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Abstract

The discussion paper “Statistical Modeling: the Two Cultures” (Statistical Science, Vol
16, 2001) by the late Leo Breiman sent shockwaves throughout the statistical community
and subsequently redirected the efforts of much of the field towards machine learning, high-
dimensional analysis and data mining approaches. In this discussion, we discuss some of
the implications of this work in the sphere of causal inference. In particular, we define the
concept of comparability, which is fundamental to the ability to draw causal inferences and
reinterpret some concepts in high-dimensional data analysis from this viewpoint. One of
the points we highlight in this discussion is the need to consider data-adaptive estimands
for causal effects with high-dimensional confounders. We also revisit matching and develop
some mathematical formalism for matching algorithms.

Keywords: Causal effects; High-dimensional data; Margin; Overlap condition; Treatment
Positivity.

1. Introduction

We thank the previous and current editors of Observational Studies, Dr. Dylan Small and
Dr. Nandita Mitra, for the opportunity to comment on the article ‘Statistical modelling;
the two cultures’ by Leo Breiman (Breiman, 2001b); we will refer to it as the ‘Two Cultures
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paper’ here and in the sequel. There has been a great deal of attention of the Two Cultures
paper, which has impacted the research and practice of statistics in the two decades since
its publication in 2001. First, Breiman challenges the tradition of statistical modeling
and inference by provocatively suggesting in his abstract that “this commitment has led
to irrelevant theory, questionable conclusions and has kept statisticians from working on
a large range of interesting current problems.” Breiman suggests algorithmic culture, as
embodied by data mining and machine learning, as a powerful alternative that can handle
large and complex datasets. In a way, some of the discussion in the Two Cultures paper
foreshadows the general discussion in the statistical profession about the role of data science
(Donoho, 2017). While the Two Cultures paper had discussants defending the statistical
modeling and inference tradition in Professors D. R. Cox and Bradley Efron, in a later
paper by Efron (2020), there is a concession made to Breiman: “Breiman turned out to
be more prescient than me (Efron): pure prediction algorithms have seized the statistical
limelight in the twenty-first century, developing much along the lines Leo suggested.”

Practically, the Two Cultures paper has had a major impact in the field in terms of
bringing machine learning and related procedures to the forefront of theoretical study in
the statistical literature. This has also been aided by the emergence of datasets of increas-
ing scientific and data complexity from fields such as genomics, climate sciences, mobile
health and imaging. There has been tremendous interest in the statistical literature on
techniques and generalization of methods such as the LASSO (Tibshirani, 1996), random
forests (Breiman, 2001a), and support vector machines (Cristianini et al., 2000). This in
turn has necessitated the development and enhancement of techniques such as empirical
process theory (van der Vaart and Wellner, 1996; Kosorok, 2007), concentration inequali-
ties (Boucheron et al., 2013) and random matrix theory (Mehta, 2004; Bai and Silverstein,
2010; Tao, 2012; Erdos and Yau, 2017) in order to understand the theoretical basis behind
machine learning methods.

2. Modeling paradigms and causal inference

In Pearl and Mackenzie (2018), the learning that a cognitive agent can do is taxonomized
into three levels with fundamentally different qualities: seeing, doing, and imagining. A
linear hierarchy exists, going from simple (seeing) to complex (imagining), hence it is de-
scribed as a “ladder”. The authors argue that mere association cannot yield the same deep
understanding of a given phenomenon that causal thought can. The methods described
in the Two Cultures paper fall in the first rung of the ladder, however, integrating causal
inference with these methods leads analysis further up.

Indeed, most analysis contains at least a drop of causal assumption. Consider Breiman’s
data model, as seen in Figure 1a. Breiman focused on the modeling assumptions pertaining
to what is inside or replaces the black box, however, the relationship x→ �→ y is a model
itself of the true mechanism through which Nature generates (x, y). Certainly Breiman
is cautious and avoids the word “causation”, stating instead that, inside the box, Nature
creates an “association”. However, the directionality of the arrows and the structure of
association itself already require a level of modeling assumptions.

In particular, we can observe the following set of non-exhaustive assumptions made in
the Black-Box-and-Arrow model:
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(a) Breiman’s original diagram. There is
a mechanism connecting X to y. We can
choose a generative or an algorithmic ap-
proach to model this mechanism.

