Supplement for Planting the seed for sound change: evidence from real-time MRI of velum kinematics in German

Contents

1 Prepare data 2

2 Velum gesture duration 2
 2.1 Checks 5

3 Velum gesture onset 6
 3.1 Checks 9

4 Velum gesture peak (timing) 10
 4.1 Checks 13

5 Velum gesture offset 14
 5.1 Checks 16

6 Velum gesture peak (magnitude) 18
 6.1 Checks 21

7 Gesture offset stiffness 22
 7.1 Checks 24

8 Gesture offset stiffness 26
 8.1 Checks 28

9 Kurtosis 30
 9.1 Checks 32

10 Crest factor 34
 10.1 Checks 36

11 Integral of velum movement in vowel (area under the curve) 38
 11.1 Checks 40

12 Plotting posteriors 42
 12.1 Figure 5: duration, onset, peak (timing), offset 42
 12.2 Figure 6: peak (magnitude) 43
 12.3 Figure 7: opening stiffness, closing stiffness 44
 12.4 Figure 9: kurtosis, crest factor 45
 12.5 Figure 10: velum displacement integral 46

References 46
library(brms)
library(tidybayes)
library(extraDistr)
library(HDInterval)

core.num <- parallel::detectCores()
options(mc.cores = core.num)

my.seed <- 123
set.seed(my.seed)

1 Prepare data

matdat <- read.csv("./rtMRI-velum/velum_data.csv", header = T)

get rid of items with gesture onsets that begin *after* the vowel offset (only 5/7152 total items)
matdat <- matdat[(matdat$velumopening_gesture_on - matdat$Vokal_off) < 0,]

separate coda contexts by alveolar voiced stop vs. alveolar voiceless stop
voiceless <- c("nt__", "nt_0", "nt_6", "nt_a")
voiced <- c("nd_0", "nd_6", "nd_a")

matdat$voicing <- c()
matdat$voicing[matdat$post %in% voiceless] <- "voiceless"
matdat$voicing[matdat$post %in% voiced] <- "voiced"

only include alveolar nasal items preceding a voiced or voiceless stop consonant
only include neutrally stressed utterances
stresses <- c("N")

subset the data
subdat <- matdat[matdat$post %in% coda & matdat$stress %in% stresses,]

2 Velum gesture duration

Since no specific information on expectations for velum gesture duration can be found in the literature, we followed more general expectations for speech segment durations, coded as very weakly informative priors. The BRM for velum gesture duration was built using a log-normal distribution, since speech segment duration has been shown to be log-normally distributed (Rosen 2005; Ratnikova 2017; Gahl and Baayen 2019). The following distributions were used as weakly informative priors (on the log-odds scale): for the intercept of duration (corresponding to ND), a normal distribution with mean = 0 and standard deviation = 3 ($\text{Normal}(0, 3)$); for the effect of voicing (when NT), $\text{Normal}(0, 1)$. These roughly correspond to a belief that the intercept of velum gesture duration (when the context is ND) is between 0 and 400 ms ($e^{3\times2} = 403$), and the duration changes (increases or decreases) by a factor of 1 to 7.4 in the ND context ($e^{1\times2} = 7.4$), at 95% confidence. For the model standard deviation and the random intercept standard deviation we used a half-Cauchy distribution with location 0 and scale 0.1 ($\text{HalfCauchy}(0, 0.1)$); this corresponds to a 95% HDI = [0, 2.55] in log-odds, i.e. a factor change of 1 to 12.75 ($e^{2.55} = 12.75$).
\texttt{inverseCDF(c(0.025, 0.975), \texttt{phcauchy, sigma = 0.1})}

[1] 0.003930135 2.545175934

For the correlation between random effects, we used an \(LJK(2)\) distribution, as recommended by Vasishth et al. (2018). The same prior specification was used for the models of velum gesture onset time and velum gesture offset time.

NOTE: Warnings about \(\hat{R}\) and sample size are false warnings, and are not signs of problems with fitting and they can safely be ignored. See https://github.com/paul-buerkner/brms/issues/864.

```
# create the dependent variable
subdat$DV <- subdat$velumopening_gesture_dur*1000

# full model
dur <- \texttt{brms::brm(DV ~ voicing + (1 + voicing | speaker) + (1 + voicing | word), data = subdat, family = lognormal(), prior = c(prior(normal(0, 3), class = Intercept), prior(normal(0, 1), class = b, coef = voicingvoiceless), prior(cauchy(0, 0.1), class = sd), prior(cauchy(0, 0.1), class = sigma), prior(lkj(2), class = cor)), seed = my.seed, iter = 6000, warmup = 3000, chains = 4, cores = core.num, control = list(adapt_delta = 0.99, max_treedepth = 20), file = "/rtMRI-velum/models/dur", save_all_pars = TRUE)}
```

```
## Family: lognormal
## Links: mu = identity; sigma = identity
## Formula: DV ~ voicing + (1 + voicing | speaker) + (1 + voicing | word)
## Data: subdat (Number of observations: 1365)
## Samples: 4 chains, each with iter = 6000; warmup = 3000; thin = 1;
## total post-warmup samples = 12000
##
## Group-Level Effects:
## ~speaker (Number of levels: 35)
## Estimate Est.Error 1-95% CI u-95% CI Rhat
## sd(Intercept) 0.12 0.02 0.09 0.15 1.00
## sd(voicingvoiceless) 0.08 0.01 0.06 0.12 1.00
## cor(Intercept,voicingvoiceless) -0.29 0.18 -0.60 0.09 1.00

## Bulk_ESS Tail_ESS
## sd(Intercept) 5422 7471
## sd(voicingvoiceless) 5663 8113
## cor(Intercept,voicingvoiceless) 6487 8256
```
-word (Number of levels: 30)

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Est.Error</th>
<th>l-95% CI</th>
<th>u-95% CI</th>
<th>Rhat</th>
<th>Bulk_ESS</th>
<th>Tail_ESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>sd(Intercept)</td>
<td>0.07</td>
<td>0.01</td>
<td>0.04</td>
<td>0.10</td>
<td>1.00</td>
<td>5700</td>
<td>6103</td>
</tr>
<tr>
<td>sd(voicingvoiceless)</td>
<td>0.03</td>
<td>0.02</td>
<td>0.00</td>
<td>0.07</td>
<td>1.00</td>
<td>1766</td>
<td>4041</td>
</tr>
<tr>
<td>cor(Intercept,voicingvoiceless)</td>
<td>-0.14</td>
<td>0.37</td>
<td>-0.78</td>
<td>0.64</td>
<td>1.00</td>
<td>11075</td>
<td>8197</td>
</tr>
</tbody>
</table>

Population-Level Effects:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Est.Error</th>
<th>l-95% CI</th>
<th>u-95% CI</th>
<th>Rhat</th>
<th>Bulk_ESS</th>
<th>Tail_ESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>5.71</td>
<td>0.03</td>
<td>5.66</td>
<td>5.76</td>
<td>1.00</td>
<td>4706</td>
<td>7006</td>
</tr>
<tr>
<td>voicingvoiceless</td>
<td>-0.11</td>
<td>0.02</td>
<td>-0.15</td>
<td>-0.07</td>
<td>1.00</td>
<td>7244</td>
<td>7945</td>
</tr>
</tbody>
</table>

