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Abstract

Purpose: Inhaled corticosteroids (ICS) are the first-line controller therapy for asthma.
The objective was to assess the impact of different ICS doses during pregnancy on birth
weight (BW) using generalized propensity scores (GPS).
Methods: A cohort of 7374 pregnancies from 6197 asthmatic women giving birth in Quebec
(Canada) in 1998-2008 was constructed. The average treatment effects (ATE) of ICS daily
doses (0, >0-125, >125-250, >250 µg/day) during pregnancy on BW were estimated using
multilevel GPS and a conventional multivariable approach. Additional analyses were done
to evaluate the robustness of the results.
Results: Using GPS, we found no significant associations between ICS doses and BW
(ATE for >0-125 vs 0 µg/day: 27.62 g, 95% confidence interval (CI): -8.68, 64.10; ATE for
>125-250 vs 0 µg/day: 17.07 g, 95% CI: -55.85, 92.16; ATE for >250 vs 0 µg/day: -37.83
g, 95% CI: -117.74, 41.53). Similar results were obtained using the multivariable approach.
Conclusions: While, in our primary analyses, no significant differences were found between
the BW of babies exposed to the higher ICS doses, as opposed to no use of ICS, our
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Maternal inhaled corticosteroids use and birth weight

sensitivity analyses, which adjusted for gestational age in the models, suggest the possibility
of a small detrimental effect of the higher ICS doses on BW.

Keywords: Asthma, average treatment effect, generalized propensity scores, inhaled
corticosteroids, mediator, pregnancy.

1. Introduction

The use of inhaled corticosteroids (ICS) by pregnant asthmatic women is generally regarded
as safe with respect to birth weight (BW) (Gregersen and Ulrik, 2013; British Thoracic
Society and Scottish Intercollegiate Guidelines Network, 2014). However, knowledge about
the potential differential effects of ICS-dose categories on BW is scarce, mainly relying on
three studies for which ICS doses taken during pregnancy were considered. Namazy et al.
(2004) reported no evidence of a significant linear trend in mean BW across quartiles of
ICS dose. Similarly, Bakhireva et al. (2005) found no evidence of a differential effect across
quartiles of ICS dose on mean BW. In particular, they showed no reduced BW for the
highest quartile of beclomethasone equivalent doses. More recently, Cossette et al. (2013)
found no association between the lowest ICS doses and low BW (i.e., BW <2500 g), where
the reference group was composed of babies born to asthmatic mothers unexposed to ICS.
A non-significant increasing trend in the prevalence of low BW was nonetheless observed for
ICS doses >125 µg/day (fluticasone-propionate equivalent), leaving doubts concerning the
safety of higher ICS doses (Cossette et al., 2013). Because ICS are the first-line treatment
for asthma during pregnancy (NAEPP expert panel report, 2005) and BW is one of the most
important factors that affect infant health and mortality (Wilcox, 2001), it is worthwhile to
further investigate this issue.

In the study of the relationship between ICS-dose categories and BW, it is a concern that
pregnant women receiving low-dose and high-dose ICS may not be intrinsically comparable.
For instance, high-dose users are likely to have more severe asthma than low-dose users,
and severe asthma may lead to worse outcomes by itself (Cossette et al., 2013). While
Cossette et al. (2013) adjusted for several covariates related to asthma severity and control
in their study of the association between ICS doses and low BW, the modeling assumptions
underlying the conventional multivariable approach they took to analyze the data might
have led to residual confounding by indication. Indeed, the conventional approach supposes
one’s ability to correctly model the outcome given exposure and confounders, which can
be difficult to achieve in practice (Brookhart et al., 2013). Alternatively, propensity score
approaches, relying on the specification of the treatment allocation mechanism, could have
been used.

One argument in favor of propensity score-based approaches is to better characterize
the treated and untreated subjects and identify those with similar characteristics (Austin,
2011a). Another interesting feature of propensity scores is that the adequacy of the treat-
ment model fitted to data can be determined by assessing the balance of the potential con-
founding covariates between the treatment groups after adjusting for the estimated propen-
sity scores (Shah et al., 2005; Imai and Ratkovic, 2014). Generalized propensity scores (GPS)
are an extension of standard propensity scores for multilevel or continuous treatments (Im-
bens, 2000; Hirano and Imbens, 2004). They possess the same attractive properties as
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standard propensity scores for bias reduction, but their implementation is recognized to be
more challenging (Spreeuwenberg et al., 2010).

Our study is a follow-up of the study by Cossette et al. (2013) and aims to evaluate
the safety of three ICS-dose categories during pregnancy with respect to BW using a large
cohort of asthmatic women who gave birth between 1998 and 2008 in Quebec, Canada. We
implemented a GPS approach for categorical treatments (herein referred to as a multilevel
GPS approach) to estimate the average treatment effects (ATE) associated with two low
ICS-dose categories and one moderate-to-high ICS-dose category. Estimates obtained with
GPS were also compared to those obtained from adjusted linear regression. Indeed, some
authors have recently called for exploring and reporting the sensitivity of the results to
changes in the statistical models (e.g., conventional versus propensity score approach for
effect estimation) (Brookhart et al., 2013; Guo and Fraser, 2014). Our study thus follows
this analytical strategy while providing additional guidelines as to how the GPS approach
can be implemented in practice. To our knowledge, our study is the first that utilizes GPS
for assessing the impact of asthma medication on perinatal outcomes. Moreover, our GPS
analyses are performed on clustered data, thus departing from standard implementations of
this technique.

2. Methods

2.1 Data source

Data on medication prescriptions filled in community pharmacies, outpatient medical vis-
its, emergency-department visits, medical procedures, and hospitalizations were retrieved
from two administrative databases in Quebec: the Régie de l’assurance maladie du Québec
(RAMQ) and the Maintenance et exploitation des données pour l’étude de la clientèle hos-
pitalière (MED-ECHO) databases (see Cossette et al. (2013) for additional information).

2.2 Study design

Our cohort was formed by applying the same inclusion and exclusion criteria as those used
by Cossette et al. (2013) to define their cohort. The inclusion criteria were: singleton de-
livery between 1998 and 2008; women aged ≤ 45 years at beginning of pregnancy, with ≥
1 diagnosis of asthma, ≥1 prescription for an asthma medication filled in the year before
or during pregnancy, and covered by the RAMQ drug-insurance plan for at least 1 year be-
fore and throughout pregnancy. Exclusion criteria were: use of theophylline, cromoglycate,
nedocromil, ketotifen, and long-acting beta2-agonist (LABA) use without ICS during preg-
nancy. To follow Cossette et al. (2013), we kept only the two most recent pregnancies if a
woman had several pregnancies during follow-up. To comply with the definition of stillbirth
(Breton et al., 2009), we also excluded two pregnancies resulting in dead newborn with BW
<500 g. Hence, our cohort comprises n=7374 pregnancies from 6197 asthmatic women.

2.3 Perinatal outcome

The perinatal outcome of interest is BW measured on a continuous scale (grams).
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2.4 Inhaled corticosteroid exposure during pregnancy

Average ICS daily dose (in fluticasone-propionate equivalent) was measured with an algo-
rithm based on prescription renewals that was used in prior studies (Martel et al., 2005;
Blais et al., 2007; Cossette et al., 2013). Treatment with ICS was defined in four categories:
no use, >0-125 µg/day (likely to represent sporadic use or very low doses), >125-250 µg/day
(low doses as recommended by the Global Initiative for Asthma (2016) guidelines), and >250
µg/day (moderate-to-high doses).

2.5 Potential confounding covariates

Our list of potential confounding covariates contains 27 variables (see first column of Table
A1 in Appendix A): 26 variables that were identified as risk factors for the perinatal outcomes
studied by Cossette et al. (2013) and baby’s sex, which is as well-known predictor of BW
(Kramer et al., 2001; Sheiner, 2007; Aibar et al., 2012). As opposed to Cossette et al.
(2013), cyanotic congenital heart disease was not considered in our analyses because of its
small prevalence within our cohort (25 pregnancies) and the empirical positivity problem
for ICS-dose category >125-250 µg/day (0 pregnancies).