(b) Simple schematic for a causal inference
problem. In the top section a mechanism con-
nects an intervention to an outcome, and in
the bottom section a mechanism connects a
different or no intervention to another out-
come. Causal modeling, in a sense, corre-
sponds to these two boxes being indeed the
same. The matching mechanism, connecting
top to bottom, can be taken to be generative
or algorithmic.

Figure 1: Comparison of modeling paradigms

1. x and y are ontologically different.

2. x pre-exists y. In a sense, x is already available for natural processes to manipulate
in such a way as to produce y.

3. The mathematical objects (x, y) are faithful representations of their real counterpart,
and are different to the process that associates them.

4. The mechanism through which y is obtained from x is mathematizable. Even if
arrows were to switch directions, or have no direction, we would assume the process
of association is describable by our mathematical tools.

The key idea is that the model described in the Two Cultures paper is an anthropocentric
model of reality. It reflects how we, humans, understand and frame natural phenomena;
it does not necessarily model nature itself. These pseudo-causal modeling assumptions do
not fall comfortably in either the “data” modeling or “algorithmic” modeling paradigms.
Instead, it serves as an infrastructural support in which these finer scale models can be
developed.

Let us consider the discourse surrounding these two cultures, starting with algorithmic
modeling, often criticized for being a black box. As Breiman states in the paper, algorithmic
modeling is concerned mostly with prediction, or more specifically, generalization error.
Often, prediction and explanation are framed as contesting nemeses, one excluding the
other. In reality this is not the case. Designing a highly predictive algorithm that does
not readily exhibit explanatory power does not mean it does not have the potential to do
so, just that we do not know yet how to extract that information. The more exposition
and effort we place on understanding such a successful association mechanism, the more it
becomes explainable and interpretable.

Explanation and interpretation are, indeed, cultural processes. Critics of algorithmic
modeling often cite regression and decision trees as ideals of transparency. However, their
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interpretation and “meaning” are also constructed through specialized training and linguis-
tic consensus. A concept only seems intuitive after we are familiar with it, and at that point
it may be the only way through which we interpret reality.

To further this analogy, consider the case of data tables. By a table we just mean the
object that organizes information in rows and columns. Tables can be viewed as a high-
dimensional version of a list. Their second dimension allows us to delinearize language and
information flow. When humans started using tables, only trained professionals were able to
interpret and manipulate them. With time, as we became more familiar with their use, and
as they became more ubiquitous, mastery of tables came as a result of cultural upbringing,
without the need to learn it explicitly (see Anderson et al., 2019). These new algorithmic
methods contain high-dimensional operations that may seem obscure or complex for the
uninitiated. However, they are highly successful in conveying useful information for us.
Their constant use and refinement, and their eventual implementation to everyday life, will
render them trivial for future generations. We do note, however, that there is a tension
between complexity and simplicity, as humans naturally tend to prefer the simple over the
complex.

We also note that too much faith in models we are familiar with might lead us astray.
Consider planetary orbits; classical Greeks struggled for generations to explain the motion
of the sky in terms of circles. When a single circle did not suffice, they devised circles upon
circles, arriving at models that, besides being erroneous, had unnecessary complexity. The
reason this happened is because they deemed the circle the perfect geometric shape, so they
projected their own conceptions into the heaven. Now we know they could have easily find
a better explanation in the ellipse, if they had just taken a different perspective. While
we have 20/20 hindsight in this case, in practice it is difficult to detach ourselves from our
scientific assumptions and find a new perspective that possibly contradicts principles that
we grasp.

These arguments also do not fully support or reject one of the two cultures of modeling
in favor of the other. We will instead complexify the paradigm. It is also the case that
some scientific endeavours are performed as an interplay between these two frameworks.
One notable example is causal inference. To perform causal inference, one must make
assumptions about the cause-effect direction, then, depending on the task, we can either
take an algorithmic or statistical approach, or a mix of both. We can even use different
paradigms, for example agent-based modeling, as our basis assumption. In this note we
discuss a particular principle of causal inference, comparability, that does not comfortably
fit in either paradigm, but is a mix of both, as shown in Figure 1b. We wish to make several
points about comparability:

1. The principle of greatest importance in causal modeling is that of ensuring compa-
rability of treated and untreated observations, which is a different metric than those
optimized by standard machine learning algorithms;

2. Performing causal inference in high-dimensional data brings challenges and requires
reinterpreting results in a new way;
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3. One approach we advocate for is using data-adaptive estimands in the high-dimensional
data case, and in particular, we study matching algorithms and provide some new the-
oretical arguments for their use.