Family Specific Parameters:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Est.Error</th>
<th>l-95% CI</th>
<th>u-95% CI</th>
<th>Rhat</th>
<th>Bulk_ESS</th>
<th>Tail_ESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>sigma</td>
<td>0.14</td>
<td>0.00</td>
<td>0.14</td>
<td>0.15</td>
<td>1.00</td>
<td>17280</td>
<td>9078</td>
</tr>
</tbody>
</table>

reduced/null model
dur_null <- brms::brm(
 DV ~
 (1 + voicing | speaker) +
 (1 + voicing | word),
 data = subdat,
 family = lognormal(),
 prior = c(prior(normal(0, 3), class = Intercept),
 prior(cauchy(0, 0.1), class = sd),
 prior(cauchy(0, 0.1), class = sigma),
 prior(lkj(2), class = cor)),
 seed = my.seed,
 iter = 6000,
 warmup = 3000,
 chains = 4,
 cores = core.num,
 control = list(adapt_delta = 0.99,
 max_treedepth = 20),
 file = "/rtMRI-velum/models/dur_null",
 save_all_pars = TRUE)

calculate the Bayes factor of the difference between the full and null models
brms::bayes_factor(dur, dur_null)
2.1 Checks

For the sensitivity analysis we followed the method introduced in Betancourt (2018). In the following plot, s (posterior shrinkage) indicates the contribution of the data to the posterior (values closer to 1 are better). z (posterior z-score) indicates how close the inference is to the data generating process (lower values are better). An ideal fit should have $s = 1$ and $z = 0$. Posteriors with high s and high z indicate overfit (the data dominate the posterior), while posteriors with low s and low z indicate that the model is poorly
identified (the data is not contributing to the model and the priors dominate).

dur_fixed <- fixef(dur) %>% as_tibble(rownames = "term")

dur_fixed %>%
 mutate(
 theta = c(0, 0),
 sigma_prior = c(3, 1),
 # it's called here std.error but is the standard deviation
 z = abs((Estimate - theta) / Est.Error),
 s = 1 - (Est.Error^2 / sigma_prior^2)
) %>%
ggplot(aes(s, z, label = term)) +
 geom_point() +
 geom_label(nudge_x = -0.1, size = 2, alpha = 0.5) +
 xlim(0, 1) + ylim(0, 250) +
 theme_minimal()

3 Velum gesture onset

See velum gesture duration for prior specification.

create the dependent variable
subdat$DV <- (subdat$velumopening_gesture_on - subdat$Vokal_off)*1000

full model
onset <- brms::brm(
DV ~ voicing +
 (1 + voicing | speaker) +
 (1 + voicing | word),
data = subdat,
family = lognormal(),
prior = c(prior(normal(0, 3), class = Intercept),
 prior(normal(0, 1), class = b, coef = voicingvoiceless),
 prior(cauchy(0, 0.1), class = sd),
 prior(cauchy(0, 0.1), class = sigma),
 prior(lkj(2), class = cor)),
seed = my.seed,
iter = 4000,
warmup = 2000,
chains = 4,
cores = core.num,
control = list(adapt_delta = 0.99,
 max_treedepth = 20),
file = "./rtMRI-velum/models/onset",
save_all_pars = TRUE)
)

Family: lognormal
Links: mu = identity; sigma = identity
Formula: DV ~ voicing + (1 + voicing | speaker) + (1 + voicing | word)
Data: subdat (Number of observations: 1365)
Samples: 4 chains, each with iter = 4000; warmup = 2000; thin = 1;
total post-warmup samples = 8000
##
Group-Level Effects:
~speaker (Number of levels: 35)
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 0.17 0.02 0.13 0.22 1.00 1992 3448
sd(voicingvoiceless) 0.03 0.02 0.00 0.09 1.00 1339 2749
cor(Intercept,voicingvoiceless) -0.21 0.39 -0.84 0.65 1.00 6310 5205
Bulk_ESS Tail_ESS
sd(Intercept) 1992 3448
sd(voicingvoiceless) 1339 2749
cor(Intercept,voicingvoiceless) 6310 5205
~word (Number of levels: 30)
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 0.23 0.04 0.17 0.32 1.00 2193 3821
sd(voicingvoiceless) 0.05 0.03 0.00 0.13 1.00 1333 1861
cor(Intercept,voicingvoiceless) -0.39 0.37 -0.93 0.49 1.00 4879 4686
Bulk_ESS Tail_ESS
sd(Intercept) 2193 3821
sd(voicingvoiceless) 1333 1861
cor(Intercept,voicingvoiceless) 4879 4686
##
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept 4.63 0.06 4.52 4.74 1.00 1427 2639
voicingvoiceless 0.12 0.03 0.05 0.18 1.00 4824 4270
##
Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sigma 0.31 0.01 0.29 0.32 1.00 9877 5453
##
Samples were drawn using sampling (NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

reduced/null model
onset_null <- brms::brm(
 DV ~
 (1 + voicing | speaker) +
 (1 + voicing | word),
 data = subdat,
 family = lognormal(),
 prior = c(prior(normal(0, 3), class = Intercept),
 prior(cauchy(0, 0.1), class = sd),
 prior(cauchy(0, 0.1), class = sigma),
 prior(lkj(2), class = cor)),
 seed = my.seed,
 iter = 4000,
 warmup = 2000,
 chains = 4,
 cores = core.num,
 control = list(adapt_delta = 0.99,
 max_treedepth = 20),
 file = "/rtMRI-velum/models/onset_null",
 save_all_pars = TRUE
)

calculate the Bayes factor of the difference between the full and null models
brms::bayes_factor(onset, onset_null)

Iteration: 1
Iteration: 2
Iteration: 3
Iteration: 4
Iteration: 5
Iteration: 6
Iteration: 7
Iteration: 8
Iteration: 1
Iteration: 2
Iteration: 3
Iteration: 4
Iteration: 5
Iteration: 6

Estimated Bayes factor in favor of onset over onset_null: 5.94046

calculate the marginal posteriors of the full model
onset_post <- brms::posterior_samples(onset, pars="b_") %>%
 dplyr::mutate("
\[\text{nd} = \exp(b_{\text{Intercept}}), \]
\[\text{nt} = \exp(b_{\text{Intercept}}) \times \exp(b_{\text{voicingvoiceless}}) \]

\[
\text{dplyr::select(nd, nt) %>% tidyrr::gather(context, DV)}
\]

3.1 Checks

\[
\text{pp_check(onset, nsamples = 50) + theme_minimal()}
\]

\[
\text{onset_fixed <- fixef(onset) %>% as_tibble(rownames = "term")}
\]

\[
\text{onset_fixed %>%}
\]
\[
\text{mutate(}
\]
\[
\text{theta = c(0, 0),}
\]
\[
\text{sigma_prior = c(3, 1),}
\]
\[
\text{# it’s called here std.error but is the standard deviation}
\]
\[
\text{z = abs((Estimate - theta) / Est.Error),}
\]
\[
\text{s = 1 - (Est.Error^2 / sigma_prior^2)}
\]
\[
\text{)} %>%
\]
\[
\text{ggplot(aes(s, z, label = term)) +}
\]
\[
\text{geom_point() +}
\]
\[
\text{geom_label(nudge_x = -0.1, size = 2, alpha = 0.5) +}
\]
\[
\text{xlim(0, 1) + ylim(0, 250) +}
\]
\[
\text{theme_minimal()}
\]
4 Velum gesture peak (timing)

The BRM for the time point of the velum gesture peak was built using a Gaussian distribution; unlike the other measures of timing, the time point of the velum gesture peak is not expected to follow a one-sided (positive support) distribution, since the peak can potentially occur before or after the vowel offset. The following distributions were used as weakly informative priors (on the milliseconds scale): for the intercept (corresponding to ND), $\text{Normal}(0, 200)$; for the effect of voicing (when NT), $\text{Normal}(0, 100)$. These correspond to a belief that the intercept is between -400 and 400 ms from the vowel offset, and that the time changes by -200 to 200 ms in the NT context, at 95% confidence. For the model standard deviation and the random intercept standard deviation we used $\text{HalfCauchy}(0, 5)$, which corresponds to a 95% HDI $= [0, 127]$ ms.

```r
inverseCDF(c(0.025, 0.975), phcauchy, sigma = 5)
```

