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Abstract

Twenty years after Leo Breiman’s wake-up call on the use of data models, I reconsider his
concerns, which were heavily influenced by problems in prediction and classification, in light
of the much vaster class of problems of estimating effects and (conditional) associations.
Viewed from this perspective, one realises that the statistical community’s commitment to
the use of data models continues to be dominant and problematic, but that algorithmic
modelling (machine learning) does not readily provide a satisfactory alternative, by virtue
of being almost exclusively focused on prediction and classification. The only successful
way forward is to bridge the two cultures. It requires machine learning skills from the
algorithmic modelling culture in order to reduce model misspecification bias and to enable
pre-specification of the statistical analysis. It moreover requires data modelling skills in
order to choose and construct interpretable effect and association measures that target
the scientific question; in order to identify those measures from observed data under the
considered sampling design by relating to minimal and well-understood assumptions; and
finally, in order to reduce regularisation bias and quantify uncertainty in the obtained
estimates by relating to asymptotic theory.

Keywords: Causal machine learning, Data science, Double machine learning, Targeted
learning

1. Introduction

It has been a joy to reread the late Prof. Breiman’s provocative paper (Breiman, 2001) and
to see how relevant, timely and important his wake-up call continues to be twenty years later.
Surely much has changed in our profession over those twenty years. But the fact that new
and important developments on ‘big data’ and ‘data science’ are taking place largely outside
statistics, should remind us of Breiman’s alert that ‘[the growth in algorithmic modelling
applications and methodology] has occurred largely outside statistics in a new community
- often called machine learning - that is mostly computer scientists’. It signals once more
an (at least partial) failure of our statistics profession to embrace new developments and
engage (young) scientists with diverse backgrounds who are interested in data analysis.

In my opinion, a core reason for this lies in the predominance of mathematics in our
discipline, which is both a blessing and a curse. It can be a curse in basic statistics education
which, despite having become less mathematics-focused over the past twenty years, still has
some way to go in stimulating and preparing students to ‘think with data’ (Hardin et al.,
2015). It can be a curse in statistics research, which can be conservative and resistant
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Vansteelandt

towards algorithmic methods while they are lacking a strong mathematical foundation, and
can moreover be lured into elegant mathematical curiosities that have little or no relevance
for data analysis. It can be a curse in decision processes for awarding funding, which can
be biased towards the more mathematically-oriented project proposals that may seem to
promise greater quality.

The mathematical foundation of our discipline is indisputably also a blessing, however,
as also various discussants of Breiman (2001) express. Let me note in particular the in-
creasingly common use of machine learning for estimating association and effect measures
(as opposed to making predictions) (van der Laan and Rubin, 2006; van der Laan and
Rose, 2011; Chernozhukov et al., 2018), a profound development which I will discuss in
this article and which is precisely dependent upon asymptotic theories from mathematical
statistics (Wager and Athey, 2018). It is eminently here where Breiman’s two cultures
meet, and where the skills of both ‘data modellers’ (statisticians) and ‘algorithmic mod-
ellers’ (computer scientists) are indispensable. It is precisely at this vast intersection of
machine learning and estimating association and effect measures that statisticians can be
at the forefront of data science.

2. The two cultures

Breiman’s description of two model cultures appears strongly influenced by his experience as
a consultant working on problems of prediction, and by the era, twenty years ago, when the
use of machine learning was entirely focussed on prediction and classification. I agree with
other discussants of Breiman (2001) that prediction problems constitute only a minority of
the problems that scientists face. A majority of empirical studies rather aims to develop
insight into the effects of exposures on certain outcomes, into causal mechanism, or at a
less ambitious level, into associations (e.g., detecting subgroups of the population that are
more vulnerable to certain diseases). Predictions are not directly useful for this purpose
(although they will turn out to be indirectly useful - see Section 3). I therefore see a slightly
different divide into two model cultures than Breiman (2001) within this broader domain
of problems. I will discuss these two cultures, each with their strengths and weaknesses, so
as to find a compromise in Section 3.

