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Abstract

We offer descriptive and normative standards for the principled pursuit of causal inference.
These standards address critiques of both the algorithmic and the data modeling cultures
identified in (Breiman, 2001), and provide a fruitful synthesis of both cultures. We contrast
the resulting ”cautious causal inference” with overly optimistic methods inspired by algo-
rithmic data analysis methods prevalent in machine learning, as well as older approaches
to causal modeling that employ overly restrictive parametric models.
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Breiman’s influential 2001 paper posited a dichotomy in statistics between what he called
the data modelling culture and the algorithmic modelling (i.e. machine learning) culture.
Breiman described the data modelling culture as being concerned with understanding mech-
anisms by which the data is generated, while the algorithmic culture treats the underlying
data generating mechanism as unknown and perhaps irrelevant. As a number of origi-
nal replies to Breiman’s paper noted, Breiman’s description of the data modelling culture
includes causal modelling, although his original description did not use explicitly causal
language.

Breiman’s critique of the data modelling culture can be boiled down to two observations.
First, data modelling, as Breiman saw it at the time, primarily used parametric models.
Breiman viewed these models as unsuitable for the sorts of applications he had in mind,
due to issues arising from misspecification and poor model fit. Second, Breiman correctly
noted that the emphasis on understanding true mechanisms underlying data generation is
not actually needed (and may be counterproductive) in a wide variety of problems, such as
those pertaining to prediction, clustering, or dimension reduction.

While Breiman himself clearly favored the algorithmic modelling culture, it is itself open
to critique, with some of it already articulated in the original 2001 replies to Breiman. In
particular, understanding causal mechanisms is crucial in many areas of empirical science
and in rational decision making, as evidenced by the ubiquity of randomized controlled
trials and the increasing adoption of causal inference methods for observational data. The

©2021 E.L. Ogburn and I. Shpitser.

[3
.1

46
.1

52
.9

9]
   

P
ro

je
ct

 M
U

S
E

 (
20

24
-0

4-
20

 1
6:

40
 G

M
T

)



Ogburn and Shpitser

enterprise of causal inference is sufficiently subtle that algorithmic modelling ideas alone,
agnostic as they are to true underlying mechanisms, are insufficient for obtaining valid
answers. In causal inference, this agnosticism can lead to what we call sanguine causal
modelling : the use of mathematically convenient identifying assumptions, combined with
optimism that these convenient assumptions will happen to hold in practice. These kinds
of assumptions can be unnecessarily strong, and difficult to reason about.

Thus, we disagree with Breiman on the primacy of the algorithmic modelling view of
data analysis, especially for causal inference. However, many of Breiman’s critiques of
the data modelling culture remain valid, particularly for data science communities that
work exclusively with strong, often parametric models that are likely to be misspecified in
practice.

The culture of cautious causal modelling, which shuns opaque assumptions on the fear
that they could result in incorrect conclusions, has been sensitive to both types of critiques.
Cautious causal modellers identify causal effects with assumptions that are transparent
and only as strong as necessary. To estimate causal effects, cautious causal modellers
employ flexible statistical models and robust methods in order to avoid falling prey to model
misspecification. To put it another way, cautious causal modelling aims to synthesize the
best aspects of the data modelling and algorithmic modelling cultures by clearly specifying
the parameter of interest and the modelling assumptions under which it will be identified,
as data modelers would, while also using, to the extent possible, the flexible estimation
methods developed by communities adhering to the algorithmic modelling view of data
analysis.

We will summarize the workflow of cautious causal inference and how this workflow
achieves this synthesis. But first, some terminology. Potential or counterfactual outcomes
are the outcomes that we would have observed, possibly contrary to fact, had we been able
to intervene to set treatment or exposure to a particular user-specified value. They are
often denoted Y (x) for a treatment or exposure X set to value x. Potential outcomes are
only partially observed: for binary X we observe Y (1) but not Y (0) for units with X = 1,
and we observe Y (0) but not Y (1) for units with X = 0. The full data is the random vector
(Y (1), Y (0), X,C) for covariates C, while the observed data (Y,X,C) is a coarsening of the
full data with Y = X ∗ Y (1) + (1 − X) ∗ Y (0). A causal estimand can be any functional
of the full data, e.g. a contrast between E[Y (1)] and E[Y (0)]. Absent assumptions, we
cannot learn about causal estimands from the observed data, because they are functionals
of (partially) unobserved potential outcomes. We say that a functional of the full data is
identified by the observed data, under a set of assumptions, if the functional reduces to a
functional of the observed data alone. This functional of the observed data is the identifying
functional, and it is the statistical estimand that we will estimate and perform inference
about in order to learn about the causal estimand that it identifies.