2.6 Generalized propensity scores

We refer the reader to Appendix B for a theoretical and methodological review of multilevel
GPS; specific details concerning the implementation of GPS on our cohort are provided in
Section 2.7.1.

2.7 Statistical analyses

Basic statistics were first obtained to report on the characteristics of the pregnancies and
describe BW as a function of ICS-dose categories.

2.7.1 Primary analyses

We implemented a multilevel GPS approach for assessing the dose-response relationship
between ICS and BW taking into account the full set of 27 potential confounding covariates.

We first fitted a multinomial logit model using all available potential confounding co-
variates to obtain the GPS associated to each ICS-dose category for each pregnancy in
the cohort. This multinomial model was selected on the basis of goodness-of-fit measures
(Akaike information criterion, Bayesian information criterion) over two other multinomial
models (ordered probit and logit).

We verified the assumptions underlying the GPS approach prior to estimating the effect
of ICS on BW. First, we checked the positivity by assessing the overlap in the GPS values for
the four ICS-dose categories. In particular, we obtained, for each dose category, a box-plot
of the GPS for the pregnancies exposed under this category and a box-plot of the GPS for
all other pregnancies. As implied from Imbens (2000) and Hirano and Imbens (2004), the
GPS associated to treatment level T = j is a balancing score between covariates and the
corresponding treatment indicator variable D(j) where D(j) = 1 if T = j and D(j) = 0
otherwise (see Appendix B for more details regarding the balance property of GPS; in our
study, treatment levels j = 1, 2, 3, 4 correspond, respectively, to ICS-dose categories: 0, >0-
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125, >125-250, >250 µg/day). Therefore, we also verified the balance between each covariate
and each treatment indicator D(j) (j = 1, 2, 3, 4) within the strata of percentiles of GPS
that were used for the construction of the GPS-based outcome regression models. More
precisely, for each covariate, the average standardized differences (Austin, 2011a) between
the groups defined by the values of D(j) (j = 1, 2, 3, 4) were calculated over all GPS strata.
These results were compared to the initial balance diagnostic performed by calculating (for
each covariate) the standardized differences between the pregnancies exposed and unexposed
to T = j (j = 1, 2, 3, 4).

For each ICS-dose category separately, and using only pregnancies actually exposed to
a given category, we then fitted a linear regression model for BW using percentile-based
GPS strata as independent variables (GPS-based outcome regression model). Five and ten
strata are the most commonly used numbers of strata in stratified propensity scores analyses
(Wang et al., 2001; Kurth et al., 2006; Austin, 2011a,b; Brookhart et al., 2013; Ali, 2014). It
has also been argued that the number of propensity scores strata should depend on sample
size, and that with a large data set, it might be desirable to form more than five strata
(Huppler Hullsiek and Louis, 2002). Therefore, we used ten GPS strata for the 0 and >0-
125 µg/day ICS categories and five strata for the >125-250 and >250 µg/day categories
due to smaller number of pregnancies within each of those two strata. For each baby in
the cohort, the GPS-based outcome regression models were then used to predict their four
conditional counterfactual BW given GPS values (Feng et al., 2012). The cohort average of
these BW values was computed for each ICS-dose category (Feng et al., 2012). Finally, to
compute the three ATE of interest, the BW average associated to each ICS-dose category
>0 µg/day was subtracted to the average associated with no use of ICS (i.e., >0-125 versus
0 µg/day, >125-250 versus 0 µg/day, >250 versus 0 µg/day).

We also estimated the crude and regression-based adjusted (that is, conventional multi-
variable approach) ATE. The regression-based adjusted estimates were obtained by fitting
a multiple linear regression model for BW as a function of ICS exposure and potential
confounding covariates (as main effect terms)

E[Y |D(2), D(3), D(4),C] = α0 + α2D(2) + α3D(3) + α4D(4) +α′5C (1)

where D(j) (j = 2, 3, 4) are, as defined above, the treatment indicator variables for the
>0-125, >125-250 and >250 µg/day ICS-dose categories respectively, and α′5C is a linear
combination of the potential confounding covariates. The crude model corresponds to model
(1) without the last term α′5C.

To account for the clustered nature of our data (that is, 1177 women with two pregnan-
cies), we used cluster bootstrap (Field and Welsh, 2007) to calculate 95% confidence intervals
(CI) with the percentile method (Chernick, 2007) for all ATE. The bootstrapped CI were
obtained for each contrast and both approaches (GPS and conventional multivariable). Note
that our bootstrap algorithm was applied at the GPS-based outcome regression modeling
stage only (the standard error calculation does not take into account the uncertainty in
estimating the GPS).

2.7.2 Additional analyses

Additional analyses were performed after obtaining the primary results. These pertain to
three different aspects having the potential to affect the results, namely, 1) the choice of the
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potential confounding covariates; 2) the violation of the positivity assumption with LABA
use; 3) the adjustment for gestational age (GA), a potential mediator of the relationship
between ICS and BW.

The results in Cossette et al. (2013) were obtained on the basis of a reduced subset of
covariates selected by a change-in-estimate procedure. We performed a series of supple-
mental analyses to assess the robustness of our primary results to the choice of covariates
within the initial set of covariates of size 27. These analyses were justified by the fact that
confounder selection is a challenging issue, and that only a few covariates related to asthma
were retained in the low BW regression model fitted by Cossette et al. (2013). The strate-
gies for variable selection were a) use the covariates selected by Cossette et al. (2013) in the
adjusted analysis of low BW, in addition to baby’s sex (set 1); b) use baby’s sex and all
the covariates selected at least in one model for the perinatal outcomes studied in Cossette
et al. (2013) (set 2); c) use a set of 18 potential confounding covariates obtained by applying
the recently developed Bayesian Adjustment for Confounding algorithm (Wang et al., 2012;
Lefebvre et al., 2014) (set 3) (see Table A1 in Appendix A).

In the primary analyses, adjustment for LABA, which is a marker of asthma severity,
might be problematic. Indeed, to validly apply the GPS or the conventional multivariable
approach, a strictly positive probability of no exposure to ICS ought to be possible for babies
exposed to LABA during their mother’s pregnancies (Westreich and Cole, 2010). However,
medical guidelines do not recommend the use of LABA without ICS for the treatment of
asthma (Lougheed et al., 2012; Namazy et al., 2014), and our cohort does not include preg-
nancies exposed to LABA that were unexposed to ICS. As such, it is ill-posed to define and
predict the counterfactual BW outcomes associated with no use of ICS for babies who have
been exposed to LABA. Secondary GPS analyses restricted to 6724 pregnancies unexposed
to LABA (with the full set of covariates) were thus done, repeating each primary GPS anal-
ysis described above, while excluding 650 (8.81%) pregnancies exposed to LABA. Crude and
adjusted regression (conventional) estimates were also obtained on this subcohort. These
secondary analyses were not performed in the study by Cossette et al. (2013).

Assuming the existence of a causal relationship between ICS and GA and between GA
and BW, each estimated ICS dose-category effect can be interpreted as a total effect that
combines the direct and indirect effects of ICS on BW, and where the indirect effect is
mediated through GA. As it is well-known that adjusting for an intermediate variable (GA)
in causal models is problematic (VanderWeele et al., 2012; Richiardi et al., 2013; Morgan and
Winship, 2015), we did not, as Cossette et al. (2013), included GA a priori in our models.
Given the uncertainty about the mediating nature of GA in the present context however, we
also performed sensitivity analyses and included GA in the corresponding models. Indeed,
as GA is as a very strong predictor of BW (Kramer et al., 2001; Oken et al., 2003), an
important motivation for considering these augmented models is the possible large gain in
efficiency, especially for the highest ICS-dose category which corresponds to the smallest
sample size among the exposure levels. These sensitivity analyses were performed both for
the primary and the secondary analyses.
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2.7.3 Estimation of a dose-response function

Our decision to consider multilevel GPS analyses was motivated by the desire to mimic the
analytical strategy used in our reference paper (Cossette et al., 2013), which itself follows
the clinical practice in the management of asthma. However, as it can be argued that
the choice of a specific categorization of the exposure is to some extent arbitrary, it is of
interest to investigate the relationship between ICS and BW when ICS-dose is considered as
a continuous variable. As such, the general GPS approach described in Hirano and Imbens
(2004) was implemented to better uncover possible heterogeneity of the exposure effect in
regions corresponding to higher ICS-doses.