2.1 The tradition within computer science

The tradition within computer science is to let the data speak, by making use of flexible,
black-box models. Prioritising correctness is obviously a good thing, but comes with the
risk of failing to summarise the data in an interpretable way. With the exception of pure
prediction and classification problems, providing insight is nonetheless the main purpose of a
data analysis. This partly motivates the increasing calls for machine learning algorithms to
be ‘interpretable’ or ‘explainable’ (Molnar, 2020) - see Rudin (2019) for a relevant discussion
- and the reluctance of statisticians to adopt these techniques outside of the context of
prediction. This reluctance is also motivated by a number of more subtle concerns on which
I will expand in Section 3.2.
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Machine learning for estimating associations

2.2 The tradition within statistics

The tradition within statistics is to use (semi)parametric models with the primary aim to
provide insight into data. It is a successful tradition in that sense. Note, for instance,
the success of regression models for describing conditional associations between possibly
continuous exposures and outcomes, and of random effect models for delivering insight
into complex data structures. Such modelling leads to a simplification of reality, which is
unavoidable and even desirable when the primary aim is to ‘summarise’ and provide insight.
Indeed, when studying the (conditional) association between a continuous exposure and a
continuous outcome, we would often not be interested to know exactly what the expected
outcome is at each exposure level; we would usually content ourselves with - and even prefer
- a linear or other approximation that is easy to interpret and communicate. The problem
with the modelling tradition lies not in its use of models with the aim to approximate the
patterns in the data, but rather in its positioning of the model above everything else. This
is damaging in at least the following two broad ways.

First, many traditional statistical analyses focus more on the model than on the prob-
lem one is trying to solve (Breiman, 2001). This should be no surprise if one considers
how textbooks and classes on regression are typically organised. We are trained to use
logistic regression for dichotomous outcomes and Cox regression for survival endpoints. We
are not trained to first think what estimand (i.e., association or effect measure) is relevant
for answering the scientific question at stake; note, for instance, the generally poor under-
standing that the meaning of many regression coefficients changes due to non-collapsibility
as one adjusts for more and more covariates (even in the absence of confounding, selection
or mediation effects) (Greenland et al., 1999). We are moreover trained to view a fitted
regression model as a representation of the data-generating mechanism, and to report all of
its regression coefficients in a table. We are not trained that inferring the data-generating
mechanism is an overly ambitious undertaking because different regression models will of-
ten fit the data nearly equally well; the latter is commonly mentioned in textbooks, but
then subsequently ‘forgotten’ in how we report the model and draw inference. Ideally, the
statistical analysis (and model) should be less ambitious, being centred around the one (or
few) exposure variable(s) one wishes to relate to outcome, with careful consideration of
which additional variables should versus should not be adjusted for (which may be different
depending on the considered exposure) (Westreich and Greenland, 2013). This practice has
become mainstream within causal inference (Hernan and Robins, 2020), but would often be
regarded with suspicion outside of it.

Undue reliance on models is also evident from the abundant focus on estimands that
cannot be defined in a model-free way. One example is the popular product-of-coefficient
method in mediation analysis, where the indirect effect of an exposure on an outcome
via a given mediator is defined as a product of the exposure coefficient in a model for
the mediator, times the mediator coefficient in a model for the outcome. Such model-
based definition is problematic because no theory justifies that a product of coefficients
can generally be viewed as an indirect effect, rendering it essentially meaningless in many
cases (Robins and Greenland, 1992). Similar problems are seen in many other contexts
(e.g., instrumental variables estimation). The resulting lack of interpretability - consider
for instance how difficult it would be to interpret the product of two log odds ratios when
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mediator and outcome are dichotomous - can only be resolved by starting the analysis with
the choice of an interpretable estimand (see Section 3 how this can be done), rather than
the choice of a model.

Second, there is a great danger in drawing false conclusions when viewing the fitted
model as a representation of the ground truth (i.e., as a data-generating model). Misspec-
ification of (semi)parametric models is indeed likely. For instance, when estimating the
effect of an exposure on an outcome, the high dimensionality of confounders makes it diffi-
cult to postulate parametric models for exposure or outcome. Model misspecification is a
serious threat to causal inference in particular, as it necessitates counterfactual predictions
(Hernán et al., 2019): predictions of what the outcome would have been for an unexposed
individual, had s/he been exposed. As exposed and unexposed individuals may have very
different characteristics, these counterfactual predictions can be prone to extrapolation. The
problem of model misspecification is especially severe when there is little overlap between
exposure groups. Even mild model misspecifications may then induce severe bias whilst
being difficult to diagnose (Vansteelandt and Daniel, 2014). In particular, they may not
be signaled by standard machine learning metrics such as mean squared (prediction) error,
which evaluate prediction error over random samples where only minor extrapolations are
made. The resulting model misspecification bias or extrapolation bias is nearly always ill
understood. In particular, standard estimators of the (conditional) association (or effect)
between an exposure on an outcome will then typically converge to a limit that is no longer
even capturing the intended association, e.g., it may suggest a conditional association when
in truth there is none, or vice versa. Even if it does, then overly optimistic inferences are
typically obtained (notably even when robust standard errors are used). This is the result
of excess variability that most estimators exhibit when models are misspecified (Buja et al.,
2019; Vansteelandt and Dukes, 2020) or when variable selection procedures are employed
to construct a well-fitting model (Leeb and Pötscher, 2006; Dukes and Vansteelandt, 2020).