Before getting into this discussion, we briefly review the potential outcomes framework
we will use.

3. Background: Potential outcomes and assumptions

We will adopt the potential outcomes framework of Rubin (1974) and Holland (1986). Let
Y denote the response of interest and X be a p-dimensional vector of covariates. Let Z be a
binary indicator of treatment exposure. We assume that Z takes the values {0, 1}: Z = 1 if
treated, Z = 0 if control. Let the observed data be represented as (Yi,Xi, Zi), i = 1, . . . , n,
a random sample from the triple (Y,X, Z).

When Y refers to the observed outcome under the receipt of a certain level of the
treatment, we further define {Yi(0), Yi(1)}, i = 1, . . . , n to be the potential outcomes for
subject i if control or treated. What we observe is Yi = Yi(Zi) (i = 1, . . . , n), which implies
that Y (0) and Y (1) can not be observed simultaneously, i.e. one of them is missing. The
relationship between Y and {Y (0), Y (1)} can be summarized as

Y = Y (1)Z + Y (0)(1− Z). (1)

The typical parameter of interest is the average causal effect:

ACE = E[Y (1)− Y (0)], (2)

although some authors have considered as an alternative estimand the average causal effect
among the treated:

ACET = E[Y (1)− Y (0)|Z = 1]. (3)

There are several assumptions necessary to perform causal inference and identify causal
effects such as (2) and (3). The first is the strongly ignorable treatment assignment (SITA)
assumption:

Z ⊥⊥ {Y (0), Y (1)} | X.

This assumption says that treatment assignment is conditionally independent of the set of
potential outcomes given the covariates. In other words, conditioning on the same value
of X, we can pretend that the observed outcomes are from a randomized trial. However,
conditioning on a p-dimensional vector suffers from the “curse of dimensionality”, especially
when the dimension is high.

Another assumption is the Stable Unit Treatment Value Assumption (SUTVA): There
is only a single version of each treatment level and there is no interference between subjects
so that a subject’s potential outcomes won’t be affected by other individuals’ treatment
assignments. The notion of SUTVA is violated in infectious disease studies, where trans-
mission of disease can lead to dependence of one individual’s potential outcomes on the
treatment received by another individual.
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Finally, we also assume the Treatment Positivity Assumption (TP):

1 > P (Z = 1 | X) > 0

for all values of X. The TP assumption means that for any individual in a study, he/she
has a positive probability of receiving either level of the treatment. This assumption can
be violated in settings in which there are contraindications against providing treatments to
subjects. In Khan and Tamer (2010), the authors showed that violations of TP assumption
lead to irregularities regarding identification and inference about causal effects. This was
also seen in Luo et al. (2017), who demonstrated super-efficiency for causal effect estimators
if one made a weaker covariate overlap assumption. This phenomenon also occurs in the
collaborative targeted maximum likelihood estimator of van der Laan and Gruber (2010).

4. Comparability and high-dimensional data

4.1 Comparability

At its essence, the goal of causal inference is to take a population that self-selects into
treatment groups and attempt to derive an inference that might be more in line with an
experimental design in which the treatment was randomized. We refer to the latter scenario
as one in which observations are comparable. A major assumption we need to attempt to
make noncomparable observations comparable is (4). This relates to the discussion of Figure
1 in Ghosh et al. (2015), in which it is described that the major region in which we can
reliably perform causal inference is in the region where there is overlap of the propensity
scores. This will also roughly correspond to regions of covariate space where we cannot
reliably predict treatment. In Ghosh (2018), an attempt to characterize this region using
margin theory from support vector machines was used, which leads to a relaxation of the
overlap and related TP condition defined in §2.

We now describe several standard approaches in causal inference and observe how they
enforce comparability:

1. Inverse weighting: Comparability is maintained by reweighting the treatment and
control populations to create a pseudo-population that mimics the population on
which we can perform causal inference;

2. Propensity score regression adjustment: if we include the propensity score as a co-
variate in a regression model of outcome on treatment, we enforce comparability by
estimating a propensity score-adjusted causal effect;

3. Combining inverse weighting with propensity score regression adjustment: this ap-
proach enforces comparability by the arguments in 1. and 2.