We selected a two-part model (Min and Agresti, 2002; Gelman and Hill, 2007) to compute
the GPS associated to each pregnancy in our cohort. The first part of the exposure model was
a logistic model for the dichotomous event of having zeroed or positive values of ICS dose,
and, conditional on a positive value, the second part assumed a log-normal distribution.
The discrete part of the model accounted for the fact that 43% of the pregnancies were
unexposed to ICS, while the distribution of the positive doses of ICS was well-captured
by the log-normal part. Of note, parameter estimation for this exposure model proceeded
relatively simply because the likelihood function factors into two terms (Min and Agresti,
2002).

As Hirano and Imbens (2004), Kluve et al. (2012) and Bia et al. (2014), we used a blocking
method to assess the balance of the covariates after GPS adjustment. The cohort was divided
into four groups: the first group was defined by no exposure to ICS while the other three
groups were formed by cutting the positive ICS-dose values at the 33th and 66th percentiles.
For each pregnancy, we evaluated the GPS at the median of the exposure variable within
each group. For each of these groups, and only using the GPS of the pregnancies associated
to a given exposure group, we then created five blocks corresponding to the quintiles of
the GPS evaluated at the median. Our check for balance then proceeded similarly to that
described in Section 2.7.1.

The conditional expectation of the outcome (BW) given observed ICS exposure level ti
and the estimated GPS r̂(ti,xi) was modeled according to the following quadratic equation:

E[Yi|ti, r̂(ti,xi)] = α0 + α1ti + α2t
2
i + α3r̂(ti,xi) + α4r̂(ti,xi)

2 + α5tir̂(ti,xi). (2)

The coefficients from Equation (2) were used to evaluate the dose-response function (DRF)
at exposure level t by estimating the average potential outcome E[Y (t)]:

Ê[Y (t)] =
1

n

n∑
i=1

α0 + α1t+ α2t
2 + α3r̂(t,xi) + α4r̂(t,xi)

2 + α5tr̂(t,xi).

A DRF was obtained for both the full cohort and the subcohort which excluded the pregnan-
cies exposed to LABA (using the full set of potentially confounding variables). We estimated
contrasts defined as the difference in the DRF value at the median exposure level within
each category of positive exposure to ICS (>0-125, >125-250, >250 µg/day) versus the null
exposure value (0 µg/day). Sensitivity analyses for the choice of the potential confounding
variables and the inclusion of GA in the GPS models were also performed.
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2.8 Ethics approval

We obtained approval from the Commission d’accès à l’information du Québec prior to
requesting and linking the information from the MED-ECHO and RAMQ databases. This
study was approved by the ethics committee of the Hôpital du Sacré-Coeur de Montréal.

3. Results

The cohort includes 7374 pregnancies from 6197 asthmatic women. Table 1 presents the
distribution of the pregnancies and the distribution of the 27 potential confounding covari-
ates according to the average ICS daily dose categories. We remark that higher-ICS-dose
users take more leukotriene-receptor antagonists, short-acting beta2-agonists (SABA), and
oral and intranasal corticosteroids. They also have more severe asthma and have more
emergency visits for asthma. The mean GA (in weeks) is very similar across ICS categories
(standard deviation in parenthesis): 38.54 (2.54), 38.60 (1.99), 38.45 (2.12) and 38.41 (2.22)
for ICS doses 0, >0-125, >125-250, <250 µg/day, respectively.

Table C1 in Appendix C provides the estimated regression coefficients (mean difference(s)
for each potential confounding variable adjusted for ICS and other covariates) obtained
from a linear regression model for BW. According to Table C1, Antiphospholipid syndrome,
Eclampsia/pre-eclampsia, Placenta abruption, and Fetal-maternal hemorrhage are the most
influential factors to explain BW (-322.33, -268.27, -364.03 and -271.99 g, respectively),
possibly due to their negative association with GA (Ananth et al., 1999; Rubod et al., 2007;
Goldenberg et al., 2008; Di Prima et al., 2011; Villar et al., 2012; Levy et al., 2015); in our
data, these covariates are also the most important predictors of GA.

Figure 1 shows box-plots for the GPS values corresponding to each treatment category
(primary analysis).

Table 2 provides the standardized differences of the potential confounding covariates
across the groups defined by each treatment indicator’s values. These results reveal the
amount of evidence against initial balance between covariates and treatment indicators.
We note that, except for ICS doses >0-125 µg/day, almost all asthma-related variables
uniformly present standardized differences larger than the acceptable threshold to define
balance (standardized difference of 0.20, see McCaffrey et al. (2013)). We thus reject dis-
tributional balance with respect to these covariates and the treatment indicator groups for
each treatment. Table 3 reports the average standardized differences taken over the five
or ten GPS strata (according to ICS-dose category). We observe from Table 3 an overall
improvement of the balance for the problematic variables, but some of the standardized
differences associated with variables SABA and Severity of asthma prior to pregnancy still
remain larger than the maximum acceptable value.

The first part of Table 4 provides the results of the primary analyses: the unadjusted
(crude) ATE, the ATE for both the multilevel GPS and the adjusted regression (conven-
tional) approaches, and the results of the corresponding sensitivity analyses which consist
in the inclusion of GA in the models. The second part of Table 4 presents the results for the
secondary analyses in which we considered only the pregnancies unexposed to LABA. All
primary analyses based on the GPS and conventional approaches reveal that babies exposed
to ICS doses >0-125 and >125-250 µg/day did not significantly differ in BW as compared to
babies unexposed to ICS (at level 0.05). The same conclusion is found for ICS-dose category
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Figure 1: Overlap of the GPS between the treatment group indicators.

>250 µg/day in all primary GPS-based analyses. For ICS-dose category >250 µg/day, all
primary results obtained from the conventional approach show a decrease in BW of approx-
imately 50 g when the baby is exposed; the result is statistically significant (at level 0.05)
when variable GA is included in the adjusted regression model. In general, the inclusion
of GA in the models pertaining to the primary analyses does not substantially change the
corresponding ATE point estimates.

The results for the sensitivity analyses associated to the choice of confounding variables
appear in Appendix D. For both the GPS and the conventional approaches, the results based
on the full set of 27 covariates and the reduced set 3 (refer to Table A1) were very similar.
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Maternal inhaled corticosteroids use and birth weight

In general, the results obtained by the adjusted conventional approach are consistent across
the sets of covariates (full set, set 1, set 2, or set 3). The same tendency can be reported for
the GPS approach for ICS-dose category >0-125 µg/day.

The secondary analyses, which were restricted to pregnancies unexposed to LABA, were
initially justified on the basis of theoretical positivity problems. Such problems were also
seen in practice through the extremely small estimated GPS associated to dose category 0
µg/day for pregnancies exposed to LABA (minimum GPS=1.89×10−11). Eliminating these
pregnancies improved overall positivity (results not shown). As clearly observed herein,
GPS approaches make positivity issues explicit (Westreich et al., 2011), unlike regression
approaches. All secondary GPS analyses show results pointing in the same direction as those
obtained from the corresponding primary analyses. This is also true for the conventional
approach, except for ICS-dose category >125-250 µg/day for which the ATE obtained for
the primary and secondary analyses go in opposite directions.

For both the primary and secondary analyses, the confidence intervals associated with the
multilevel GPS approach are wider than those obtained with the conventional multivariable
approach. In particular, and unlike the GPS approach, the inclusion of GA in the adjusted
regression models results in more narrow confidence intervals (22.72-25.58% narrower).