3. Bridging the two cultures

In view of the concerns about model misspecification raised in the previous section, there
has been a rapidly growing interest over the past two decades within primarily the causal
inference literature in harnessing the power of data-adaptive methods for inferring the effects
of exposures on outcomes (e.g., van der Laan (2015); Mooney and Pejaver (2018); Hernán
et al. (2019)). Here, I will focus on a ‘data-adaptive method’ as being any method that uses
the data to learn structure (as opposed to fitting a pre-specified parametric model without
any element of variable selection, model building, ...) and can be automated, so that it can
be pre-specified without ambiguity. This includes random forest regression, support vector
machines, gradient boosting, ... but also flexible parametric models with variable selection
(e.g., stepwise variable selection, lasso, ...), with or without the inclusion of splines, which
can often give competitive prediction performance (Rudin, 2019). Below, I will review these
developments (van der Laan and Rose, 2011; Chernozhukov et al., 2018), which I believe
are transforming the way how we will estimate associations and effects in the future. In the
next section, I will argue that these developments accommodate Breiman’s concerns.
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3.1 Step 1. Choosing an estimand

The starting point of these developments is not the choice of a model, but the choice of
an estimand. Such estimand represents an interpretable summary that we wish to target
in the analysis (van der Laan and Rose, 2011; Hernan and Robins, 2020). It is connected
to the scientific question in the sense that knowing the value of the estimand helps answer
that question. It is defined in a model-free way so that it can be unambiguously specified
well before seeing the data. In that sense, typical regression parameters cannot be viewed
as estimands, as their meaning is dependent on the choice of model and variables that we
include in it, which often is not pre-specified.

The choice of an estimand forms a natural starting point within the causal inference
literature (Daniel et al., 2016). For instance, the effect of a dichotomous exposure A (coded
0 or 1) on a dichotomous outcome Y is often quantified as E(Y 1 − Y 0), where Y a, a = 0, 1
denotes the potential outcome that would have been seen for a randomly chosen individual
if the exposure of that individual had been set to a (Hernan and Robins, 2020). Given a pre-
exposure covariate vector L that is sufficient to adjust for confounding (and the consistency
assumption that Y = Y a if A = a), this estimand can be identified (or linked to the observed
data distribution) as (Hernan and Robins, 2020)

E(Y 1 − Y 0) = E {E (Y |A = 1, L)− E (Y |A = 0, L)} . (1)

Choosing an estimand is less common outside of the causal inference literature, but much
more broadly conceivable. For instance, the conditional association between a possibly
continuous exposure A and an outcome Y , given a specific vector of covariates L, can be
quantified as

E [Cov {A,E (Y |A,L) |L}]
E [Var (A|L)]

(2)

or, when Y is dichotomous, as

E [Cov {A, logitE (Y |A,L) |L}]
E [Var (A|L)]

(3)

(Vansteelandt and Dukes, 2020). These estimands appears less insightful, but (2) reduces
to the standard mean difference β when

E (Y |A,L) = βA+ ω(L),

for some unknown function ω(.), and likewise (3) reduces to the standard log odds ratio β
when

logitE (Y |A,L) = βA+ ω(L),

for some unknown function ω(.). Both estimands thus have a clear connection to standard
regression models and parameters with familiar interpretation. However, they continue to
be relevant when the above models do not hold. In that case, (2) and (3) are obtained by
summarising, for each level l of L, the dependence of E (Y |A,L = l) or logitE (Y |A,L = l)
onto A by means of a population-least-squares projection (i.e., a linear approximation)
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among individuals with L = l, and next taking a weighted average of the resulting l-specific
association measures using the weights

Var (A|L = l)

E [Var (A|L)]
. (4)

In the special case where A is dichotomous, (2) can therefore be written as a weighted
average of mean differences:

E [W (L) {E(Y |A = 1, L)− E(Y |A = 0, L)}]

for weights

W (L) =
P (A = 1|L)P (A = 0|L)

E {P (A = 1|L)P (A = 0|L)}
;

likewise, (3) can be written as a weighted average of conditional log odds ratios:

E [W (L) {logitE(Y |A = 1, L)− logitE(Y |A = 0, L)}] .