[1] 0.1964676 127.2584987

For the correlation between random effects, an $LJK(2)$ distribution.

```r
# create the dependent variable
subdat$DV <- (subdat$velumopening_maxcon_on - subdat$Vokal_off)*1000

# full model
gest.max <- brms::brm(
  DV ~ voicing + 
  (1 + voicing | speaker) +
  (1 + voicing | word),
  data = subdat,
)
family = gaussian(),
prior = c(prior(normal(0, 200), class = Intercept),
           prior(normal(0, 100), class = b, coef = voicingvoiceless),
           prior(cauchy(0, 5), class = sd),
           prior(cauchy(0, 5), class = sigma),
           prior(lkj(2), class = cor)),
seed = my.seed,
iter = 6000,
warmup = 3000,
chains = 4,
cores = core.num,
control = list(adapt_delta = 0.99,
               max_treedepth = 20),
file = "./rtMRI-velum/models/gest_max",
save_all_pars = TRUE)

## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: DV ~ voicing + (1 + voicing | speaker) + (1 + voicing | word)
## Data: subdat (Number of observations: 1365)
## Samples: 4 chains, each with iter = 6000; warmup = 3000; thin = 1;
##    total post-warmup samples = 12000

## Group-Level Effects:
## ~speaker (Number of levels: 35)
##  Estimate   Est.Error  l-95% CI  u-95% CI   Rhat Bulk_ESS  Tail_ESS
## sd(Intercept)   15.97      2.12    12.34   20.60    1.00     3775    6145
## sd(voicingvoiceless) 13.25      1.95     9.83   17.45    1.00     3350    5750
## cor(Intercept,voicingvoiceless) -0.62      0.12    -0.81   -0.36    1.00     4495    6496

## ~word (Number of levels: 30)
##  Estimate   Est.Error  l-95% CI  u-95% CI   Rhat Bulk_ESS  Tail_ESS
## sd(Intercept) 15.45      2.63     10.84   21.10    1.00     4210    5937
## sd(voicingvoiceless)  3.65      2.21     0.24   8.66     1.00     1965    3280
## cor(Intercept,voicingvoiceless) -0.20      0.39    -0.86   0.60     1.00   11008    7531

## Population-Level Effects:
##  Estimate   Est.Error  l-95% CI  u-95% CI   Rhat Bulk_ESS  Tail_ESS
## Intercept   45.86      4.38     37.12   54.38    1.00    2478     4656
## voicingvoiceless -25.69      3.11    -31.86  -19.62   1.00    4152    6324

## Family Specific Parameters:
##  Estimate   Est.Error  l-95% CI  u-95% CI   Rhat Bulk_ESS  Tail_ESS


11
Samples were drawn using sampling (NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

# reduced/null model
gest.max_null <- brms::brm(
  DV ~
    (1 + voicing | speaker) +
    (1 + voicing | word),
  data = subdat,
  family = gaussian(),
  prior = c(prior(normal(0, 200), class = Intercept),
           prior(cauchy(0, 5), class = sd),
           prior(cauchy(0, 5), class = sigma),
           prior(lkj(2), class = cor)),
  seed = my.seed,
  iter = 6000,
  warmup = 3000,
  chains = 4,
  cores = core.num,
  control = list(adapt_delta = 0.99,
                 max_treedepth = 20),
  file = "./rtMRI-velum/models/gest_max_null",
  save_all_pars = TRUE)

# calculate the Bayes factor of the difference between the full and null models
brms::bayes_factor(gest.max, gest.max_null)

## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8

## Estimated Bayes factor in favor of gest.max over gest.max_null: 1873906.34322

# calculate the marginal posteriors of the full model
gest.max_post <- brms::posterior_samples(gest.max, pars="b_") %>%
dplyr::mutate(
  nd = b_Intercept,
  nt = b_Intercept + b_voicingvoiceless
) %>%
4.1 Checks

\[
\text{pp_check}(\text{gest.max, nsamples = 50}) + \text{theme_minimal()}
\]
5  Velum gesture offset

See velum gesture duration for prior specification.

# create the dependent variable
subdat$DV <- (subdat$velumopening_gesture_off - subdat$Vokal_off) * 1000

# full model
offset <- brms::brm(
  DV ~ voicing +
  (1 + voicing | speaker) +
  (1 + voicing | word),
  data = subdat,
  family = lognormal(),
  prior = c(prior(normal(0, 3), class = Intercept),
            prior(normal(0, 1), class = b, coef = voicingvoiceless),
            prior(cauchy(0, 0.1), class = sd),
            prior(cauchy(0, 0.1), class = sigma),
            prior(lkj(2), class = cor)),
  seed = my.seed,
  iter = 6000,
  warmup = 3000,
  chains = 4,
  cores = core.num,
  control = list(adapt_delta = 0.99,
                 max_treedepth = 20),
  seed = my.seed,
file = "./rtMRI-velum/models/offset",
save_all_pars = TRUE
)

offset

## Family: lognormal
## Links: mu = identity; sigma = identity
## Formula: DV ~ voicing + (1 + voicing | speaker) + (1 + voicing | word)
## Data: subdat (Number of observations: 1365)
## Samples: 4 chains, each with iter = 6000; warmup = 3000; thin = 1;
## total post-warmup samples = 12000
##
## Group-Level Effects:
## ~speaker (Number of levels: 35)
## Estimate   Est.Error  l-95% CI   u-95% CI Rhat Bulk_ESS  Tail_ESS
## sd(Intercept)  0.15      0.02     0.12     0.20 1.00     4598   6415
## sd(voicingvoiceless)  0.11   0.02      0.08     0.15 1.00     4772   7862
## cor(Intercept,voicingvoiceless) -0.42  0.15   -0.68   -0.09 1.00    6016   7747
##
## ~word (Number of levels: 30)
## Estimate   Est.Error  l-95% CI   u-95% CI Rhat Bulk_ESS  Tail_ESS
## sd(Intercept)  0.05      0.02     0.02     0.09 1.00     2182   4699
## sd(voicingvoiceless)  0.07   0.02      0.03     0.12 1.00     1409   2940
## cor(Intercept,voicingvoiceless) -0.15  0.34   -0.76   -0.03 1.00    1627   2582
##
## Population-Level Effects:
## Estimate   Est.Error  l-95% CI   u-95% CI Rhat Bulk_ESS  Tail_ESS
## Intercept  5.28      0.03      5.21     5.34 1.00     2568   5089
## voicingvoiceless -0.28  0.03   -0.34   -0.22 1.00     2990   5502
##
## Family Specific Parameters:
## Estimate   Est.Error  l-95% CI   u-95% CI Rhat Bulk_ESS  Tail_ESS
## sigma 0.16     0.00      0.15     0.17 1.00     17295  8738
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

# reduced/null model
offset_null <- brms::brm(
  DV ~ (1 + voicing | speaker) +
     (1 + voicing | word),
  data = subdat,
  family = lognormal(),
  prior = c(prior(normal(0, 3), class = Intercept),
prior(cauchy(0, 0.1), class = sd),
prior(cauchy(0, 0.1), class = sigma),
prior(lkj(2), class = cor)),
seed = my.seed,
iter = 6000,
warmup = 3000,
chains = 4,
cores = core.num,
control = list(adapt_delta = 0.99,
               max_treedepth = 20),
file = "/rtMRI-velum/models/offset_null",
save_all_pars = TRUE)

# calculate the Bayes factor of the difference between the full and null models
brms::bayes_factor(offset, offset_null)

## Estimated Bayes factor in favor of offset over offset_null: 142262071.18830

# calculate the marginal posteriors of the full model
offset_post <- brms::posterior_samples(offset, pars="b_") %>%
dplyr::mutate(
  nd = exp(b_Intercept),
  nt = exp(b_Intercept) * exp(b_voicingvoiceless)
) %>%
dplyr::select(nd, nt) %>%
tidyr::gather(context, DV)

5.1 Checks

pp_check(offset, nsamples = 50) + theme_minimal()
offset_fixed <- fixef(offset) %>% as_tibble(rownames = "term")

offset_fixed %>%
  mutate(
    theta = c(0, 0),
    sigma_prior = c(3, 1),
    # it's called here std.error but is the standard deviation
    z = abs((Estimate - theta) / Est.Error),
    s = 1 - (Est.Error^2 / sigma_prior^2)
  ) %>%
  ggplot(aes(s, z, label = term)) +
  geom_point() +
  geom_label(nudge_x = -0.1, size = 2, alpha = 0.5) +
  xlim(0, 1) + ylim(0, 250) +
  theme_minimal()
6 Velum gesture peak (magnitude)

The BRM for the velum gesture magnitude was built using a Beta distribution, since the magnitude values are on a 0-1 scale. The following practically flat priors were used: \textit{Normal}(0, 10) for the intercept; \textit{Normal}(0, 5) for voicing and the random effects standard deviations; the brms default prior for the $\phi$ parameter of the beta distribution ($\textit{gamma}(0.01, 0.01)$); and $\textit{LKJ}(2)$ prior for the random effects correlation.