For the continuous GPS analyses, all standardized differences were smaller than 0.20
after GPS adjustment, except for no use of SABA (0.21), >3 doses/week of SABA (0.23),
and use of LABA (0.24). The shape of the estimated DRF (see Fig. 2) suggests, starting
from small positive ICS-dose values, a decreasing relationship between average daily ICS-
dose during pregnancy and BW. Table 5 presents the ATE estimated using the approach
described in Section 2.7.3. These results reveal a small decrease in BW for babies exposed
to the median ICS-dose in >0-125 and >125-250 µg/day compared to those unexposed to
ICS. For moderate-to-high doses (>250 µg/day), this decrease is approximately 70 and 50
g in the primary and secondary analyses, respectively. All contrasts are non-significant (at
level 0.05). Table 5 also displays the robustness of the results to the inclusion of GA in the
analyses. The results for the sensitivity analyses associated to the choice of the confounding
variables appear in Appendix E.

4. Discussion

In the primary analyses, for ICS-dose category >250 µg/day, we found an ATE of -37.83 g
(95% CI: -117.74, 41.53) for the multilevel GPS-based model and an ATE of -51.16 g (95%
CI: -118.80, 14.17) for the adjusted regression model. The results from the continuous GPS
approach agree with the above findings about the effect of the highest ICS-dose category
on BW (ATE: -67.63, 95% CI: -138.80, 7.14). All these results are also in agreement with
the results from Cossette et al. (2013) who found a non-significant trend for increased risk
of low BW for the two highest ICS-dose categories (adjusted OR=1.20, 95% CI: 0.81, 1.78
for ICS >250-500 µg/day; adjusted OR=1.57, 95% CI: 0.86, 2.87 for ICS >500 µg/day). A
decreasing relationship between ICS-dose and BW was similarly observed through the DRF
obtained from the continuous GPS analyses. Most interestingly, the effect of exposure to
ICS-dose category >250 µg/day on BW was significantly different from zero for the adjusted
regression model including GA (ATE: -56.97, 95% CI: -109.30, -6.54). To our knowledge,
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Figure 2: Estimated dose-response function with confidence bands.
Legend. Solid line: DRF; slashed line: DRF CI; pale solid line: predicted mean BW for

ICS=0 µg/day.

this result is the first reported result which supports the detrimental effect of higher doses
of ICS on BW-related variables.

Our study has some limitations that should be taken into account when interpreting the
results, in addition to those already mentioned in Cossette et al. (2013). These pertain to
the following three points: 1) balance and GPS modeling; 2) number of GPS strata and
outcome regression modeling; 3) robustness of results to the choice of confounders.
Balance and GPS modeling. It is not excluded that other, more sophisticated, GPS
models could have been more appropriate and led to greater balance between covariates
and treatment indicators, thus reducing even further confounding by indication. The stan-
dardized differences associated with SABA and Severity of asthma prior to pregnancy were
very large before GPS adjustment, but they still exceeded the loose threshold of 0.20 after
GPS adjustment in the multilevel GPS analyses. These two variables were found marginally
associated with BW, so our primary results need to be interpreted with caution. Of note, we
experimented with a generalized boosted model for the GPS (McCaffrey et al., 2013), but
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found that three additional variables related with asthma exceeded this threshold (results
not reported). This comforted us in our decision to use a GPS model based on multinomial
regression for our multilevel analyses. For the continuous GPS approach, SABA and LABA
were found unbalanced after GPS adjustment, with standardized differences however close
to the threshold.

Number of GPS strata and outcome regression modeling. In our GPS analyses,
the validity of the predicted counterfactual outcomes, and thus of the estimated ATE, is
intrinsically linked to the choice of an appropriate model for the outcome versus the GPS.
In our multilevel GPS analyses, we made the decision to use deciles of GPS for the two
smallest ICS-dose categories and quintiles of GPS for the two highest ICS-dose categories. In
these analyses, a modeling strategy based on GPS strata was deemed preferable to minimize
modeling assumptions and to increase the robustness of the predictions to more extreme
values of GPS. In contrast, the predicted counterfactual outcome in our continuous GPS was
modeled as a quadratic function of the exposure level and GPS. On the basis of resulting
DRF, this model was selected over other modeling strategies, such as cubic regression,
quadratic and cubic spline regressions, and penalized spline smoothing based on additive
spline bases. Unlike the multilevel GPS approach, the continuous GPS approach does not
rely on individual models applied to subsets of data corresponding to exposure categories
of interest. However, our continuous GPS analyses rely on stronger parametric assumptions
for the outcome model and could be more sensitive to outlying GPS values compared to our
multilevel GPS analyses. While the multilevel and continuous GPS approaches did not agree
in the direction of the ATE for the two lowest ICS-dose categories, they did agree in the small
magnitude of the effects. More importantly, similar results were obtained for the highest
ICS-dose category under both approaches. In general, it would be worthwhile to investigate
the performances of multilevel versus continuous GPS for scientifically relevant exposure
categories in various simulated scenarios. In addition to the median exposure strategy
adopted in this paper, fully adapting continuous GPS analyses for a categorical exposure
could be done by averaging the estimated dose-response function at the observed distribution
of treatment within a given exposure category. This could however be computationally very
expensive and not widely applicable, as herein.

Robustness of results to the choice of confounders. The supplemental analyses pre-
sented in Appendix D revealed that the conventional multivariate approach estimates were
generally robust to different sets of confounding covariates. This was also seen for the multi-
level GPS analysis for the >0-125 versus 0 µg/day category; results were however less stable
across sets of confounding covariates for the GPS analysis for the >125-250 versus 0 cate-
gory and the one for the >250 versus 0 µg/day category. Interestingly, the continuous GPS
approach showed increased robustness with respect to the choice of confounding variables
(refer to Appendix E). Because the outcome modeling is performed separately for each expo-
sure category in the multilevel GPS approach (as opposed to the continuous GPS approach),
it is reasonable to believe that the observed instability of the multilevel GPS estimates is a
consequence of the small sample sizes for the corresponding subsets of observations. Recall
that the two highest ICS-dose categories have prevalence of only 9.30% and 7.55%, respec-
tively, in our cohort. Lastly, as in Cossette et al. (2013), we do not have information on
the smoking status of the mothers. Using a method described in Schneeweiss et al. (2005),
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Cossette et al. (2013) found their estimates robust to this unmeasured confounder; hence no
additional analyses with respect to smoking were performed in our study.

The principal strength of our study is the care we took in performing analyses based on
propensity scores that examined outcomes by dosage in attempt to better account for con-
founding by indication, which is a concern in this study. We feel, as others, that explicitly
providing insights on potential positivity problem may be one of the main advantages of
the propensity score approaches (Westreich et al., 2011). As such, while propensity score
analyses are recommended, it is worthwhile to highlight the additional difficulty in imple-
menting such type of analyses for an exposure with multiple levels, as opposed, for instance,
to conventional analyses based on a multivariable model for the outcome. Herein, this dif-
ficulty was exacerbated because of the structure of the data. In our study, we have used
cluster bootstrap to account for intracluster correlation, that is, possible similarity between
a woman’s consecutive pregnancies. However, only very limited information is currently
available as to best apply GPS on clustered data, especially with a large number of small
clusters (Li et al., 2013).

Whether one should include GA, a potential intermediate variable in the pathway be-
tween ICS and BW, in the models we considered is debatable. Interestingly, the inclusion
of GA in the GPS models as opposed to the conventional ones had different impact on
the results. Whereas no reduction in the variability of the estimates was seen for the GPS
results, it had a large impact on the variability of the estimated effects obtained from the
conventional models. These results suggest that the conventional approach may take fur-
ther advantage of the inclusion of a strong predictor of the outcome in the modeling process
than the GPS approach. Overall, we feel that the gain in efficiency outweighs the possible
bias we might have introduced by including this variable in the models, especially since the
point estimates were robust to the inclusion of GA in the models. As such, the conventional
approach adjusted for GA appears to be the most appropriate in the present context. One
obvious methodological extension would be the application of formal mediation analyses to
refine our analysis of the effects of ICS doses on GA and BW.