In this formalism, statistical models remain useful to assign meaning to a complex estimand,
but the estimand continues to capture the intended conditional association when the model
is misspecified. Furthermore, by having thus preset the choice of association measure that
will be obtained from the analysis, we have control over the interpretability of the analysis
result, regardless of the complexity that we wish to invoke in the next section for estimating
E(Y |A = a, L = l) or E(A|L = l) for given a and l (via machine learning or flexible
parametric models).

3.2 Step 2. Estimating the estimand

It is tempting to employ flexible parametric models with variable selection, or even existing
machine learning algorithms in the estimation of the unknown nuisance parameters (e.g.,
E(Y |A = a, L = l) or E(A|L = l) for given a, l) characterising a given estimand. For
instance, to infer (1), one may train machine learning algorithms for the outcome in exposed
as well as unexposed individuals, and then average the difference in predictions obtained
for all individuals:

1

n

n∑
i=1

Ê (Yi|Ai = 1, Li)− Ê (Yi|Ai = 0, Li) .

Likewise, to infer (2) or (3), one may fit flexible parametric models (possibly involving inter-
actions, higher-order terms, splines, ...) or train machine learning algorithms for exposure
and outcome, and then calculate∑n

i=1

{
Ai − Ê(Ai|Li)

}{
Ê(Yi|Ai, Li)− Ê(Yi|Li)

}
∑n

i=1

{
Ai − Ê(Ai|Li)

}2

or ∑n
i=1

{
Ai − Ê(Ai|Li)

}(
logit

{
Ê(Yi|Ai, Li)

}
− Ê

[
logit

{
Ê(Yi|Ai, Li)

}
|Li

])
∑n

i=1

{
Ai − Ê(Ai|Li)

}2 , (5)
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respectively, where Ê
[
logit

{
Ê(Yi|Ai, Li)

}
|Li

]
denotes a prediction of logit

{
Ê(Yi|Ai, Li)

}
based on Li, where Ê(Yi|Ai, Li) represents an outcome prediction. This is indeed attractive
because it enables arbitrarily complex models or algorithms to be used without distorting
the interpretation of the end result. However, these estimators will typically do a poor job
because the variable selection or machine learning algorithms on which they rely have been
optimally tuned for prediction, but not for estimating association measures (van der Laan
and Rose, 2011). For instance, the above estimator of (1) may not work well when untreated
individuals are quite different from treated individuals in their measured characteristics, as
the used algorithms may not be ideally tuned towards the need for extrapolation. Standard
assessments of prediction error give no insight into this. In particular, the accuracy of
the (counterfactual) predictions Ê (Y |A = a, L) for a = 0, 1 cannot be readily assessed on
validation samples, since one can only observe how untreated individuals would fare without
treatment, but not with treatment. This is even more problematic when considering the
above estimators of (2) or (3), where it becomes difficult or even impossible to assess whether
the obtained predictions are sufficiently accurate in those parts of the data space that matter
for the accuracy of this estimator. A further problem is that the set of features that is
optimal for inclusion when the aim is prediction, may not be optimal when the aim is to
estimate effects or associations. For instance, the omission of variables that are strongly
predictive of exposure but moderately predictive of outcome may result in estimators of
their association that have substantial bias. When the aim is prediction instead, then their
omission may reduce prediction error by mitigating multicollinearity.