4. Matching: we will discuss this further in §4. It enforces comparability by only includ-
ing observations from both groups that have similar distribution of confounders.

Other more recent approaches include enforcing covariate balance as part of the causal
effect estimation process (Imai and Ratkovic, 2014; Chan et al., 2016; Josey et al., 2020).
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4.2 High-dimensional findings and implications

We next want to consider what role high-dimensional data concepts have with respect to
comparability and the potential outcomes framework. We begin with a canonical exam-
ple. If we take X1, . . . ,Xn to be multivariate normal d−dimensional vectors, then it is
known that for n fixed and d approaching infinity, the vectors will lie on the surface of
a d−dimensional hypersphere with high probability. While this is often taken as limi-
tation of high-dimensional data analysis regarding the inability to find nearest neighbors
with high-dimensional data, one can reinterpret this to mean that as the dimensionality
increases, there is an innate tendency towards greater comparability between observations
Xi (i = 1, . . . , n).

The example in the previous paragraph dealt with a one-sample setting. The opti-
mism about comparability there is counterbalanced by the fact that as the dimension of
confounders increases, the chances that a random classifier (i.e., a classifier that is non-
informative for prediction) perfectly predicts treatment approaches one. What this leads
to is a violation of the treatment positivity assumption from §2. This has been explored in
detail in D’Amour et al. (2020) and Ghosh and Cruz Cortés (2019). As noted by D’Amour
et al. (2020), a stronger assumption than TP that typically is made is termed ‘strict overlap’:
there exists η ∈ (0, 1/2) such that

η < P (Z = 1|X) < 1− η

for all X. With the strict overlap assumption, one can guarantee, for example, that inverse
probability weighted estimators of the ACE will exhibit regular asymptotics. It is this strict
overlap assumption that becomes problematic in higher dimensions (Ghosh and Cruz Cortés,
2019; D’Amour et al., 2020). If this assumption is violated, then estimators of causal effects
will exhibit nonregular behavior asymptotically.

Our last example has to do with another condition commonly assumed in the literature
on high-dimensional theory and analysis, termed the ‘low-noise condition’ (Tsybakov et al.,
2004). Defining e(X) = P (Z = 1|X), the low-noise condition is satisfied if there exists
γ ∈ (0, 1), C > 0 and t0 ∈ (0, 0.5] such that

P (|e(X)− 0.5| ≤ t) ≤ Ct
γ

1−γ

for all t ∈ [0, t0]. Under this assumption, classifiers will have fast rates of convergence of
their associated empirical errors to population-level quantities (e.g., Audibert et al. 2007;
Srebro et al. 2010). However, the low-noise condition implies that propensity scores will
tend to be far away from 0.5. This property will in turn correlate with a greater tendency
for propensity scores to be closer to zero or one, which will mean some likelihood of violation
of the overlap condition (Ghosh and Cruz Cortés, 2019; D’Amour et al., 2020).

5. Data-driven estimands and Matching

5.1 Matching: definition

One approach to handling the problems of potential outcomes assumptions is to focus on
data-driven estimands. One such approach is matching; a comprehensive review describing
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their use being found in Stuart (2010). We will use the term matching to allude to the use
of an algorithm to balance the distribution of confounders between treatment groups.

The idea of matching is to find for each subject in the treatment group the subject(s)
from the control group whose confounders are the most similar in nature. In many practi-
cal situations, the confounder gets summarized via the propensity score (Rosenbaum and
Rubin, 1983), and matching proceeds with the caliper metric approach described in Rosen-
baum and Rubin (1985). An appeal to Theorem 1 from Rosenbaum and Rubin (1983) can
be used to justify the procedure of matching individuals from the treatment and control
groups leading to covariate balance on X.

An alternative to matching would involve fitting a regression model of the outcome
variable on Z incorporating the estimated propensity score either as a covariate and/or a
weight. Regression estimators typically involve some degree of extrapolation. By contrast,
matching estimators do not involve any such extrapolation and thus can be thought to
exhibit a certain type of robustness. As described in Stuart (2010), matching comes with
the following benefits:

1. Matching methods allow for the analyst to create effectively randomized block designs
(Box et al., 1978), which can potentially lead to efficiency gains in the estimation of
treatment effects;

2. Matching methods are quite flexible and can be used in combination with regression,
weighting and subclassification approaches (Imbens and Rubin, 2015);

3. Matching methods target the region of the covariate space where there is sufficient
overlap between treatment groups. We formalize this notion mathematically in §5.4.