Worldwide, ICS are the first-line treatment for asthma. While high doses ICS have been
associated with increased malformations (Blais et al., 2007; Gregersen and Ulrik, 2013),
our results suggest that such doses of ICS could also have a negative impact on the BW-
axis of infants. To our knowledge, there does not exist a strict threshold for a clinical
significance in BW variation. Although a reduction of 50 grams can arguably be qualified as
small, the “oeuf-lait-orange” (egg-milk-orange) (OLO) prenatal nutrition program, that has
been progressively implemented in the province of Québec (Canada) since the eighties, has
recently been found to increase the BW of a participating baby of about 70 grams on average
(Haeck and Lefebvre, 2016). Therein, the economic benefit of the OLO program (with cost
of the order of $543 per baby in 2008) was established on the basis of decreased neonatal
hospital costs and higher educational attainment and wages leading to accrued revenue
for both the government and the person. Specifically, a 10% increase in BW increases high
school completion by approximately 1 percentage point (Black et al., 2007), while the median
earnings for those who completed high school is about $5,000 larger than for those who did
not (Statistics Canada). The socio-economic significance of a decrease of about 50 grams in
BW could similarly be argued.
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Maternal inhaled corticosteroids use and birth weight

When asthma is not controlled at low or medium doses of ICS, guidelines now recom-
mend initiating combination therapy with LABA before escalating to high doses of ICS
(Lougheed et al., 2012). Physicians thus have to decide between alternative regimens to
treat asthma during pregnancy. Similar causal analyses could be done to assess the effect
of different ICS/LABA combination therapies on BW and ultimately inform physicians on
the best combination of ICS/LABA to keep asthma under control while limiting the impact
of treatment on this important perinatal outcome.
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Table 1: Distribution (frequency) of the potential confounding covariates according to the
average ICS daily dose categories during pregnancy (% shown in parenthesis).

Average ICSa doses during pregnancy (µg/day) Total
0 (None) > 0-125 > 125-250 > 250

Number of pregnancies 3177 (43.1) 2954 (40.1) 686 (9.3) 557 (7.6) 7374 (100)
Mother’s & baby’s characteristics
Maternal age (years)

< 18 50 (1.6) 64 (2.2) 13 (1.9) 4 (0.7) 131 (1.8)
18-34 2755 (86.7) 2514 (85.1) 575 (83.8) 439 (78.8) 6283 (85.2)
> 34 372 (11.7) 376 (12.7) 98 (14.3) 114 (20.5) 960 (13.0)

Baby’s sex (male) 1584 (49.9) 1543 (52.2) 348 (50.7) 272 (48.8) 3747 (50.8)
Receipt of social assistance 1636 (51.5) 1720 (58.2) 416 (60.6) 363 (65.2) 4135 (56.1)
Urban residency 2581(81.2) 2348(79.5) 561(81.8) 449(80.6) 5939 (80.5)
Maternal chronic conditions
Antiphospholipid syndrome 17 (0.5) 17 (0.6) 4 (0.6) 3 (0.5) 41 (0.5)
Chronic hypertension 86 (2.7) 88 (3.0) 17 (2.5) 24 (4.3) 215 (2.9)
Diabetes mellitus 102 (3.2) 104 (3.5) 34 (5.0) 30 (5.4) 270 (3.7)
Cystic fibrosis of the pancreas 14 (0.4) 13 (0.4) 2 (0.3) 8 (1.4) 37 (0.5)
Uterine defects 407 (12.8) 371 (12.6) 100 (14.6) 88 (15.8) 966 (13.1)
Pregnancy-related variables
Gestational diabetes 288 (9.1) 288 (9.8) 76 (11.1) 80 (14.4) 732 (9.9)
Eclampsia/pre-eclampsia 86 (2.7) 95 (3.2) 20 (2.9) 21 (3.8) 222 (3.0)
Anaemia 443 (13.9) 429 (14.5) 110 (16.0) 93 (16.7) 1075 (14.6)
Placental conditions 129 (4.1) 109 (3.7) 26 (3.8) 26 (4.7) 290 (39)
Placenta abruption 112 (3.5) 113 (3.8) 20 (2.9) 20 (3.6) 265 (3.6)
Vaginal bleeding 438 (13.8) 388 (13.1) 78 (11.4) 68 (12.2) 972 (13.2)
Maternal infections 497 (15.6) 403 (13.6) 117 (17.1) 78 (14.0) 1095 (14.9)
Fetal-maternal hemorrhage 5 (0.2) 3 (0.1) 4 (0.6) 4 (0.7) 16 (0.2)
Gestational hypertension 179 (5.6) 189 (6.4) 43 (6.3) 53 (9.5) 464 (62.9)
Use of beta-blockers 25 (0.8) 27 (0.9) 8 (1.2) 2 (0.4) 62 (0.8)
Asthma-related variables
Leukotriene-receptor antagonists 12 (0.4) 24 (0.8) 17 (2.5) 62 (11.1) 115 (1.6)
SABA (doses/week)

0 1775 (55.9) 434 (14.7) 41 (6.0) 30 (5.4) 2280 (30.9)
> 0-3 896 (28.2) 1498 (50.7) 93 (14.0) 41 (7.4) 2528 (34.3)
> 3 506 (15.9) 1022 (34.6) 552 (80.0) 486 (87.3) 2566 (34.8)

Oral corticosteroids 117 (3.7) 397 (13.4) 148 (21.6) 154 (27.7) 816 (11.1)
Intranasal corticosteroids 228 (7.2) 408 (13.8) 146 (21.3) 147 (26.4) 929 (1.3)
≥ 1 ED visit for asthma 201 (6.3) 523 (17.7) 145 (21.1) 137 (24.6) 1006 (13.6)
LABA 0 (0) 212 (7.2) 178 (26.0) 260 (46.7) 650 (8.8)
≥ 1 hospitalization for asthma 9 (0.3) 43 (1.5) 17 (2.5) 20 (3.6) 89 (1.2)
Severity of asthma prior to pregnancy

mild 2887 (90.9) 2471 (83.6) 404 (58.9) 135 (24.2) 5897 (80.0)
moderate 254 (8.0) 354 (12.0) 192 (28.0) 221 (39.7) 1021 (13.8)
severe 36 (1.1) 129 (4.4) 90 (13.1) 201 (36.1) 456 (6.2)

Abbreviations: ED, emergency department; LABA, long-acting beta2-agonists; SABA, short-
acting beta2-agonists.
a: fluticasone-propionate equivalent.
See Table A1 in Appendix A for more information on these potential confounders.
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Table 2: Balance of potential confounding covariates across the groups defined by treatment
indicators’ values before GPS adjustment. Standardized differences according to indicators
of treatment by ICS.a

Standardized differences
0 (None) > 0-125 > 125-250 > 250

Mother’s and baby’s characteristics
Maternal age (years)

< 18 0.03 0.05 0.01 0.1
18-34 0.08 0 0.04 0.18
> 34 0.07 0.01 0.04 0.22

Baby’s sex 0.03 0.05 0 0.04
Receipt of social assistance 0.16 0.07 0.1 0.2
Urban residence 0.03 0.04 0.03 0
Maternal chronic condition
Antiphospholipid syndrome 0 0 0 0
Chronic hypertension 0.02 0.01 0.03 0.08
Diabetes mellitus 0.04 0.01 0.07 0.09
Cystic fibrosis of the pancreas 0.02 0.01 0.04 0.11
Uterine defects 0.02 0.03 0.05 0.08
Pregnancy-related variables
Gestational diabetes 0.03 0.02 0.01 0.05
Eclampsia/pre-eclampsia 0.03 0 0.04 0.06
Anaemia 0.01 0.02 0.01 0.04
Placental conditions 0.01 0.02 0.04 0
Placenta abruption 0.03 0 0.06 0.03
Vaginal bleeding 0.04 0.06 0.07 0.03
Maternal infections 0.02 0.04 0.07 0.08
Fetal-maternal hemorrhage 0.05 0.01 0 0.13
Pregnancy-induced hypertension 0.01 0.01 0.04 0.07
Use of beta-blockers 0.03 0.02 0.01 0.05
Asthma-related variables
Leukotriene-receptor antagonists 0.18 0.1 0.07 0.45
SABA (doses/week)