Use of the above estimators is further hindered by the uncertainty of predictions obtained
using variable selection or machine learning algorithms. This uncertainty is difficult to quan-
tify (except at a population level in terms of average prediction error), and so is the extent
to which this uncertainty propagates into the estimator of the considered estimand. While
the bootstrap may appear as an attractive way out, it has no validity in high-dimensional
settings (Leeb and Pötscher, 2006; Dukes and Vansteelandt, 2020). In such settings, variable
selection and machine learning procedures tend to deliver non-regular estimators, whose be-
haviour is sensitive to even minor changes in the data-generating mechanism. This makes
them in particular sensitive to the distinction between the empirical versus population dis-
tribution of the data, a distinction which the bootstrap ‘ignores’. This is troublesome as it
is impossible to come to well-informed decisions without reliable measures of uncertainty.

The above problems partly motivate statisticians’ reluctance to adopt machine learning
procedures. They make the development of variable selection and machine learning methods
for the estimation of association or effect measures dependent upon results from asymptotic
statistics. Such results have been developed in the literature on nonparametric statistics
(Pfanzagl, 1990; Bickel et al., 1993) and have paved the way for revolutionary developments
on targeted learning (van der Laan and Rubin, 2006; van der Laan and Rose, 2011) and
double machine learning (Chernozhukov et al., 2018). In particular, nonparametric inference
for the considered estimand can proceed based on its so-called canonical gradient (Pfanzagl,
1990; Bickel et al., 1993) under the nonparametric model. For the estimands (2) and (3),
this is given by (Vansteelandt and Dukes, 2020)

{A− E(A|L)} [µ(Y,A,L)− β {A− E(A|L)}]

E
[
{A− E(A|L)}2

]
223

[1
8.

11
9.

13
3.

22
8]

   
P

ro
je

ct
 M

U
S

E
 (

20
24

-0
4-

25
 0

6:
30

 G
M

T
)



Vansteelandt

where

µ(Y,A,L) ≡ Y − E(Y |L)

for estimand (2), and

µ(Y,A,L) ≡ {Y − E(Y |A,L)}
E(Y |A,L){1− E(Y |A,L)}

+ logit{E(Y |A,L)} − E[logit{E(Y |A,L)}|L]

for estimand (3). An estimator can now be obtained as the value of β that makes the
sample average of these canonical gradients equal to zero, in which the ‘unknownsÕ can be
estimated using data-adaptive procedures (e.g., variable selection, machine learning). For
instance, an estimator of the ‘linear regression’ estimand (2) is given by∑n

i=1

{
Ai − Ê(Ai|Li)

}{
Yi − Ê(Yi|Li)

}
∑n

i=1

{
Ai − Ê(Ai|Li)

}2 ,

for given exposure and outcome predictions, Ê(Ai|Li) and Ê(Yi|Li), respectively. An esti-
mator of the ‘logistic regression’ estimand (3) is obtained by adding to the ‘plug-in’ estimator
(5) the following bias correction term∑n

i=1

{
Ai − Ê(Ai|Li)

}{
Yi − Ê(Yi|Ai, Li)

}
/
[
Ê(Yi|Ai, Li)

{
1− Ê(Yi|Ai, Li)

}]
∑n

i=1

{
Ai − Ê(Ai|Li)

}2

for given exposure and outcome predictions, Ê(Ai|Li) and Ê(Yi|Ai, Li), respectively.
The resulting estimators possess a small-bias property (Newey et al., 2004), which means

that their bias converges to zero faster (as the sample size grows larger) than the (regular-
ization) bias that affects the data-adaptive predictions. Under relatively weak conditions
on the rate of convergence of these predictions towards the truth, and provided that sample
splitting (Zheng and van der Laan, 2011; Chernozhukov et al., 2018) is used (whereby the
estimator is calculated on a different part of the data than that on which the data-adaptive
predictions are trained), standard root-n convergence to a normal limit is then obtained,
with the estimation errors in the predictions not affecting the asymptotic behaviour of the
resulting estimator. Interestingly, this implies that inference can proceed as if those predic-
tions were a priori known, rather than data-driven. The obtained estimators are therefore
asymptotically unbiased and come with (uniformly) valid confidence intervals that are ob-
tainable through relatively simple analytical calculations. In particular, standard errors
can be consistently estimated as one over root-n times the sample standard deviation of the
canonical gradients, evaluated at the obtained estimates and predictions. This is extremely
advantageous, given that the uncertainty in the machine learning predictions is so difficult
to assess.