4. There exist diagnostics that are available to check for covariate balance in the distri-
bution of confounders after the matching is performed.

There have been many approaches developed for matching. These include nearest neighbor
matching (Rubin, 1973), optimal matching (Rosenbaum, 1989), and more recently, graph-
based matching approaches using the cross-match statistic as well as the minimal spanning
tree approach (Rosenbaum, 2005).

5.2 Overlap and Bayes Error

We show analytically how certain matching algorithms directly target the overlap of con-
founders analytically. Recall that e(X) ≡ P (Z = 1|X) is the propensity score (Rosenbaum
and Rubin, 1983). Define the Bayes decision function (Devroye et al. (2013), p. 10) by
ẽ(X) = 1 if e(X) > 0.5 and zero otherwise. We begin by proving a simple lemma, which is
Proposition 4 from D’Amour et al. (2020).

Proposition 1 For any fixed η ∈ (0, 0.5),

P (η < e(X) < 1− η) ≤ η−1P (ẽ(X) 6= Z). (4)

Proof Define the event B = {X : η < e(X) < 1− η}. Then

P (ẽ(X) 6= Z) ≥ P (B)P (ẽ(X) 6= Z|B).
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It is straightforward to see that P (ẽ(X) 6= Z|B) ≥ η. Plugging this in the previous equality
concludes the proof.

Remark 1. In D’Amour et al. (2020), the authors use Proposition 1 to show that it is
impossible to satisfy (4) for all η ∈ (0, 0.5) so as to emphasize the restrictiveness of the
strict overlap assumption. In what we pursue here, we will treat η as fixed.

An interpretation of Proposition 1 is as follows. The left-hand side of (4) is the proba-
bility of the strict overlap assumption being satisfied. The right hand-side of (4) is nothing
more than the Bayes error, scaled by η.

Before describing how we can utilize results from the information theory literature on
divergence functions (Amari, 2016) to link strict overlap to matching procedures, we describe
some graph-based matching procedures.

5.3 Matching, algorithms and graph-based asymptotics

There are many issues in how to apply matching, which are described further in the mono-
graphs by Rosenbaum (2002, 2010). Here, we formulate the observations from the treated
and control populations as a bipartite graph and view matching as assigning edges between
the nodes. We assume that there exists a distance metric d : Rp × Rp → (0,∞] that com-
putes the distance between Xi and Xj . We assume that d(Xi,Xj) = ∞ if Zi = Zj , which
guarantees that two observations from the same treatment group will not be matched to
each other. There are several ways in which we can envision performing matching.

1. k−nearest neighbor matching: In this approach, the k observations from the control
group whose distances are the smallest relative to the ith treated observation are
matched to that observation. In the case of k = 1, this is referred to as nearest
neighbor matching.

2. Minimum spanning tree matching: Friedman and Rafsky (1979) proposed the use
of minimal spanning trees as a means of constructing multivariate tests of comparing
two-sample distributions. Their algorithm consists of constructing minimum spanning
tree for the pooled set of observations between the treatment and control groups. We
can then retain the edges connecting observations from different treatment groups.

3. Cross-match statistic: Rosenbaum (2005) recently proposed a graph-based statistic
for performing multivariate two-sample tests that he termed the cross-match statistic.
The graph induced by the cross-match statistic comes from solving a certain relaxation
of a combinatorial optimization problem. One of the advantages of the cross-match
statistic, in contrast to the multivariate statistics of Friedman and Rafsky (1979), is
that the exact null distribution is distribution-free and does not require any knowledge
of the topology of the underlying graph.

