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To students of causality, the writings of William Cochran provide an excellent and in-
triguing vantage point for studying how statistics, lacking the necessary mathematical tools,
managed nevertheless to cope with increasing demands for policy evaluation from obser-
vational studies. Cochran met this challenge in the years 1955-1980, when statistics was
preparing for a profound, albeit tortuous transition from a science of data, to a science
of data generating processes. The former, governed by Fisher’s dictum (Fisher, 1922) “the
object of statistical methods is the reduction of data” was served well by the traditional lan-
guage of probability theory. The latter, on the other hand, seeking causal effects and policy
recommendations, required an extension of probability theory to facilitate mathematical
representations of generating processes.

No such representation was allowed into respectable statistical circles in the 1950-60s,
when Cochran started looking into the social effects of public housing in Baltimore. While
data showed improvement in health and well-being of families that moved from slums to
public housing, it soon became obvious that the estimated improvement was strongly biased;
Cochran reasoned that in order to become eligible for public housing the parent of a family
may have to possess both initiative and some determination in dealing with the bureaucracy,
thus making their families more likely to obtain better healthcare than non-eligible families.1

This led him to suggest “adjustment for covariates” for the explicit purpose of reducing this
causal effect bias. While there were others before Cochran who applied adjustment for
various purposes, Cochran is credited for introducing this technique to statistics (Salsburg,
2002) primarily because he popularized the method and taxonomized it by purpose of usage.

Unlike most of his contemporaries, who considered cause-effect relationships “ill-defined”
outside the confines of Fisherian experiments, Cochran had no qualm admitting that he
sought such relationships in observational studies. He in fact went as far as defining the
objective of an observational study: “to elucidate causal-and-effect relationships” in situ-
ations where controlled experiments are infeasible (Cochran, 1965). Indeed, in the paper
before us, the word “cause” is used fairly freely, and other causal terms such as “effect,”
“influence,” and “explanation” are almost as frequent as “regression” or “variance.” Still,
Cochran was well aware that he was dealing with unchartered extra-statistical territory and
cautioned us:

“Claim of proof of cause and effect must carry with it an explanation of the
mechanism by which this effect is produced.”

1. Narrated in Cochran (1983, p. 24)
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Today, when an analyst declares that a claim depends on “the mechanism by which
an effect is produced” we expect the analyst to specify what features of the mechanism
would make the claim valid. For example, when Rosenbaum and Rubin (1983) claimed that
propensity score methods may lead to unbiased estimates of causal effects, they conditioned
the claim on a counterfactual assumption named “strong ignorability.” Such identifying
assumptions, though cognitively formidable, provided a formal instrument for proving that
some adjustments can yield unbiased estimates. Similarly, when a structural analyst makes
the claim that an “indirect effect” is estimable from observational studies, the claim must
follow assumptions about the structure of the underlying graph which, again, assures us of
zero-bias estimates (see Pearl, 2014b).

Things were quite different in Cochran’s era; an appeal to “a mechanism,” like an ap-
peal to “subject matter information” stood literally for a confession of helplessness, since
“mechanisms” and causal relationships had no representation in statistics. Structural equa-
tion models (SEM), the language used by economists to represent mechanisms, were deeply
mistrusted by statisticians, who could not bring themselves to distinguish structural from
regression models (Guttman, 1977; Freedman, 1987; Cliff, 1983; Wermuth, 1992; Holland,
1995).2 Counterfactuals, on the other hand, were still in the embryonic state that Neyman
left them in – symbols with no model, no formal connection to realizable variables, and no
inferential machinery with which to support or refute claims.3 Fisher’s celebrated advice:
“make your theories elaborate” was no help in this transitional era of pre-formal causation;
there is no way to elaborate on a theory that cannot be represented in some language.

It is not surprising, therefore, that Cochran’s conclusions are quite gloomy:

“It is well known that evidence of a relationship between x and y is no proof
that x causes y. The scientific philosophers to whom we might turn for expert
guidance on this tricky issue are a disappointment. Almost unanimously and
with evident delight they throw the idea of cause and effect overboard. As the
statistical study of relationships has become more sophisticated, the statistician
might admit, however, that his point of view is not very different, even if he
wishes to retain the terms cause and effect.”

It is likewise not surprising that in the present article, Cochran does not offer readers
any advice on which covariates are likely to reduce bias and which would amplify bias. Any
such advice, as we know today, requires a picture of reality, which Cochran understood to
be both needed and lacking at his time.4 On the positive side, though, he did have the
vision to anticipate the emergence of a new type of research paradigm within statistics, a
paradigm centered on mechanisms:

“A claim of proof of cause and effect must carry with it an explanation of
the mechanism by which the effect is produced. Except in cases where the

2. This mistrust persists to some degree even in our century, see Berk (2004) or Sobel (2008).
3. These had to wait for Rubin (1974), Robins (1986), and the structural semantics of Balke and Pearl

(1994).
4. To the best of my knowledge, the only adjustment-related advice in the entire statistics literature prior

to 1980 was Cox’s warning that “the concomitant observations be quite unaffected by the treatments”
(Cox, 1958, p. 48) ; it was the first defiance of an unwritten taboo against the use of data-generating
models.
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mechanism is obvious and undisputed, this may require a completely different
type of research from the observational study that is being summarized.”

I believe the type of research we see flourishing today, based on a symbiosis between the
graphical and counterfactual languages (Morgan and Winship, 2014; Vanderweele, 2015;
Bareinboim and Pearl, 2015) would perfectly meet Cochran’s vision of a “completely dif-
ferent type of research.” This research differs fundamentally from the type of research con-
ducted in Cochran’s generation. First, it commences with a commitment to understanding
what reality must be like for a statistical routine to succeed and, second, it represents
reality in terms of data-generating models (read: “mechanisms”), rather than probability
distributions.

Encoded as nonparametric structural equations, these models have led to a fruitful sym-
biosis between graphs and counterfactuals and have unified the potential outcome frame-
work of Neyman, Rubin, and Robins with the econometric tradition of Haavelmo, Marschak,
and Heckman. In this symbiosis, counterfactuals (potential outcomes) emerge as natural
byproducts of structural equations and serve to formally articulate research questions of
interest. Graphical models, on the other hand, are used to encode scientific assumptions
in a qualitative (i.e., nonparametric) and transparent language and to identify the logical
ramifications of these assumptions, in particular their testable implications.5

A summary of results emerging from this symbiotic methodology is given in Pearl (2014a)
and includes complete solutions6 to several long-standing problem areas, ranging from policy
evaluation (Tian and Shpitser, 2010) and selection bias (Bareinboim, Tian and Pearl, 2014)
to external validity (Bareinboim and Pearl, 2015; Pearl and Bareinboim, 2014) and missing
data (Mohan, Pearl and Tian, 2014).

This development has not met with universal acceptance. Cox and Wermuth (2015), for
example, are still reluctant to endorse the tools that this symbiosis has spawned, questioning
in essence whether interventions can ever be mathematized.7 Others regard the symbiosis
as unscientific (Rubin, 2008) or less than helpful (Imbens and Rubin, 2015, p. 22) insisting
for example that investigators should handle ignorability judgments by unaided intuition.

I strongly believe, however, and I say it with a deep sense of responsibility, that future
explorations of observational studies will rise above these inertial barriers and take full
advantage of the tools that the graphical-counterfactual symbiosis now offers.
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