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Abstract

The past two decades have witnessed the great success of the algorithmic modeling frame-
work advocated by Breiman et al. (2001). Nevertheless, the excellent prediction perfor-
mance of these black-box models rely heavily on the availability of strong supervision, i.e.
a large set of accurate and exact ground-truth labels. In practice, strong supervision can
be unavailable or expensive, which calls for modeling techniques under weak supervision.
In this comment, we summarize the key concepts in weakly supervised learning and discuss
some recent developments in the field. Using algorithmic modeling alone under a weak
supervision might lead to unstable and misleading results. A promising direction would be
integrating the data modeling culture into such a framework.

Keywords: Weakly Supervised Learning, Algorithmic Modeling, Data Modeling

As an important think piece to both the statistics and machine learning communities,
Breiman et al. (2001) laid out the contrast of the two cultures in modeling thinking: data
modeling and algorithmic modeling. It pointed out the limitations of data modeling and the
opportunities and potentials of algorithmic modeling. Over the past two decades, Breiman
et al. (2001)’s vision for algorithmic modeling has been validated by the rapid development
and application of complicated yet effective algorithmic models, e.g., deep learning. Mean-
while, new challenges and opportunities are emerging everyday as we continue to deal with
data with increasing size and complexity. In this comment, we offer a brief discussion of
recent developments in the field of weakly supervised learning and discuss how it creates a
need for data modeling thinking in an algorithmic modeling framework.

Following the taxonomy introduced in Breiman et al. (2001), the data modeling culture
refers to methods that explicitly assume a stochastic model for data generation. Often,
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methods of this culture have shallow structures and are easy to interpret. Typical examples
include linear regression, logistic regression, to name a few. The validity of such methods
is backed by the probabilistic properties of their outputs, such as goodness-of-fit tests and
residual analyses. In contrast, the algorithmic modeling culture aims to learn the complex
and unknown nature of true data generation mechanisms through “black-box” algorithms.
Typical examples of this culture include decision trees, support vector machines (SVM),
and neural networks (NN). The training and evaluation of these algorithms are guided by
predictive accuracy.

The past two decades have witnessed the rapid expansion and success of the algo-
rithmic modeling culture. From self-driving cars (Bojarski et al., 2016) to virtual assis-
tants (Devlin et al., 2018), complicated algorithmic models such as deep neural networks
(DNNs) have demonstrated their potential for leveraging today’s big data and affordable
high-performance computational resources in producing predictions that are comparable to
human performance. However, training such algorithms to attain impressive performance
relies heavily on a large volume of training data with high-quality labels (see Figure 1),
which are often expensive or even unavailable in many real-world applications. In particu-
lar, such a strong supervision becomes substantially scarcer in application domains that are
more specialized, such as healthcare (Miotto et al., 2018) and ecological studies (Christin
et al., 2019; Tang et al., 2021), where domain expertise is vital in data labeling. As a result,
practical challenges due to the lack of strong supervision in many real-world applications
significantly limit the applicability and generalization of algorithmic models.

Weakly supervised learning (WSL) (Zhou, 2018) addresses the more realistic setting
when supervision is available but weak under various practical scenarios. It expands the
reach of conventional supervised learning and has garnered a lot of interests in applications
(e.g. Jorgensen et al., 2008; Oquab et al., 2015; Peyre et al., 2017). In algorithmic modeling,
strong supervision comes from a large set of accurately labelled data. Such a supervision
may be weakened in approximately three ways: incomplete supervision, inexact supervision,
and inaccurate supervision (Zhou, 2018).
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Figure 1: Strong supervision drives performance improvement in supervised learning.

Let X be the input features. Let Y be the outcome of interest. When Y’s values are
available in the training data as labels, they provide strong supervision for the algorithmic
modeling, through a loss function L(Y, Ŷ) (Figure 1). In practice, the exact and accurate
values of Y are often unavailable in the training data. Instead, let Ỹ be the observed (weak)
labels in the training data. Here, we introduce a unified notation, W, for the generating
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mechanism of the weakened supervision Ỹ. Using the above notation, the framework of
WSL is summarized in Figure 2. WSL shares the same learning goal with methods of the
algorithmic modeling culture in Breiman et al. (2001), that is, train a function f(X) such
that Y can be accurately predicted or approximated by f(X). Here, the challenges arise
mostly from the lack of strong labels Y and the need to create effective supervision based
on the observed Ỹ.
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Figure 2: Weakly supervised learning poses new challenges for the algorithmic modeling
framework.