In Arias-Castro and Pelletier (2016), the authors note that these graph-based statistics can
be represented using a very general framework. In particular, we can consider G to be a
directed graph with the node set being V = (X∗1, . . . ,X

∗
n), a permutation of the original

confounders in which the first n0 entries are from the Z = 0 population and the remaining
n1 = n − n0 entries are from the Z = 1 population. Following Arias-Castro and Pelletier
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(2016), define Xi → Xj when node i points to node j in a graph. Then the statistics
corresponding to the matching scheme in 1) – 3) above can all be expressed as

WG(V) ≡ #{i ≤ n0, j > n0 : X∗i → X∗j}+ #{i ≤ n0, j > n0 : X∗j → X∗i },

which in words represents the number of neighbors in the graph that come from differ-
ent treatment groups. An asymptotic consistency result is presented in Arias-Castro and
Pelletier (2016) that requires the following assumptions:

A1. n0/(n0 + n1)→ π ∈ (0, 1) as both n0 and n1 approach infinity;

A2. All the vertices in G have constant out-degree;

A3. The graph G has bounded degree averaged over all the vertices;

A4. The outdegree, suitably normalized, converges to a constant c, which we will treat as
known.

A5. Edges of length greater than O(t−1/d) are unlikely.

We refer the reader to Arias-Castro and Pelletier (2016) for a more mathematical description
of these assumptions. Based on these assumptions, Arias-Castro and Pelletier (2016) prove
the following result:

Theorem: (Theorem 1 from Arias-Castro and Pelletier (2016)) Let X|T = 0 have density
f and X|T = 1 have density g. Then assuming A1. – A5. above, as n0, n1 →∞,

WG(V)

n0 + n1
→ 2c

∫
π(1− π)f(x)g(x)

πf(x) + (1− π)g(x)
dx (5)

almost surely.

While the proof of the theorem can be found in Arias-Castro and Pelletier (2016), we will
make a few remarks about it. As mentioned earlier, all three of the graph-based matching
schemes satisfy assumptions A1.) - A5.), so the theorem applies to the nearest neighbor,
minimal spanning and cross-match statistics. It is effectively a consistency result about the
convergence of the empirical distribution of the graph-based statistic to a limit that depends
on the following factors: c (from assumption A4.), π, f and g. In the situation where f 6= g,
the theorem guarantees that tests based on WG(V) will be consistent (i.e., the tests will
have power converging to one as n0 and n1 get large). We also note that the theorem is a
synthesis of the work of several authors who have focused on limits for specific graph-based
statistics. In particular, it generalizes the results of Schilling (1986) for nearest-neighbor
graphs and Henze and Penrose (1999) for minimal spanning tree-based graphs. The result
for the cross-match statistic was new in Arias-Castro and Pelletier (2016). As Arias-Castro
and Pelletier (2016) write on page 186, “the proof of Theorem 1 is exactly the same as that
of Theorem 2 in Henze and Penrose (1999), treating out-edges and in-edges separately.” As
we will see in the next section, our interest is in the right-hand side of (5) and how it relates
to the strict overlap criterion.
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5.4 Divergence functions and synthesis

We now introduce the concept of divergence functions, which is a foundational concept in
information geometry (Amari, 2016). The area treats distributions as points in a manifold
with an associated coordinate stucture as defined by a chart system. A divergence function
M comparing two points in the manifold P and Q with associated coordinates hP and hQ

satisfies the following properties:

1. M(hP ,hQ) ≥ 0;

2. M(hP ,hQ) = 0 iff P = Q;

3. If hQ = hP + dψ, then M can be expanded using a Taylor series as

M(hP ,hQ) =
1

2

∑
i,j

gij(hP )dψidψj +O(‖dψ‖3),

and G = [gij ] is positive definite.

We note that a divergence function is not necessarily a distance metric, as M is not required
to be symmetric or satisfy the triangle inequality.

While there are many choices of divergence function to use, we will select as our diver-
gence measure the Henze-Penrose divergence (Sekeh et al., 2019), defined as

MHP (f0, f1) =
1

4π(1− π)

[∫
[πf0(x− (1− π)f1(x)]2

πf0(x) + (1− π)f1(x)
dx− (2π − 1)2

]
.

It can be shown that MHP is bounded and symmetric in addition to satisfying the three
properties listed above. Sekeh et al. (2019) also reexpress MHP as

MHP (f0, f1) = 1−AHP (f0, f1),

where

AHP (f0, f1) =

∫
f0(x)f1(x)

πf0(x) + (1− π)f1(x)
dx.

Utilizing the theorem from Section 5.3 in conjunction with the arguments in the proof of
Theorem 1 of Sekeh et al. (2019), we can show that

WG(V)

n0 + n1
→ 2cπ(1− π)AHP (f, g)

almost surely.