4. Discussion

We have gone a long way since Breiman’s seminal paper, and I am positive about what is
yet to come. I remember the many frustrations as a young student that several strategies
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of building a regression model would lead to quite different results, leaving me paralysed
what to report. I remember discussions whether or not to use Cox regression models with
or without covariate adjustment in randomised experiments, not realising that the compar-
ison was muddled by the difference in estimands targeted by Cox regression models with
versus without covariates. Many of those concerns and confusions fade when starting data
analyses with the choice of an estimand. This helps ensure that the data analysis tar-
gets the scientific question. It moreover prevents data analysts from making models overly
simplistic on purpose just to secure a simple and easy-to-communicate result. Indeed, the
analysis strategy of Section 3 targets the same estimand, no matter the complexity of the
underlying data-generating mechanism. It thereby enables the use of flexible parametric
models with variable selection, splines, ... or even machine learning. This flexibility attenu-
ates model misspecification bias and ensures that the analysis is purely evidence-based, can
be pre-specified and, unlike standard model-based analyses, acknowledges all uncertainties
related to model building, variable selection, ... Arguably, it is harder to incorporate biolog-
ical knowledge into machine learning procedures, and I believe that hand-made statistical
models therefore remain valuable. But to minimise the concerns about models raised in
Section 2.2, it seems wise to combine the resulting hand-made predictions with objective,
algorithmic procedures via the use of ensemble learners (Van der Laan et al., 2007).

The use of machine learning (or more general data-adaptive procedures) for estimating
associations and effects as described in Section 3, accommodates the three key concerns
raised by Breiman (2001). It addresses his concerns about the ‘multiplicity of good models’
(i.e., the fact that multiple models may be fitting the data nearly equally well) because
different well-fitting models will often generate rather similar predictions; these predictions
are all that is being employed by the considered estimators in Section 3. Moreover, the
possibility to aggregate over a large set of competing models or algorithms when obtaining
machine learning predictions (Van der Laan et al., 2007), enables one to make well-informed
compromises. Further, the strategy of Section 3 overcomes the tension between using com-
plex, correct models versus interpretable, misspecified models. The reason is that the same
‘simple’ estimand is targeted no matter the complexity of the predictions consumed by
the estimation procedure. Breiman’s final concern about the need for model-based strate-
gies to drastically reduce the number of covariates in high-dimensional settings is readily
accommodated via the use of machine learning.

Despite these important developments, pioneered by van der Laan and Rubin (2006) (see
van der Laan (2015) for a gentle overview), we still have a long way to go in accommodating
Breiman’s concerns. Much work remains to be done to extend this methodology, which is
almost exclusively developing within the domain of causal inference, to more general set-
tings where regression models are commonly used and less ambitious association measures
are of interest. To change applied practice, the development of user-friendly software that
can handle a wide array of estimands is key (Gruber and Van der Laan, 2011). Critical is
also to rethink our statistics education, which is heavily centred around the use of models.
In particular, I believe we must train our students to translate scientific questions into in-
terpretable estimands, that may or may not be linked to a statistical model. This is more
relevant and careful than instead training them (willingly or unwillingly) to view the fitted
model as the primary result of the statistical analysis, especially considering that different
models may fit the data nearly equally well. I believe we must restore the statistical model
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Vansteelandt

in its original purpose to provide insight, rather than to reflect some ground truth in terms
of how data have been generated by nature. Rethinking our statistics education is a chal-
lenging endeavour that need not make it more mathematical, quite on the contrary. Indeed,
many introductory statistics courses now continue to have a strong focus on collections of
test statistics and their distributions, standard error and confidence interval derivations and
formulae, ... which is useful for the minority who will engage in methods development, but
not for the majority who will end up analysing data. In times where software is abundant
and accessible, the focus of introductory statistics courses should be primarily on statis-
tical reasoning, as made most clear by computational, simulation-based methods such as
bootstrap, permutation tests, simulation-based sample size calculation, ..., on concepts of
bias (e.g., selection bias, confounding bias) and imprecision, on the translation of scien-
tific questions into statistical estimands, on key assumptions linked to study design (e.g.,
independence assumptions), on flexible (statistical or machine) learning methods for predic-
tion, which form a cornerstone of the methods of Section 3, ... For the smaller minority of
students who are mathematically-minded and/or wish to engage in methods development,
a core training in asymptotic statistics obviously remains indispensable. I believe that a
central focus of such training should lie on nonparametric estimation and efficiency theory
(Bickel et al., 1993; Kennedy, 2016; Fisher and Kennedy, 2020).
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