Directly applying algorithmic modeling to data with weakened training labels without
considering the weak supervision generating mechanism W could lead to results that are
unstable and overfitted (Frénay and Verleysen, 2013; Van Engelen and Hoos, 2020). Take
semi-supervised learning as an example, which can be thought of as a special case of in-
complete supervision (Zhou, 2018). Most algorithms in the field of semi-supervised learning
rely on the assumption that the labels are missing complete at random. When this assump-
tion is violated in real data, semi-supervised learning algorithms may actually degrade the
learning performance, compared to applying supervised learning methods directly on the
labeled portion of the dataset (Zhu, 2008). Another example is training DNNs with noisy
training labels, i.e., inaccurate supervision. Zhang et al. (2017) provided empirical results
showing that DNNs can fit training data with randomly shuffled labels arbitrarily well. Not
surprisingly, the generalization performance of the trained DNNs on test sets was no bet-
ter than random guessing. Even for the relatively shallow tree ensemble models, numerical
experiments have shown that the adaptive boosting algorithm (AdaBoost) would dispropor-
tionately focus on learning mislabeled instances when label noises exist (Dietterich, 2000).
Therefore, an algorithmic modeling framework under weak supervision needs to explicitly
acknowledge the weakening mechanism W.

The entire promise of WSL lies within the assumption that the weak labels Ỹ in the
training data carry partial information of Y through the weak supervision generating mech-
anism W. Most current methods in WSL assume that the mapping from Y to Ỹ by W is
independent of the features X and the true labels Y. A more realistic scenario, however,
would be that the mechanism of W may be dependent of both X and Y. Consider the
joint distribution of the observed weakened labels Ỹ and the features X,

P (Ỹ,X) =
∑
Y

P (Ỹ|Y,X)P (Y|X)P (X). (1)
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As shown in Figure 2, our learning goal remains to be fitting P (Y|X), the unknown
data generating mechanism, with a model f(X), even when we lack direct observations of
Y. To allow information in Ỹ be passed onto the learning of f(X), it is critical to model
W in Figure 2, i.e., P (Ỹ|Y,X) on the right-hand side of Equation (1). In Figure 3, we
introduce an overly generalized notation g(Ỹ|Y,X) to encapsulate models and approaches
for the mechanism W. In practice, characterizing P (Ỹ|Y,X) could be challenging as in-
formation is often scarce. In fact, without additional information beyond the training data,
it is not possible to effectively leverage the weak supervision that is offered by Ỹ (Frénay
and Verleysen, 2013; Zhou, 2018). In the weakly supervised learning literature, additional
information for constructing g(Ỹ|Y,X) has been introduced in the form of assumptions on
W and/or small sets of data with observed Y. This is primarily motivated by the need
for transparency and interpretability for g(Ỹ|Y,X) to incorporate prior knowledge into
“end-to-end” modeling frameworks. In other words, it is desirable to have the modeling of
W be “assumption-driven” rather than “data-driven” or “accuracy-driven”, which creates
a role for the data modeling culture within an algorithmic modeling framework (Figure 3).
In the weakly supervised learning literature, there has been some progress made to address
each type of weak supervision.
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Figure 3: Weakly supervised learning requires a fusion of data modeling thinking into the
algorithmic modeling framework.