In addition, we have from chapter 3.4 of Fukunaga (2013) that the Bayes error can be
upper bounded by divergences. Using the notation of (4), we have that

P (ẽ(X) 6= Z) ≤ MHP (f, g)

= 1−AHP (f, g) (6)

Synthesizing all the results across the paper, we can make the following findings:
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1. The probability of strict overlap is majorized (upper bounded) by the divergence
between the densities of X|T = 1 and X|T = 0. Mathematically, this is represented
as

P (η < e(X) < 1− η) ≤ P (ẽ(X) 6= Z)/η

≤ MHP (f, g)/η

= (1−AHP (f, g))/η (7)

2. An empirical estimator of (7) is (
1− nWG(V)

2cn0n1

)
η−1

These findings provide new analytical insights on the role of matching algorithms. First, for
any associated matching algorithm, there is an induced graph structure connecting treated
subjects to their matched control subjects. Given the matching algorithms discussed in
Section 5.3, we see that the graphs are attempting to minimize the divergence between
f , the density of X|Z = 0 and g, that of X|Z = 1. Second, this divergence serves as a
surrogate criterion for the strict overlap criteria, and through this derivation, it becomes
explicit how matching targets the overlap criteria. In much of the presentation of matching
procedures, the focus is more on algorithms without defining what are potential estimands
or probabilistic targets/criteria that are being optimized. The results presented here are a
quantification of qualitative observations about matching made in Rosenbaum (1989) and
(Stuart, 2010).

6. Conclusion

We would like to thank Drs. Small and Mitra again for the opportunity to revisit Breiman
(2001b) and consider it through the lens of what has transpired in the two decades since
its publication. Many of the predictions Breiman put forward in his article have come to
fruition, such as the role of machine learning and algorithmic modelling now occupies a
central role in statistical research.

It is curious to ponder a bit what Breiman might think of the whole endeavor of causal
modeling. Here are elements of the Two Cultures paper that we feel align with causal
inference:

1. The practice of statistics in the wild: causal inference methods are used through much
of scientific and medical research, such as sociology, psychology, economics and health
services research and applied to “real-life” data sets used to inform policy making. The
mainstreaming of these methods into leading statistical journals speaks to Breiman’s
desire to see papers with an emphasis on substantive applications spotlighted there.

2. In his rejoinder to Efron and Cox, Breiman does say (p. 229) that many statistical
investigations have ‘the identification of causal factors as their ultimate role’.

3. Ideas surrounding causality have also been seeping into machine learning research,
at least informally. Much of machine learning takes place in an industrial setting,
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where the intention is to influence the behavior of users, making it an interventionist
practice.

4. There is tremendous emphasis in causal inference placed on elucidating the assump-
tions needed to (a) perform valid causal inference and (b) identify the causal effect
from observed data. Given these assumptions, the discussion of models and estimation
then proceeds. Furthermore, if one adopts a propensity score modelling approach, then
one separates the model for understanding the science (the causal model or equiva-
lently, the model for the potential outcomes) from the model for treatment assignment
(propensity score model). Thus, modelling considerations in causal inference problems
are much more nuanced than what is portrayed for statistical modeling in Breiman
(2001b).

5. In data science terminology, Breiman is arguing for the use of domain knowledge, and
this happens routinely in causal inference analyses through consideration of variables
for predicting the potential outcomes.

6. Regarding point # 4, if one can proceed to do estimation, then one can incorporate
machine learning approaches in many different ways. This is a subject of massive
research interest in statistics (e.g., Chernozhukov et al., 2017; Wager and Athey,
2018; Dı́az, 2020).

Here are aspects of causal inference that do not align with the Two Cultures paper:

1. The idea of a generative model for the potential outcomes seems anathema to the
viewpoint advocated by Breiman.

2. Breiman praises his colleague, the late David Freedman, for his critiques of path
analysis. Freedman was very critical of the causal modelling approach (Freedman,
1999).

Our view is that there is a false dichotomy between the algorithmic and data model
cultures put forward by Breiman. Our schematic in Figure 1 and results about matching in
§5 align with the algorithmic viewpoint he advocates. However, the complaint by discussants
was that the black box approach fails to explain the mechanism, and the potential outcomes
outlined here is one means of explanation.

We look forward to developments in machine learning, high-dimensional data analysis,
causal inference and observational studies in the next two decades to see how the predictions
of Breiman play out.
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