0 1.04 0.63 0.74 0.75
> 0-3 0.23 0.59 0.55 0.75
> 3 0.76 0.01 1.17 1.41

Oral corticosteroids 0.44 0.12 0.32 0.47
Intranasal corticosteroids 0.3 0.06 0.26 0.39
≥ 1 ED visit for asthma 0.39 0.19 0.22 0.31
LABA n/a 0.1 0.53 1.05
≥ 1 hospitalization for asthma 0.16 0.04 0.11 0.17
Severity of asthma prior to pregnancy

mild 0.51 0.16 0.53 1.52
moderate 0.31 0.09 0.4 0.67
severe 0.39 0.13 0.27 0.89

Abbreviations: ED, emergency department; LABA, long-acting beta2-agonists; SABA, short-
acting beta2-agonists.
a: fluticasone-propionate equivalent, in µg/day.
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Table 3: Balance of potential confounding covariates across the groups defined by treat-
ment indicators’ values after GPS adjustment.a Average standardized differences (standard
deviation) according to indicators of treatment by ICS.b

Average standardized differences
0 (None) > 0-125 > 125-250 > 250

Mother’s and baby’s characteristics
Maternal age (years)

< 18 0.06 (0.05) 0.11 (0.05) 0.14 (0.06) 0.10 (0.19)
18-34 0.11 (0.09) 0.07 (0.05) 0.07 (0.05) 0.15 (0.17)
> 34 0.11 (0.09) 0.07 (0.07) 0.05 (0.05) 0.14 (0.17)

Baby’s sex 0.08 (0.11) 0.07 (0.05) 0.06 (0.03) 0.15 (0.15)
Receipt of social assistance 0.15 (0.18) 0.11 (0.11) 0.08 (0.07) 0.05 (0.04)
Urban residence 0.10 (0.08) 0.08 (0.06) 0.10 (0.06) 0.08 (0.06)
Maternal chronic conditions
Antiphospholipid syndrome 0.05 (0.04) 0.09 (0.05) 0.10 (0.05) 0.03 (0.05)
Chronic hypertension 0.08 (0.06) 0.05 (0.04) 0.15 (0.05) 0.11 (0.08)
Diabetes mellitus 0.08 (0.08) 0.05 (0.04) 0.10 (0.08) 0.11 (0.06)
Cystic fibrosis of the pancreas 0.08 (0.08) 0.08 (0.04) 0.02 (0.03) 0.08 (0.04)
Uterine defects 0.09 (0.08) 0.07 (0.08) 0.06 (0.05) 0.12 (0.09)
Pregnancy-related variables
Gestational diabetes 0.09 (0.08) 0.07 (0.04) 0.06 (0.04) 0.08 (0.12)
Eclampsia/pre-eclampsia 0.09 (0.09) 0.07 (0.05) 0.11 (0.07) 0.04 (0.05)
Anaemia 0.12 (0.07) 0.09 (0.07) 0.06 (0.05) 0.05 (0.03)
Placental conditions 0.14 (0.13) 0.08 (0.05) 0.03 (0.02) 0.12 (0.09)
Placenta abruption 0.07 (0.08) 0.08 (0.07) 0.06 (0.03) 0.08 (0.06)
Vaginal bleeding 0.09 (0.10) 0.09 (0.06) 0.09 (0.03) 0.12 (0.08)
Maternal infections 0.09 (0.09) 0.10 (0.04) 0.07 (0.05) 0.09 (0.12)
Fetal-maternal hemorrhage 0.05 (0.03) 0.03 (0.04) 0.04 (0.05) 0.09 (0.06)
Pregnancy-induced hypertension 0.09 (0.08) 0.08 (0.07) 0.09 (0.06) 0.10 (0.10)
Use of beta-blockers 0.09 (0.11) 0.10 (0.05) 0.07 (0.06) 0.05 (0.06)
Asthma-related variables
Leukotriene-receptor antagonists 0.07 (0.08) 0.07 (0.06) 0.09 (0.08) 0.12 (0.17)
SABA (doses/week)

0 0.08 (0.15) 0.08 (0.06) 0.21 (0.21) 0.33 (0.34)
> 0-3 0.07 (0.12) 0.07 (0.06) 0.12 (0.08) 0.23 (0.20)
> 3 0.03 (0.04) 0.08 (0.07) 0.26 (0.30) 0.46 (0.57)

Oral corticosteroids 0.05 (0.07) 0.05 (0.05) 0.11 (0.04) 0.07 (0.05)
Intranasal corticosteroids 0.08 (0.07) 0.10 (0.05) 0.13 (0.09) 0.15 (0.12)
≥ 1 ED visit for asthma 0.05 (0.08) 0.10 (0.06) 0.07 (0.06) 0.07 (0.05)
LABA 0.10 (0.31) 0.06 (0.06) 0.15 (0.07) 0.12 (0.11)
≥ 1 hospitalization for asthma 0.04 (0.06) 0.08 (0.05) 0.04 (0.03) 0.06 (0.07)
Severity of asthma prior to pregnancy

mild 0.12 (0.08) 0.08 (0.06) 0.16 (0.12) 0.15 (0.26)
moderate 0.10 (0.07) 0.07 (0.05) 0.13 (0.07) 0.31 (0.22)
severe 0.04 (0.10) 0.06 (0.04) 0.09 (0.09) 0.19 (0.16)

Abbreviations: ED, emergency department; LABA, long-acting beta2-agonists; SABA, short-
acting beta2-agonists.
a: the average standardized difference is taken over 5 or 10 strata (according to ICS-dose category);
b: fluticasone-propionate equivalent, in µg/day.
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Table 4: Average treatment effects (primary and secondary analyses) using multilevel GPS
approach.

Categories of ICS doses compared (µg/day)
> 0-125 vs 0 (None) > 125-250 vs 0 (None) > 250 vs 0 (None)
ATE 95% CIa ATE 95% CIa ATE 95% CIa

Primary analyses (7374 pregnancies)
Unadjusted (crude) 7.41 -21.76, 37.64 -6.6 -55.50, 43.37 -94.41 -149.27, -39.92
GPS analysis 27.62 -8.68, 64.10 17.07 -55.85, 92.16 -37.83 -117.74, 41.53
Adjusted regression 17.41 -15.15, 50.07 15.3 -41.56, 71.09 -51.16 -118.80, 14.17

Sensitivity analyses: inclusion of GA in the primary analysis models
GPS analysis 10.05 -25.56, 46.10 13.93 -57.51, 87.01 -52.38 -133.02, 29.14
Adjusted regression 3.42 -21.46, 28.16 14.68 -29.03, 57.17 -56.97 -109.30, -6.54

Secondary analyses (6724 pregnancies unexposed to LABA)
Unadjusted (crude) 12.48 -18.19, 42.70 -48.9 -103.01, 9.50 -91.34 -168.15, -14.50
GPS analysis 27.27 -8.79, 63.65 14.31 -69.42, 97.82 -84.54 -199.72, 33.02
Adjusted regression 26.17 -6.25, 60.15 -10.48 -71.61, 54.13 -32.53 -111.13, 45.29

Sensitivity analyse: inclusion of GA in the secondary analysis models
GPS analysis 13.8 -21.58, 50.12 17.36 -65.33, 100.08 -99.73 -215.05, 18.70
Adjusted regression 11.1 -13.35, 37.04 -2.4 -49.23, 44.34 -64.29 -123.84, -3.79

Abbreviations: ATE, average treatment effect (grams); CI, confidence interval; GA, gestational
age; GPS, generalized propensity score; LABA, long-acting beta2-agonists.
a: confidence intervals calculated using cluster bootstrap (Field and Welsh, 2007).