For incomplete supervision where labels are only available for a small subset of training
data, active learning algorithms (Settles, 2009) attempt to better extract label information
by “actively” asking an “oracle” (e.g., a human annotator) for queries of selected unlabeled
instances. This framework has been widely used in image classification (Joshi et al., 2009;
Kapoor et al., 2007; Li and Guo, 2013). Assuming the existence of an “oracle”, the key
component of active learning is to choose the most “valuable” instance to query. To this
end, measures of informativeness and representativeness of individual observations have
been proposed (Settles, 2009). For example, Bayesian active learning methods estimate
the expected improvement of each instance query through nonparametric models such as
Gaussian process and Monte Carlo estimations (e.g. Gal et al., 2017; Kapoor et al., 2007;
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Roy and McCallum, 2001). As another approach to incomplete supervision, semi-supervised
learning algorithms (Chapelle et al., 2009; Zhu, 2005) utilize the unlabeled training data as
well as labeled data to improve prediction accuracy. Transductive methods were proposed to
obtain label prediction for unlabelled data points (Van Engelen and Hoos, 2020), including
the use of probabilistic models, such as Markov random fields and Gaussian random fields,
for label assignments (e.g. Shental and Domany, 2005; Wu et al., 2012; Zhu and Ghahramani,
2002).

Inexact supervision addresses the situation where the given labels are at coarser scales
than desired. For example, in many real-world object segmentation tasks, only image-level
training labels are available, while the task is to localize each object. Multi-instance learning
(Zhou and Zhang, 2007) was such an example with a bag-of-instances setup: instances xij
are organized in bags Xj , and the labels in the training set are only given at the bag level. A
common assumption for this task is that the bag-level class probability is the maximum of
all the instance-level class probabilities within the bag. This assumption bridges the gap be-
tween instance predictions and observed bag labels. Another example is the concept labeling
method (Chenthamarakshan et al., 2011), which assumes a soft bag-instance structure. In
their Bayesian modeling framework, each document (instance) X has a distribution P (V|X)
over the concepts of the ontology V (bag). It is assumed the outcome variable of interest
Y, categories, is conditionally independent of document content X, when conditioning on
the oncology concept V. Consider P (Y|X) =

∑
V P (Y,V|X) =

∑
V P (Y|V)P (V|X).

As a result, by separately modeling the document-to-concept distribution P (V|X) and
the concept-to-class distribution P (Y|V), the instance-level document label predictions
P (Y|X) can be obtained.

Inaccurate supervision concerns the situation where labels are a noisy version of the
ground truth. To learn with noisy labels, many algorithms make the assumption that
the noises are randomly generated. Brodley and Friedl (1999) proposes to first identify
the potentially mislabeled instances and perform label correction. Northcutt et al. (2021)
proposed the Confidence Learning framework that iteratively determines which labels are
more likely to be the contaminated ones, based on an estimated joint distribution of true
label Y and observed label Ỹ. The data programming approach proposed by Ratner et al.
(2016) is a paradigm for integrating noisy labels from multiple sources, and deriving a better
training set using a dependency graph that incorporates different assumptions on the weak
supervision generating mechanisms.

For any WSL framework, optimizing the generalization performance of the learned model
f(X), for P (Y|X), remains the main goal. However, it is important to consider the practical
issues caused by the imperfection of available data and construct “end-to-end” learning
frameworks that take raw training data and deliver reliable final models. In this comment,
we argue that the scarcity of strong supervision in many real-world applications calls for
a fusion of modeling cultures that allow creative combinations of assumption-driven and
data-driven approaches. There are many open problems and challenges that remain to
be further explored. In particular, in many real-world learning tasks, all the above weak
supervision scenarios may apply at the same time (e.g., noisy and inexact labels are only
available on a small subset, as seen in Tang et al. (2021)). Most of the existing weakly
supervised learning methods focus only on a single type of weak supervision. As a result, the
weak supervision generation mechanism P (Ỹ|Y,X) is usually over-simplified in practice.

207

[3
.1

44
.1

87
.1

03
]  

 P
ro

je
ct

 M
U

S
E

 (
20

24
-0

4-
25

 1
0:

01
 G

M
T

)



Tang, Yuan, and Zheng

Much of the statistical literature from the data modeling culture, e.g., robust statistics
and methods for missing data, may find application in end-to-end workflows of weakly
supervised learning. In addition, many current methods in WSL incorporate assumptions
on the weak supervision in an ad hoc fashion. For the same reasons that have led to the
lack of strong supervision in the training data, it is also impractical to assume that one can
validate the learning framework using prediction accuracy on test data alone. Systematic
model checking with respect to the weak supervision generating mechanism W is needed.
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