```r
create the dependent variable
subdat$DV <- subdat$velum2US_velumopening_maxcon_onset

full model
gest.max.mag <- brms::brm(
 DV ~ voicing +
 (1 + voicing | speaker) +
 (1 + voicing | word),
 data = subdat,
 family = Beta(),
 prior = c(prior(normal(0, 10), class = Intercept),
 prior(normal(0, 5), class = b, coef = voicingvoiceless),
 prior(cauchy(0, 5), class = sd),
 prior(gamma(0.01, 0.01), class = phi),
 prior(lkj(2), class = cor)),
 seed = my.seed,
 iter = 4000,
 warmup = 2000,
 chains = 4,
)```
Family: beta
Links: mu = logit; phi = identity
Formula: DV ~ voicing + (1 + voicing | speaker) + (1 + voicing | word)
Data: subdat (Number of observations: 1365)
Samples: 4 chains, each with iter = 4000; warmup = 2000; thin = 1;
total post-warmup samples = 8000
##
Group-Level Effects:
~speaker (Number of levels: 35)
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 0.48 0.07 0.37 0.63 1.00 2397 3605
sd(voicingvoiceless) 0.24 0.05 0.16 0.34 1.00 3254 4705
cor(Intercept,voicingvoiceless) -0.49 0.16 -0.75 -0.14 1.00 5273 5990
##
~word (Number of levels: 30)
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 0.20 0.05 0.12 0.31 1.00 4047 4985
sd(voicingvoiceless) 0.18 0.06 0.08 0.31 1.00 1900 2453
cor(Intercept,voicingvoiceless) 0.43 0.30 -0.25 0.90 1.00 2661 3856
##
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept 0.93 0.10 0.74 1.12 1.00 1743 2848
voicingvoiceless -0.32 0.07 -0.46 -0.19 1.00 3901 5110
##
Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
phi 24.69 0.96 22.86 26.61 1.00 12290 6516
##
Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

```r
# reduced/null model
gest.max.mag_null <- brms::brm(
    DV ~
        (1 + voicing | speaker) +
        (1 + voicing | word),
    data = subdat,
    family = beta,
    control = list(adapt_delta = 0.99,
                   max_treedepth = 20),
    file = "./rtMRI-velum/models/gest_max_mag",
    save_all_pars = TRUE
)
```

```
data = subdat,
family = Beta(),
prior = c(prior(normal(0, 10), class = Intercept),
        prior(cauchy(0, 5), class = sd),
        prior(gamma(0.01, 0.01), class = phi),
        prior(lkj(2), class = cor)),
seed = my.seed,
iter = 4000,
warmup = 2000,
chains = 4,
cores = core.num,
control = list(adapt_delta = 0.99,
               max_treedepth = 20),
file = "./rtMRI-velum/models/gest_max_mag_null",
save_all_pars = TRUE)

# calculate the Bayes factor of the difference between the full and null models
brms::bayes_factor(gest.max.mag, gest.max.mag_null)

## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12

## Estimated Bayes factor in favor of gest.max.mag over gest.max.mag_null: 94.25061

# calculate the marginal posteriors of the full model
gest.max.mag_post <- brms::posterior_samples(gest.max.mag, pars="b") %>%
dplyr::mutate(
    nd = plogis(b_Intercept),
    nt = plogis(b_Intercept + b_voicingvoiceless)
) %>%
dplyr::select(nd, nt) %>%
tidyr::gather(context, DV)
```
6.1 Checks

\[
\text{pp_check}(\text{gest_max_mag}, \text{n.samples} = 50) + \text{theme_minimal}()
\]

\[
gest_max_mag_fixed <- \text{fixef}(\text{gest_max_mag}) \%>\% \text{as_tibble}(\text{rownames = "term"})
\]

\[
gest_max_mag_fixed \%>\% \text{mutate}(
 \text{theta} = \text{c}(0, 0),
 \text{sigma_prior} = \text{c}(10, 5),
 \# \text{it's called here std.error but is the standard deviation}
 \text{z} = \text{abs}((\text{Estimate} - \text{theta}) / \text{Est.Error}),
 \text{s} = 1 - (\text{Est.Error}^2 / \text{sigma_prior}^2)
) \%>\%
\text{ggplot}(\text{aes}(\text{s, z, label = term})) +
\text{geom_point()} +
\text{geom_label}(\text{nudge_x = -0.1, size = 2, alpha = 0.5}) +
\text{xlim}(0, 1) + \text{ylim}(0, 250) +
\text{theme_minimal()}
\]
7 Gesture offset stiffness

```r
# create the dependent variable
subdat$DV <- subdat$stiff.ons

# full model
stiff.ons <- brms::brm(
  DV ~ voicing +
  (1 + voicing | speaker) +
  (1 + voicing | word),
  data = subdat,
  family = lognormal(),
  prior = c(prior(normal(0, 3), class = Intercept),
            prior(normal(0, 1), class = b, coef = voicingvoiceless),
            prior(cauchy(0, 0.1), class = sd),
            prior(cauchy(0, 0.1), class = sigma),
            prior(lkj(2), class = cor)),
  seed = my.seed,
  iter = 4000,
  warmup = 2000,
  chains = 4,
  cores = core.num,
  control = list(adapt_delta = 0.99,
                 max_treedepth = 20),
  file = "/./rtMRI-velum/models/stiff_ons",
)
```
```r
save_all_pars = TRUE
}
stiff.ons

## Family: lognormal
## Links: mu = identity; sigma = identity
## Formula: DV ~ voicing + (1 + voicing | speaker) + (1 + voicing | word)
## Data: subdat (Number of observations: 1365)
## Samples: 4 chains, each with iter = 4000; warmup = 2000; thin = 1;
## total post-warmup samples = 8000
##
## Group-Level Effects:
## ~speaker (Number of levels: 35)
##             Estimate   Est.Error  l-95% CI  u-95% CI   Rhat  Bulk_ESS  Tail_ESS
## sd(Intercept)        0.14       0.02     0.10    0.19    1.00    3426     5207
## sd(voicingvoiceless)  0.08       0.02     0.03    0.12    1.00    1563     2123
## cor(Intercept,voicingvoiceless) 0.23       0.28   -0.29    0.78    1.00    2706     2951
##
## ~word (Number of levels: 30)
##             Estimate   Est.Error  l-95% CI  u-95% CI   Rhat  Bulk_ESS  Tail_ESS
## sd(Intercept)        0.09       0.02     0.06    0.13    1.00    3426     5207
## sd(voicingvoiceless)  0.02       0.02     0.00    0.06    1.00    1563     2123
## cor(Intercept,voicingvoiceless) 0.06       0.43   -0.78    0.82    1.00    2706     2951
##
## Population-Level Effects:
##                   Estimate   Est.Error  l-95% CI  u-95% CI   Rhat  Bulk_ESS  Tail_ESS
## Intercept         2.60       0.03      2.53    2.66     1.00    2241     3866
## voicingvoiceless  0.10       0.02      0.05    0.15     1.00    2506     3897
##
## Family Specific Parameters:
##                   Estimate   Est.Error  l-95% CI  u-95% CI   Rhat  Bulk_ESS  Tail_ESS
## sigma             0.25       0.01      0.23    0.27     1.00    8951     6078
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

# reduced/null model
stiff.ons_null <- brms::brm(
  DV ~
    (1 + voicing | speaker) +
    (1 + voicing | word),
  data = subdat,
  family = lognormal(),
  prior = c(prior(normal(0, 3), class = Intercept),
            prior(cauchy(0, 0.1), class = sd),
```
prior(cauchy(0, 0.1), class = sigma),
prior(lkj(2), class = cor)),
seed = my.seed,
iter = 4000,
warmup = 2000,
chains = 4,
cores = core.num,
control = list(adapt_delta = 0.99,
 max_treedepth = 20),
file = "./rtMRI-velum/models/stiff_ons_null",
save_all_pars = TRUE)