Table 5: Average treatment effects (primary and secondary analyses) using continuous GPS
approach: difference in the dose-response function values estimated at the medians of com-
pared ICS-dose categories.

Categories of ICS doses compared (µg/day)
> 0-125 vs 0 (None) > 125-250 vs 0 (None) > 250 vs 0 (None)
ATEa 95% CIb ATEa 95% CIb ATEa 95% CIb

Primary analyses (7374 pregnancies)
-9.35 -22.93, 5.11 -27.07 -62.37, 10.68 -67.63 -138.80, 7.14

Sensitivity analyses: inclusion of GA in the primary analysis models
-7.89 -21.56, 6.55 -29.58 -64.52, 7.78 -68.74 -139.44, 4.66

Secondary analyses (6724 pregnancies unexposed to LABA)
-6.96 -23.88, 9.68 -21.28 -63.01, 20.93 -48.19 -139.12, 46.63

Sensitivity analyse: inclusion of GA in the secondary analysis models
-7.41 -24.51, 9.25 -26.75 -67.89, 14.91 -50.54 -139.73, 42.24

Abbreviations: ATE, average treatment effect (grams); CI, confidence interval; GA, gestational
age; LABA, long-acting beta2-agonists.
a: the median values are 0, 57.65, 176.20, and 392.43 µg/day, respectively;
b: confidence intervals calculated using cluster bootstrap (Field and Welsh, 2007).
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Appendix A. Potential confounding covariates

We refer the reader to Table A.1.

Appendix B. Generalized propensity scores

B.1 Theory

We present a mathematical review of GPS; the counterfactual (potential outcome) frame-
work (Rubin, 1974, 1978) is used for the description. Suppose we have a population of
N units, along with a multi-valued treatment variable T which takes on values in the set
T = {1, 2, . . . ,m}. Let Yi(j) denote unit i’s potential outcome under treatment level j
(i = 1, 2, . . . , N), that is, the outcome that would be observed if unit i had received treat-
ment T = j (possibly contrary to the fact). Let Di(j) be unit i’s indicator for receiving
treatment T = j, i.e., Di(j) = 1, if Ti = j and Di(j) = 0, otherwise. The observed outcome
for unit i is Yi = Yi(j) if Di(j) = 1; in other words, the observed outcome coincides with the
potential outcome for the treatment level actually received by the unit. The counterfactual
representation described above is valid under the Stable Unit Treatment Value Assumption
(SUTVA). For unit i, and its corresponding received treatment Ti, SUTVA asserts that the
value of Yi(Ti) is stable (i.e., determined). SUTVA rules out hidden versions of treatments
as well as interference between units (Rubin, 2010).

The average effect of treatment T = k versus treatment T = l (k, l ∈ T ) is defined as

θkl = E[Y (k)− Y (l)] = E[Y (k)]− E[Y (l)], (B.1)

where E[Y (j)] refers to the mean of the potential outcome Yi(j) taken over all the units in
the population.

Upon the observation of the potential outcomes Yi(k) and Yi(l) for every unit in a
representative sample of size n drawn from the studied population, the effect θkl can be
estimated by

θ̂kl =
1

n

n∑
i=1

Yi(k)−
1

n

n∑
i=1

Yi(l). (B.2)

Since either Yi(k) or Yi(l), or both, are typically unobserved for a given unit, we cannot use
estimator (B.2) for the average treatment effect θkl. In the context of observational studies,
Imbens (2000) proposed an approach for estimating of the mean potential outcomes E[Y (j)]
(j ∈ T ) based on GPS.

Imbens (2000) defined the generalized propensity score r(j,X) as the conditional prob-
ability of receiving treatment T = j given pre-treatment covariates X, that is, r(j,X) =
Pr(T = j|X). The following two assumptions are required for appropriately developing the
GPS methodology:

1. Positivity. There is a positive probability of receiving all levels of treatment given
every possible values x of the pre-treatment covariates X in the population:

Pr(D(j) = l|X = x) > 0 ∀j ∈ T , ∀x, l = 0, 1.
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2. Weak unconfoundness (given the pre-treatment covariates). Assignment to
treatment T is weakly unconfounded if, for all j ∈ T , the exposure status for treat-
ment T = j and potential outcome Y (j) are conditionally independent given the
pre-treatment covariates:

D(j) ⊥⊥ Y (j)|X ∀j ∈ T .

Let β(j, r) denote the mean potential outcome under treatment T = j given that the
GPS r(j,X) equals r, that is β(j, r) = E[Y (j)|r(j,X) = r]. Imbens (2000) showed that if
treatment T is weakly unconfounded given the pre-treatment variables X, then

E[Y (j)] = E[β(j, r(j,X))]. (B.3)

Moreover, Imbens (2000) proved that β(j, r) = E[Y |T = j, r(T,X) = r], and therefore
β(j, r) can be estimated in the subsample of units that actually received the jth level of
treatment. This result is established by invoking the balancing property of GPS:

D(j) ⊥⊥X|r(j,X) ∀j ∈ T ,

i.e. the probability that T = j does not depend on the value of X within strata with the
same value of r(j,X) (Hirano and Imbens, 2004).

B.2 Methodology

We present a regression-based GPS approach for the estimation of the ATE. Another ap-
proach is through inverse-probability-weighting (Feng et al., 2012). Matching is not fre-
quently encountered with GPS (StataCorp LP, 2009; Feng et al., 2012; Rassen et al., 2013).

Step 1. Estimation of the generalized propensity scores
The first step is to estimate the propensity of unit i (i = 1, 2, . . . , n) to receive treatment
level j ∈ T ; that is, we want to estimate the GPS r(j,xi) = Pr(T = j|Xi = xi) ∀j, i.
To this end, one can use multinomial logit, multinomial probit or nested logit models if
the treatment variable T is nominal (Tchernis et al., 2005). If T is ordinal, ordered logit
or probit models can also be used (Lechner, 2001; Spreeuwenberg et al., 2010). Then, for
each unit i, we obtain r̂(1,xi), . . . , r̂(m,xi), corresponding to the unit’s estimated probabili-
ties to receive all of them levels of treatment (these probabilities sum to one for a given unit).

Step 2. Estimation of β(j, r(j,X))
Within the subset of units that received treatment T = j (j = 1, . . . ,m), we regress the
outcome Y on GPS r(j,X) (or function thereof):

E{Yi|T = j, r(j,xi)} = αj + γj1g1(r(j,xi)) + . . .+ γjkgk(r(j,xi)), (B.4)

where g1, . . . , gk are user-defined regression basis functions. Examples of function of r(j,X)
include g(r) = r or g(r) = log (r/(1 − r)). This function can also be defined by categories

109



Samoilenko et al.

of percentiles of r(j,X), such as

g1(r(j,x)) = I(r(j,x) ≤ qj(20)),
g2(r(j,x)) = I(qj(20) < r(j,x) ≤ qj(40)),
g3(r(j,x)) = I(qj(40) < r(j,x) ≤ qj(60)),
g4(r(j,x)) = I(qj(60) < r(j,x) ≤ qj(80)),

where I is the indicator function and qj(20), . . . , qj(80) are the ordered quintiles of r(j,x)
for individuals with T = j. In practice, the true GPS are unknown and thus r(j,xi) is
replaced by its estimate r̂(j,xi) in model (B.4).

For each treatment level j, we then obtain estimated coefficients α̂j , γ̂j1, . . . , γjk that are
used to estimate β(j, r(j,xi)) for all the units in the sample:

β̂(j, r(j,xi)) = α̂j + γ̂j1g1(r̂(j,xi)) + . . .+ γ̂jkgk(r̂(j,xi)). (B.5)

In this step, we emphasize that the linear function (B.5) permits the calculation of the
predicted conditional potential outcomes associated with treatment level j for every unit,
whether or not the unit actually received this level of treatment. In particular, Equation
(B.5) reveals that all individuals having the same propensity to receive treatment level j
are attributed the same value for the predicted potential outcome Y (j) (that is, the same
estimated E[Y (j)|r(j,X) = r] value).