Now we can describe the crucial features of cautious causal modelling. Cautious ap-
proaches to causal inference:

1. define the causal estimand(s) of interest in terms of the full data and without reference
to any assumptions or models, which will be invoked later;

2. propose a set of assumptions that can be justified by existing research, domain exper-
tise, or that are mathematically unrestrictive;
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3. communicate the assumptions transparently, e.g. offering intuition for any technical
assumptions and explaining how a practitioner could reason about when they hold or
are violated;

4. deduce whether and how the observed data identifies, or partially identifies, the causal
estimand given the assumptions;

5. estimate (or otherwise use data to learn about, e.g. by deriving bounds on) the
observed data estimand using only justifiable or unrestrictive models;

6. assess the robustness of the conclusions from (5) to violations of causal and modelling
assumptions.

Step (1) separates the scientific question from the quantitative methods that will be used
to answer it, ensuring that we do not fall into the trap Breiman himself succumbed to in his
focus on prediction problems, namely retrofitting the question to match preferred methods.
Together steps (1) and (2) ensure that researchers do not reflexively fit a popular parametric
model and interpret a coefficient as a causal effect (as Breiman’s data modeller might do).
One of Breiman’s primary concerns about the data modelling culture was over-reliance on
parametric models which, if they are “a poor emulation of nature,” may lead to incorrect
conclusions. For this very reason cautious causal modellers are skeptical of parametric (or
overly strong) identifying assumptions in step (2), unless they can be justified as Breiman
describes in his response to Cox: “if the science of the mechanism producing the [ed: full]
data is well enough known to determine the model apart from estimating parameters.” In
fact, the use of parametric models in step (2) is even more troubling than their use for
estimation, which is what concerned Breiman. Typically no goodness-of-fit tests, not even
the problematic ones Breiman discussed, are readily available for the fit of a parametric
model or assumption to the full, rather than the observed, data. This is because it is
difficult to discern what restrictions on the observed data are implied by restrictions on the
full data.

Steps (3) and (4) are what separate causal from other kinds of statistical inference. Since
causal inferences are complex counterfactual claims about how outcomes would have been
different under hypothetical changes to treatment, there is no reason to believe these claims
unless researchers are able to reason clearly about whether and when the assumptions on
which they rest might be expected hold. A cautious approach will prioritize assumptions
that are less restrictive, so that they are more likely to hold in practice, and assumptions
that are substantive rather than technical, to facilitate step (3). What makes an approach
ultimately useful is that the assumptions are transparent and amenable to being reasoned
about.

A hallmark of sanguine causal modelling is putting step (4) before step (2), i.e. as-
suming that an estimand is identified, and then back-engineering assumptions to justify
identification. This can render the methods useless in practice, if the assumptions are un-
likely to hold or impossible to reason about. Sometimes it results in identifying assumptions
that essentially assume the consequent, i.e. that assume that a particular functional of the
full data is equal to a particular functional of the observed data. Particularly concerning is
when methods that rely on restrictive, technical assumptions are marketed as being widely
applicable in practice. When this kind of method is applied to real data, researchers have
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no way of knowing whether or not the assumptions hold and causal inferences are actually
licensed.

Step (5) has evolved considerably since Breiman’s paper was published. The use of
parametric models for estimation in step (5) has been a growing concern among cautious
practitioners of causal inference; over the past decade much of the research in causal in-
ference has focused on how to use nonparametric–even blackbox–methods in the service
of Step (5) (Chernozhukov et al., 2017; Hill, 2011; Kennedy, 2020; Liu et al., 2020; Zheng
and van der Laan, 2011). The causal community has come to embrace semi- and non-
parametric estimation methods that allow flexible nuisance models to be used while still
obtaining estimators with desirable parametric properties (such as asypmtotic normality
and
√
n-consistency) for the target parameter. In addition, semi-parametric estimators for

many popular target parameters in causal inference have product biases, resulting in mul-
tiple robustness properties, where the estimator remains consistence even if some of the
nuisance models are arbitrarily misspecified.

Ideally, researchers seeking to draw causal conclusions will triangulate different types of
analyses with independent weaknesses (Rosenbaum et al., 2017). When that is not possible,
step (6) involves formal and informal sensitivity analyses: using many different parametric
models to assess sensitivity to instability and model fit; assessing to what extent the findings
are robust to violations of the causal identifying assumptions. For the specific assumption
of no unmeasured confounding, there is a large literature on formal sensitivity analysis
techniques (Dorie et al., 2016; Franks et al., 2019; Liu et al., 2013; McCandless et al.,
2007; Rosenbaum, 2014). This directly addresses Breiman’s concern that data modelling
approaches are not robust to model misspecification or to instability.

The synthesis of the data modeling and algorithmic modeling cultures, due to the cross-
pollination of ideas from machine learning and causal inference, is only just beginning. The
number of causal contributions to machine learning conferences seems to grow exponentially
from conference to conference, and we are witnessing increasing adoption of machine learn-
ing estimation methods in causal inference. We look forward to taking stock, in another 20
years, of how far both fields have come from Breiman’s 2001 characterization.
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