calculate the Bayes factor of the difference between the full and null models
brms::bayes_factor(stiff.ons, stiff.ons_null)

Iteration: 1
Iteration: 2
Iteration: 3
Iteration: 4
Iteration: 5
Iteration: 6
Iteration: 7
Iteration: 1
Iteration: 2
Iteration: 3
Iteration: 4
Iteration: 5
Iteration: 6
Iteration: 7
Iteration: 8
Iteration: 9
Iteration: 10

Estimated Bayes factor in favor of stiff.ons over stiff.ons_null: 42.67598

calculate the marginal posteriors of the full model
stiff.ons_post <- brms::posterior_samples(stiff.ons, pars="b_") %>%
dplyr::mutate(
 nd = exp(b_Intercept),
 nt = exp(b_Intercept + b_voicingvoiceless)
) %>%
dplyr::select(nd, nt) %>%
tidyr::gather(context, DV)

7.1 Checks

pp_check(stiff.ons, nsamples = 50) + theme_minimal()
stiff.ons_fixed <- fixef(stiff.ons) %>% as_tibble(rownames = "term")

stiff.ons_fixed %>%
 mutate(
 theta = c(0, 0),
 sigma_prior = c(3, 1),
 # it's called here std.error but is the standard deviation
 z = abs((Estimate - theta) / Est.Error),
 s = 1 - (Est.Error^2 / sigma_prior^2)
) %>%
 ggplot(aes(s, z, label = term)) +
 geom_point() +
 geom_label(nudge_x = -0.1, size = 2, alpha = 0.5) +
 xlim(0, 1) + ylim(0, 250) +
 theme_minimal()
8 Gesture offset stiffness

```r
# create the dependent variable
subdat$DV <- subdat$stiff.off

# full model
stiff.off <- brms::brm(
  DV ~ voicing +
  (1 + voicing | speaker) +
  (1 + voicing | word),
  data = subdat,
  family = lognormal(),
  prior = c(prior(normal(0, 3), class = Intercept),
            prior(normal(0, 1), class = b, coef = voicingvoiceless),
            prior(cauchy(0, 0.1), class = sd),
            prior(cauchy(0, 0.1), class = sigma),
            prior(lkj(2), class = cor)),
  seed = my.seed,
  iter = 4000,
  warmup = 2000,
  chains = 4,
  cores = core.num,
  control = list(adapt_delta = 0.99,
                 max_treedepth = 20),
  file = "./rtMRI-velum/models/stiff_off",
)
## Family: lognormal
## Links: mu = identity; sigma = identity
## Formula: DV ~ voicing + (1 + voicing | speaker) + (1 + voicing | word)
## Data: subdat (Number of observations: 1365)
## Samples: 4 chains, each with iter = 4000; warmup = 2000; thin = 1;
## total post-warmup samples = 8000
##
## Group-Level Effects:
## ~speaker (Number of levels: 35)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.13 0.02 0.10 0.18 1.00 2791 4539
## sd(voicingvoiceless) 0.11 0.02 0.07 0.16 1.00 1883 3827
## cor(Intercept,voicingvoiceless) -0.42 0.18 -0.72 -0.02 1.00 2403 4139
##
## ~word (Number of levels: 30)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.05 0.02 0.02 0.08 1.00 2676 2385
## sd(voicingvoiceless) 0.04 0.02 0.00 0.08 1.00 1003 2259
## cor(Intercept,voicingvoiceless) -0.15 0.40 -0.79 0.70 1.00 3141 4584
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 2.64 0.03 2.59 2.70 1.00 2501 4241
## voicingvoiceless 0.14 0.03 0.09 0.20 1.00 2854 4454
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.24 0.00 0.23 0.25 1.00 9522 6161
##
## Samples were drawn using sampling (NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

# reduced/null model
stiff_off_null <- brms::brm(
  DV ~
    (1 + voicing | speaker) +
    (1 + voicing | word),
  data = subdat,
  family = lognormal(),
  prior = c(prior(normal(0, 3), class = Intercept),
           prior(cauchy(0, 0.1), class = sd),
  save_all_pars = TRUE)
)

stiff.off
prior(cauchy(0, 0.1), class = sigma),
prior(lkj(2), class = cor)),
seed = my.seed,
iter = 6000,
warmup = 3000,
chains = 4,
cores = core.num,
control = list(adapt_delta = 0.99,
               max_treedepth = 20),
file = "/rtMRI-velum/models/stiff_off_null",
save_all_pars = TRUE)

# calculate the Bayes factor of the difference between the full and null models
brms::bayes_factor(stiff.off, stiff.off_null)

## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9

## Estimated Bayes factor in favor of stiff.off over stiff.off_null: 1851.88558

# calculate the marginal posteriors of the full model
stiff.off_post <- brms::posterior_samples(stiff.off, pars="b_") %>%
dplyr::mutate(
    nd = exp(b_Intercept),
    nt = exp(b_Intercept) * exp(b_voicingvoiceless)
) %>%
dplyr::select(nd, nt) %>%
tidyr::gather(context, DV)

8.1 Checks

pp_check(stiff.off, nsamples = 50) + theme_minimal()
stiff.off_fixed <- fixef(stiff.off) %>% as_tibble(rownames = "term")

stiff.off_fixed %>%
  mutate(
    theta = c(0, 0),
    sigma_prior = c(3, 1),
    # it's called here std.error but is the standard deviation
    z = abs((Estimate - theta) / Est.Error),
    s = 1 - (Est.Error^2 / sigma_prior^2)
  ) %>%
  ggplot(aes(s, z, label = term)) +
  geom_point() +
  geom_label(nudge_x = -0.1, size = 2, alpha = 0.5) +
  xlim(0, 1) + ylim(0, 250) +
  theme_minimal()
9 Kurtosis

