. Common challenges in the big data era

As we have emphasized throughout the manuscript, the gap between the two cultures is
much smaller than that in Breiman’s time. Both cultures have learned from each other
and the cross-fertilization greatly enhanced our ability to tackle more challenging data
science problems. However, it is worth pointing out that in the current big data era, there
are still a variety of interesting and important challenges that await joint efforts from the
two cultures. In addition to the afforementioned desiderata (e.g., statistical/computational
efficiency, interpretability, causal inference, uncertainty quantifications), privacy, fairness
and also decentralized data analysis become increasingly important when applying data
analytical tools in practice.

To conclude, we detail the challenge on decentralized data analysis. Besides having
immense volume, modern data sets are often decentralized in the sense that they are scat-
tered across different places across which the communication is highly restrictive. Consider
international IT companies that collect data worldwide. Constraints due to communication
budget, network bandwidth and legal policies stifle the hope of aggregating and maintaining
global data in a single data center. Another example is the health data that are generated in
many hospitals or labs. Fusing them in a central location is often prohibited by privacy and
ownership concerns. It is imperative to design distributed statistical and machine learn-
ing algorithms that enjoy sharp statistical accuracy, strong privacy guarantee and cheap
communication overhead.

Figure 4: Decentralized data and distributed statistical learning. {θ̂(k)}k=1,...,4 are local
estimators. They are transferred to a central server to generate an aggregated
estimator θ̃, which provably enjoys full-sample accuracy as long as the bias of the
local estimators is small.

Averaging model parameters turn out to be a powerful approach (Figure 4). It only
requires transferring local models instead of local data, thereby dramatically reducing com-
munication cost. The past decade has witnessed success of this strategy in a wide range of
statistical tasks (Zhang et al., 2013; Chen and Xie, 2014; Lee et al., 2017; Rosenblatt and
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Nadler, 2016; Fan et al., 2019; Battey et al., 2018). The main message is that averaging
achieves full-sample accuracy as long as the bias of local estimators is negligible. As regard to
modern complex algorithmic models, a recent work by McMahan et al. (2017) from Google
studies how to leave the training data on the mobile devices and learn a shared model by
aggregating local updates. They propose a federated averaging (FedAve) algorithm where
the central server averages the model parameters from clients every time they perform few
epochs of local training. They show that FedAve requires much less communication than
naive average of stochastic gradient to achieve the same testing performance.

Decentralized data setups inspire both generative and algorithmic modeling to con-
sider new criteria for methodologies and theory. Besides prediction accuracy and model
interpretability, many practical concerns need to be taken into account: privacy, fairness,
communication, computation, storage, among others. Conquering these challenges will un-
doubtedly inspire more joint effort and mutual influence of the two cultures.
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