```r
create the dependent variable
subdat$DV <- subdat$kurtosis

full model
kurt <- brms::brm(
 DV ~ voicing +
 (1 + voicing | speaker) +
 (1 + voicing | word),
 data = subdat,
 family = lognormal(),
 prior = c(
 prior(normal(0, 3), class = Intercept),
 prior(normal(0, 3), class = b, coef = voicingvoiceless),
 prior(cauchy(0, 1), class = sd),
 prior(cauchy(0, 1), class = sigma),
 prior(lkj(2), class = cor)),
 seed = my.seed,
 iter = 4000,
 warmup = 2000,
 chains = 4,
 cores = core.num,
 control = list(adapt_delta = 0.99,
 max_treedepth = 20),
 file = "/rtMRI-velum/models/kurtosis"
)```
save_all_pars = TRUE
)

kurt

Family: lognormal
Links: mu = identity; sigma = identity
Formula: DV ~ voicing + (1 + voicing | speaker) + (1 + voicing | word)
Data: subdat (Number of observations: 1365)
Samples: 4 chains, each with iter = 4000; warmup = 2000; thin = 1;
total post-warmup samples = 8000
##
Group-Level Effects:
~speaker (Number of levels: 35)
##
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 0.07 0.01 0.04 0.09 1.00 3293 4759
sd(voicingvoiceless) 0.02 0.02 0.00 0.06 1.00 1573 3551
cor(Intercept,voicingvoiceless) -0.11 0.42 -0.81 0.74 1.00 6016 5689
##
~word (Number of levels: 30)
##
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 0.01 0.01 0.00 0.03 1.00 4187 3691
sd(voicingvoiceless) 0.02 0.01 0.00 0.04 1.00 2245 3083
cor(Intercept,voicingvoiceless) -0.10 0.45 -0.86 0.77 1.00 4650 5020
##
Population-Level Effects:
##
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept 1.09 0.02 1.06 1.13 1.00 4024 5737
voicingvoiceless 0.02 0.01 -0.01 0.04 1.00 9237 5809
##
Family Specific Parameters:
##
sigma 0.21 0.00 0.20 0.22 1.00 11547 5630
##
Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
#
reduced/null model
kurt_null <- brms::brm(
 DV ~
 (1 + voicing | speaker) +
 (1 + voicing | word),
 data = subdat,
 family = lognormal(),
 prior = c(prior(normal(0, 3), class = Intercept),
 prior(cauchy(0, 1), class = sd),
 prior(normal(0, 3), class = sigma)),
prior(cauchy(0, 1), class = sigma),
prior(lkj(2), class = cor)),
seed = my.seed,
iter = 4000,
warmup = 2000,
chains = 4,
cores = core.num,
control = list(adapt_delta = 0.99,
 max_treedepth = 20),
file = "/rtMRI-velum/models/kurtosis_null",
save_all_pars = TRUE)

calculate the Bayes factor of the difference between the full and null models
brms::bayes_factor(kurt, kurt_null)

Iteration: 1
Iteration: 2
Iteration: 3
Iteration: 4
Iteration: 5
Iteration: 6
Iteration: 7
Iteration: 1
Iteration: 2
Iteration: 3
Iteration: 4
Iteration: 5
Iteration: 6
Iteration: 7

Estimated Bayes factor in favor of kurt over kurt_null: 0.00866

calculate the marginal posteriors of the full model
kurt_post <- brms::posterior_samples(kurt, pars="b_") %>%
 dplyr::mutate(
 nd = exp(b_Intercept),
 nt = exp(b_Intercept + b_voicingvoiceless)
) %>%
 dplyr::select(nd, nt) %>%
 tidyr::gather(context, DV)

9.1 Checks

pp_check(kurt, nsamples = 50) + theme_minimal()
kurt_fixed <- fixef(kurt) %>% as_tibble(rownames = "term")

kurt_fixed %>%
 mutate(
 theta = c(0, 0),
 sigma_prior = c(3, 1),
 # it's called here std.error but is the standard deviation
 z = abs((Estimate - theta) / Est.Error),
 s = 1 - (Est.Error^2 / sigma_prior^2)
) %>%
 ggplot(aes(s, z, label = term)) +
 geom_point() +
 geom_label(nudge_x = -0.1, size = 2, alpha = 0.5) +
 xlim(0, 1) + ylim(0, 250) +
 theme_minimal()
10 Crest factor

create the dependent variable
subdat$DV <- subdat$crest.fact

full model
crest.fact <- brms::brm(
 DV ~ voicing +
 (1 + voicing | speaker) +
 (1 + voicing | word),
 data = subdat,
 family = lognormal(),
 prior = c(prior(normal(0, 3), class = Intercept),
 prior(normal(0, 3), class = b, coef = voicingvoiceless),
 prior(cauchy(0, 1), class = sd),
 prior(cauchy(0, 1), class = sigma),
 prior(lkj(2), class = cor)),
 seed = my.seed,
 iter = 4000,
 warmup = 2000,
 chains = 4,
 cores = core.num,
 control = list(adapt_delta = 0.99,
 max_treedepth = 20),
 file = "./rtMRI-velum/models/crest_factor",
save_all_pars = TRUE
}

crest.fact

Family: lognormal
Links: mu = identity; sigma = identity
Formula: DV ~ voicing + (1 + voicing | speaker) + (1 + voicing | word)
Data: subdat (Number of observations: 1365)
Samples: 4 chains, each with iter = 4000; warmup = 2000; thin = 1;
total post-warmup samples = 8000
##
Group-Level Effects:
~speaker (Number of levels: 35)
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 0.01 0.00 0.01 0.02 1.00 3049 2851
sd(voicingvoiceless) 0.02 0.01 0.00 0.03 1.00 1062 1068
cor(Intercept,voicingvoiceless) 0.19 0.35 -0.46 0.83 1.00 2071 2999
##
~word (Number of levels: 30)
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 0.01 0.00 0.00 0.01 1.00 2098 2992
sd(voicingvoiceless) 0.01 0.00 0.00 0.02 1.00 1135 1868
cor(Intercept,voicingvoiceless) -0.14 0.45 -0.86 0.74 1.00 2218 3504
##
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept 0.61 0.00 0.60 0.62 1.00 5853 6461
voicingvoiceless 0.01 0.01 -0.00 0.02 1.00 5979 6372
##
Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sigma 0.06 0.00 0.06 0.07 1.00 10135 6396
##
Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

reduced/null model
crest.fact_null <- brms::brm(
 DV ~
 (1 + voicing | speaker) +
 (1 + voicing | word),
 data = subdat,
 family = lognormal(),
 prior = c(prior(normal(0, 3), class = Intercept),
 prior(cauchy(0, 1), class = sd),
 prior(normal(0, 3), class = sd),
 prior(cauchy(0, 1), class = sd),
 prior(normal(0, 3), class = sd),
 prior(cauchy(0, 1), class = sd))
prior(cauchy(0, 1), class = sigma),
prior(lkj(2), class = cor),
seed = my.seed,
iter = 4000,
warmup = 2000,
chains = 4,
cores = core.num,
control = list(adapt_delta = 0.99,
max_treedepth = 20),
file = "/rtMRI-velum/models/crest_factor_null",
save_all_pars = TRUE)

calculate the Bayes factor of the difference between the full and null models
brms::bayes_factor(crest.fact, crest.fact_null)

Iteration: 1
Iteration: 2
Iteration: 3
Iteration: 4
Iteration: 5
Iteration: 6
Iteration: 7
Iteration: 8
Iteration: 1
Iteration: 2
Iteration: 3
Iteration: 4
Iteration: 5
Iteration: 6
Iteration: 7
Iteration: 8
Iteration: 9
Iteration: 10
Iteration: 11

Estimated Bayes factor in favor of crest.fact over crest.fact_null: 0.00593

calculate the marginal posteriors of the full model
crest.fact_post <- brms::posterior_samples(crest.fact, pars="b_") %>%
dplyr::mutate(
 nd = exp(b_Intercept),
 nt = exp(b_Intercept + b_voicingvoiceless)
) %>%
dplyr::select(nd, nt) %>%
tidyr::gather(context, DV)

10.1 Checks

pp_check(crest.fact, nsamples = 50) + theme_minimal()
```r
crest.fact_fixed <- fixef(crest.fact) %>% as_tibble(rownames = "term")

crest.fact_fixed %>%
  mutate(
    theta = c(0, 0),
    sigma_prior = c(3, 1),
    # it's called here std.error but is the standard deviation
    z = abs((Estimate - theta) / Est.Error),
    s = 1 - (Est.Error^-2 / sigma_prior^-2)
  ) %>%
  ggplot(aes(s, z, label = term)) +
  geom_point() +
  geom_label(nudge_x = -0.1, size = 2, alpha = 0.5) +
  xlim(0, 1) + ylim(0, 250) +
  theme_minimal()
```
11 Integral of velum movement in vowel (area under the curve)

```r
# create the dependent variable
subdat$DV <- subdat$vowel.integ

# full model
integ <- brms::brm(
  DV ~ voicing +
    (1 + voicing | speaker) +
    (1 + voicing | word),
  data = subdat,
  family = lognormal(),
  prior = c(prior(normal(0, 5), class = Intercept),
           prior(normal(0, 5), class = b, coef = voicingvoiceless),
           prior(cauchy(0, 1), class = sd),
           prior(cauchy(0, 1), class = sigma),
           prior(lkj(2), class = cor)),
  seed = my.seed,
  iter = 6000,
  warmup = 3000,
  chains = 4,
  cores = core.num,
  control = list(adapt_delta = 0.99,
                 max_treedepth = 20),
  file = "./rtMRI-velum/models/vowel_integ",
)```
save_all_pars = TRUE
}

integ

## Family: lognormal
## Links: mu = identity; sigma = identity
## Formula: DV ~ voicing + (1 + voicing | speaker) + (1 + voicing | word)
## Data: subdat (Number of observations: 1365)
## Samples: 4 chains, each with iter = 6000; warmup = 3000; thin = 1;
## total post-warmup samples = 12000
##
## Group-Level Effects:
## ~speaker (Number of levels: 35)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.24 0.03 0.19 0.32 1.00 2339 5156
## sd(voicingvoiceless) 0.04 0.03 0.00 0.10 1.00 1658 4637
## cor(Intercept,voicingvoiceless) -0.19 0.36 -0.78 0.60 1.00 12192 6739
##
## ~word (Number of levels: 30)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.39 0.06 0.30 0.52 1.00 2527 4516
## sd(voicingvoiceless) 0.03 0.02 0.00 0.09 1.00 4188 5185
## cor(Intercept,voicingvoiceless) 0.09 0.44 -0.75 0.84 1.00 16365 8396
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 3.73 0.09 3.56 3.89 1.00 1249 2419
## voicingvoiceless 0.09 0.03 0.03 0.14 1.00 12328 8717
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.29 0.01 0.28 0.30 1.00 20011 7987
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

# reduced/null model
integ_null <- brms::brm(
  DV ~
  (1 + voicing | speaker) +
  (1 + voicing | word),
  data = subdat,
  family = lognormal(),
  prior = c(prior(normal(0, 5), class = Intercept),
            prior(cauchy(0, 1), class = sd),
            prior(normal(0, 1000), class = sigma))
)
prior(cauchy(0, 1), class = sigma),
prior(lkj(2), class = cor)),

seed = my.seed,
iter = 6000,
warmup = 3000,
chains = 4,
cores = core.num,
control = list(adapt_delta = 0.99,
               max_treedepth = 20),
file = "./rtMRI-velum/models/vowel_integ_null",
save_all_pars = TRUE)

# calculate the Bayes factor of the difference between the full and null models
brms::bayes_factor(integ, integ_null)

## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8

## Estimated Bayes factor in favor of integ over integ_null: 0.60027

# calculate the marginal posteriors of the full model
integ_post <- brms::posterior_samples(integ, pars="b_") %>%
dplyr::mutate(
    nd = exp(b_Intercept),
    nt = exp(b_Intercept + b_voicingvoiceless)
) %>%
dplyr::select(nd, nt) %>%
tidyr::gather(context, DV)

11.1 Checks

pp_check(integ, nsamples = 50) + theme_minimal()
integ_fixed <- fixef(integ) %>% as_tibble(rownames = "term")

integ_fixed %>%
  mutate(
    theta = c(0, 0),
    sigma_prior = c(3, 1),
    # it's called here std.error but is the standard deviation
    z = abs((Estimate - theta) / Est.Error),
    s = 1 - (Est.Error^2 / sigma_prior^2)
  ) %>%
  ggplot(aes(s, z, label = term)) +
  geom_point() +
  geom_label(nudge_x = -0.1, size = 2, alpha = 0.5) +
  xlim(0, 1) + ylim(0, 250) +
  theme_minimal()
12 Plotting posteriors

# colors to be used for plotting (suitable for B/W printing)
my.cols <- c("#2c7fb8","#7fcdbb")

12.1 Figure 5: duration, onset, peak (timing), offset

# gather posteriors
fig5_post <- bind_rows(
  dur_post %>%
    rename(`duration` = DV) %>%
    pivot_longer(`duration`, names_to = "outcome", values_to = "estimate"),
  onset_post %>%
    rename(`onset` = DV) %>%
    pivot_longer(`onset`, names_to = "outcome", values_to = "estimate"),
  gest.max_post %>%
    rename(`peak` = DV) %>%
    pivot_longer(`peak`, names_to = "outcome", values_to = "estimate"),
  offset_post %>%
    rename(`offset` = DV) %>%
    pivot_longer(`offset`, names_to = "outcome", values_to = "estimate")
) %>%
mutate(outcome = factor(outcome, levels = c("offset","peak","onset","duration")))
# flip sign of velum gesture onset posteriors for interpretability
fig5_post$estimate[fig5_post$outcome=='onset'] <- -fig5_post$estimate[fig5_post$outcome=='onset']

# make separate plots
p1 <- fig5_post %>%
  filter(outcome == "duration") %>%
  ggplot(aes(estimate, outcome, group = context, fill = context)) +
  geom_halfeyeh(slab_color="black", slab_alpha=0.5) +
  scale_x_continuous(breaks=seq(0,500,5)) +
  coord_cartesian(ylim = c(1.3, 1.5), xlim = c(250,327)) +
  scale_fill_manual(values = my.cols) +
  labs(x = "Duration (ms)", y = element_blank()) +
  theme(legend.position = "none",
        axis.text=element_text(size=12),
        axis.title=element_text(size=13))

## Warning: 'geom_halfeyeh' is deprecated.
## Use 'stat_halfeye' instead.
## See help("Deprecated") and help("tidybayes-deprecated").

p2 <- fig5_post %>%
  filter(outcome %in% c("onset","peak","offset")) %>%
  ggplot(aes(estimate, outcome, group = context, fill = context)) +
  geom_halfeyeh(slab_color="black", slab_alpha=0.5) +
  geom_vline(xintercept = 0, lty=2) +
  scale_x_continuous(breaks=seq(-200,300,20)) +
  coord_cartesian(xlim = c(-125,205)) +
  scale_fill_manual(values=my.cols) +
  labs(x = "Time (ms) relative to acoustic vowel offset",
       y = element_blank(), fill = "Context") +
  theme(axis.text=element_text(size=12),axis.title=element_text(size=13),
        panel.grid.major.y=element_blank())

## Warning: 'geom_halfeyeh' is deprecated.
## Use 'stat_halfeye' instead.
## See help("Deprecated") and help("tidybayes-deprecated").

# save coposite plot
pdf(file="./rtMRI-velum/plots/time_plots.pdf",width=9.5,height=5,
    onefile=T,pointsize=14)
(p1 + p2) + patchwork::plot_layout(ncol = 1, guides = "collect") +
  theme(legend.position = "right")
dev.off()

## pdf
## 2

12.2 Figure 6: peak (magnitude)

# gather posteriors
fig6_post <- bind_rows(
  gest.max.mag_post %>%
  rename(`peak \nmagnitude` = DV) %>%
  pivot_longer(`peak \nmagnitude`, names_to = "outcome",
               names_to = "context")
)
values_to = "estimate"
)

# make plot
p1 <- fig6_post %>%
  filter(outcome == "peak magnitude") %>%
ggplot(aes(estimate, outcome, group = context, fill = context)) +
geom_halfeyeh(slab_color="black", slab_alpha=0.5) +
scale_x_continuous(breaks=seq(0,1,0.025)) +
coord_cartesian(xlim = c(0.58,0.775), ylim = c(1.4,1.4)) +
scale_fill_manual(values=my.cols) +
labs(x = "Velum opening magnitude (speaker-scaled)", y = element_blank(),
  fill = "Context") + theme_bw() +
theme(axis.text=element_text(size=12),axis.title=element_text(size=13))

## Warning: 'geom_halfeyeh' is deprecated.
## Use 'stat_halfeye' instead.
## See help("Deprecated") and help("tidybayes-deprecated").

# save plot
pdf(file="./rtMRI-velum/plots/magnitude_plot.pdf",width=9,height=3,onefile=T,
  pointsize=14)
p1
dev.off()

## pdf
## 2

12.3 Figure 7: opening stiffness, closing stiffness

# gather posteriors
fig7_post <- bind_rows(
  stiff.ons_post %>% rename("opening\nstiffness" = DV) %>%
  pivot_longer("opening\nstiffness", names_to = "outcome", values_to = "estimate"),
  stiff.off_post %>% rename("closing \nstiffness" = DV) %>%
  pivot_longer("closing \nstiffness", names_to = "outcome", values_to = "estimate")
)

# make composite plot on same scale
p1 <- fig7_post %>%
  filter(outcome %in% c("opening\nstiffness","closing \nstiffness")) %>%
ggplot(aes(estimate, outcome, group = context, fill = context)) +
geom_halfeyeh(slab_color="black", slab_alpha=0.5) +
scale_x_continuous(breaks=seq(0,30,0.5)) +
coord_cartesian(xlim = c(12,17.5), ylim = c(1.4,2.3)) +
scale_fill_manual(values=my.cols) +
labs(x = "Stiffness", y = element_blank(), fill = "Context") + theme_bw() +
theme(axis.text=element_text(size=12),axis.title=element_text(size=13),
  panel.grid.major.y=element_blank())

## Warning: 'geom_halfeyeh' is deprecated.
## Use 'stat_halfeye' instead.
## See help("Deprecated") and help("tidybayes-deprecated").
# save plot
pdf(file="./rtMRI-velum/plots/stiffness_plots.pdf",width=9,height=4,onefile=T, pointsize=14)

p1
dev.off()

## pdf
## 2

12.4 Figure 9: kurtosis, crest factor

# gather posteriors
fig9_post <- bind_rows(
  kurt_post %>% rename(`kurtosis` = DV) %>%
    pivot_longer(`kurtosis`, names_to = "outcome", values_to = "estimate"),
  crest_fact_post %>% rename(`crest\nfactor` = DV) %>%
    pivot_longer(`crest\nfactor`, names_to = "outcome", values_to = "estimate"))

# make separate plots
p1 <- fig9_post %>%
  filter(outcome == "kurtosis") %>%
  ggplot(aes(estimate, outcome, group = context, fill = context)) +
  geom_halfeyeh(slab_color="black", slab_alpha=0.5) +
  scale_x_continuous(breaks=seq(0,5,0.05)) +
  coord_cartesian(xlim = c(2.81,3.18), ylim = c(1.4,1.4)) +
  scale_fill_manual(values=my.cols) +
  labs(x = "Kurtosis", y = element_blank(), fill = "Context") +
  theme_bw() +
  theme(legend.position = "none", axis.text=element_text(size=12),
        axis.title=element_text(size=13),panel.grid.major.y=element_blank())

## Warning: 'geom_halfeyeh' is deprecated.
## Use 'stat_halfeye' instead.
## See help("Deprecated") and help("tidybayes-deprecated").

p2 <- fig9_post %>%
  filter(outcome == "crest\nfactor") %>%
  ggplot(aes(estimate, outcome, group = context, fill = context)) +
  geom_halfeyeh(slab_color="black", slab_alpha=0.5) +
  scale_x_continuous(breaks=seq(0,3,0.01)) +
  coord_cartesian(xlim = c(1.805,1.885), ylim = c(1.4,1.4)) +
  scale_fill_manual(values=my.cols) +
  labs(x = "Crest factor (ratio of peak to average displacement)",
       y = element_blank(), fill = "Context") +
  theme_bw() +
  theme(legend.position = "none", axis.text=element_text(size=12),
        axis.title=element_text(size=13), panel.grid.major.y=element_blank())

## Warning: 'geom_halfeyeh' is deprecated.
## Use 'stat_halfeye' instead.
## See help("Deprecated") and help("tidybayes-deprecated").

# save composite plot
pdf(file="./rtMRI-velum/plots/peakedness_plots.pdf",width=9,height=5,
onefile=T, pointsize=14)
(p1 + p2) + patchwork::plot_layout(ncol = 1, guides = "collect") +
  theme(legend.position = "right")
dev.off()

## pdf
## 2

12.5 Figure 10: velum displacement integral

# gather posteriors
fig10_post <- bind_rows(
  integ_post %>% rename(`gesture\nintegral` = DV) %>%
  pivot_longer(`gesture\nintegral`, names_to = "outcome",
               values_to = "estimate")
)

# make plot
p1 <- fig10_post %>%
  filter(outcome == "gesture\nintegral") %>%
  ggplot(aes(estimate, outcome, group = context, fill = context)) +
  geom_halfeyeh(slab_color="black", slab_alpha=0.5) +
  scale_x_continuous(breaks=seq(0,100,2)) +
  coord_cartesian(xlim = c(31,64.5), ylim = c(1.4,1.4)) +
  scale_fill_manual(values=my.cols) +
  labs(x = "Velum displacement integral: time (ms) X magnitude (normalized)",
       y = element_blank(), fill = "Context") +
  theme_bw() +
  theme(axis.text=element_text(size=12),axis.title=element_text(size=13))

## Warning: 'geom_halfeyeh' is deprecated.
## Use 'stat_halfeye' instead.
## See help("Deprecated") and help("tidybayes-deprecated").

# save plot
pdf(file="./rtMRI-velum/plots/integral_plot.pdf",width=9,height=3,onefile=T,
     pointsize=14)
p1
  dev.off()

## pdf
## 2

References