Step 3. Estimation of E[Y (j)]
In consequence of (B.3), E[Y (j)], j ∈ T , is estimated as a simple average:

Ê[Y (j)] = Ê[β(j, r(j,X))] =
1

n

n∑
i=1

β̂(j, r(j,xi)).

Step 4. Estimation of the average effect of treatment T = k versus treatment T = l
We estimate the average treatment effect (B.1) as follows:

θ̂kl = Ê[Y (k)]− Ê[Y (l)].

Step 5. Calculation of the 95% confidence interval for θkl
We calculate 95% confidence intervals for θkl by bootstrap (Chernick, 2007) (e.g., percentile
or bootstrap-t intervals).

Appendix C. Mean difference(s) for each potential confounding variable
adjusted for ICS and other covariates

We refer the reader to Table C.1.

Appendix D. Primary analyses based on different strategies for covariate
selection: multilevel GPS approach

We refer the reader to Table D.1.
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Appendix E. Primary analyses based on different strategies for covariate
selection: continuous GPS approach

We refer the reader to Table E.1.
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Table A.1: Inclusion of potential confounding covariates in full and reduced set analyses.

Full set Set 1a Set 2b Set 3c

Number of included variables 27 12 15 18
Mother’s and baby’s characteristics
Maternal age at the beginning of pregnancy
(< 18, > 18-34, > 34 years) X X X X
Baby’s sex (male/female) X X X X
Receipt of social assistance d (yes/no) X X X X
Urban residency at delivery (yes/no) X X X X
Maternal chronic conditions d

Antiphospholipid syndrome (yes/no) X X X
Chronic hypertension (yes/no) X
Diabetes mellitus (yes/no) X
Cystic fibrosis of the pancreas (yes/no) X
Uterine defects (yes/no) X
Pregnancy-related variables
Gestational diabetes (yes/no) X X X X
Eclampsia/pre-eclampsia (yes/no) X X X X
Anaemia during pregnancy (yes/no) X X X
Placental conditions e (yes/no) X X X X
Placenta abruption (yes/no) X X X X
Vaginal bleeding (yes/no) X X X X
Maternal infections during pregnancy f (yes/no) X
Fetal-maternal hemorrhage (yes/no) X X X
Pregnancy-induced hypertension (yes/no) X
Use of beta-blockers during pregnancy (yes/no) X
Asthma-related variables
Leukotriene-receptor antagonists during pregnancy (yes/no) X X
SABA during pregnancy (0, > 0-3, >3 doses/week) X X X X
Oral corticosteroids during pregnancy (yes/no) X X
Intranasal corticosteroids during pregnancy (yes/no) X X
≥ 1 ED visit for asthma during pregnancy (yes/no) X X
LABA during pregnancy (yes/no) X X X X
≥ hospitalization for asthma during pregnancy (yes/no) X
Severity of asthma in the year before conception g X X X
(mild, moderate, severe)

Abbreviations: BAC, Bayesian Adjustment for Confounding; BW, birth weight; ED, emergency
department; LABA, long-acting beta2-agonists; SABA, short-acting beta2-agonists.
a: baby’s sex and the covariates used by Cossette et al. (2013) in the adjusted analysis for low BW;
b: baby’s sex and the covariates used at least in one model for the perinatal outcomes (low BW,
preterm birth, small for gestational age) studied in Cossette et al. (2013);
c: covariates selected by applying the BAC algorithm as in Lefebvre et al. (2014);
d: in the year before or during pregnancy;
e: single umbilical artery, velamentous umbilical cord insertion, bilobate placenta, suboptimal im-
plantation site, placenta previa, placental anomalies, and cord anomalies: yes, if at least one condi-
tion is present; no, otherwise;
f : urinary-genital infections, malaria, trypanosomiasis, cytomegalovirus, toxoplasmosis, rubella,
herpes virus: yes, if at least one condition is present; no, otherwise;
g: the levels of asthma severity were measured according to an algorithm developed and validated
in Firoozi et al. (2007).
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Table C.1: Adjusted mean differences based on conventional multivariable approach.

Adjusted mean differencesa
of BW (grams) 95% CI b

Mother’s and baby’s characteristics
Maternal age (years)

< 18 -93.01 -212.39, 26.98
18-34 34.85 -11.94, 81.88
> 34 Reference

Baby’s sex (female vs male) -132.72 -157.75, -106.98
Receipt of social assistance -127.47 -154.35, -100.87
Urban residency 52.28 16.29, 87.63
Maternal chronic conditions
Antiphospholipid syndrome -322.33 -520.44, -132.36
Chronic hypertension -26.33 -112.01, 55.71
Diabetes mellitus 100.58 19.02, 180.12
Cystic fibrosis of the pancreas -76.68 -242.83, 83.61
Uterine defects -24.71 -67.34, 19.02
Pregnancy-related variables
Gestational diabetes 92.04 47.60, 137.18
Eclampsia/pre-eclampsia -268.27 -376.66, -159.27
Anaemia 70.26 30.61, 110.07
Placental conditions -149.95 -225.58, -77.17
Placenta abruption -364.03 -469.12, -258.95
Vaginal bleeding -73.41 -122.32, -25.12
Maternal infections -7.71 -45.02, 30.55
Fetal-maternal hemorrhage -271.99 -779.59, 182.86
Pregnancy-induced hypertension 29.63 -31.69, 89.08
Use of beta-blockers -99.71 -285.02, 79.43
Asthma-related variables
Leukotriene-receptor antagonists 1.39 -111.60, 112.15
SABA (doses/week)

0 33.57 -9.19, 74.91
> 0-3 33.89 -2.72, 70.30
> 3 Reference

Oral corticosteroids -13.42 -60.42, 31.85
Intranasal corticosteroids 21.51 -20.28, 60.94
≥ 1 ED visit for asthma 37.99 -2.96, 79.43
LABA 17.51 -35.72, 71.67
≥ 1 hospitalization for asthma -65.90 -183.16, 51.55
Severity of asthma prior to pregnancy

mild 53.21 -10.36, 116.99
moderate 59.63 -5.76, 123.80
severe Reference

Abbreviations: BW, birth weight; CI, confidence interval; ED, emergency department; LABA,
long-acting beta2-agonists; SABA, short-acting beta2-agonists.
a: adjusted regression model (conventional multivariable approach) based on ICS exposure and the
full set of covariates;
b: confidence intervals calculated using cluster bootstrap (Field and Welsh, 2007).
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Table D.1: Average treatment effects (primary analyses, 7374 pregnancies) estimated with
different strategies for variables selection using multilevel GPS approach.

Categories of ICS doses compared (µg/day)
> 0-125 vs 0 (None) > 125-250 vs 0 (None) > 250 vs 0 (None)
ATE 95% CIa ATE 95% CIa ATE 95% CIa

GPS analysis
(set 1b) 22.49 -12.43, 57.86 -16.55 -97.70, 61.40 1.13 -67.63, 73.68
GPS analysis
(set 2c) 26.44 -8.80, 62.23 -0.60 -78.71, 74.20 -32.00 -119.44, 59.31
GPS analysis
(set 3d) 26.41 -9.60, 63.00 6.25 -64.87, 76.70 -36.51 -123.31, 47.00
Adjusted regression
(set 1b) 20.12 -11.45, 52.46 19.51 -37.26, 75.81 -54.64 -118.14, 12.01
Adjusted regression
(set 2c) 20.53 -10.71, 52.83 19.13 -38.11, 75.11 -45.44 -111.07, 23.66
Adjusted regression
(set 3d) 17.87 -14.51, 50.87 14.46 -43.32, 70.70 -51.89 -120.32, 13.04

Abbreviations: ATE, average treatment effect (grams); BAC, Bayesian Adjustment for Confound-
ing; BW, birth weight; CI, confidence interval; GPS, generalized propensity score.
a: confidence intervals calculated using cluster bootstrap (Field and Welsh, 2007);
b: baby’s sex and the covariates used by Cossette et al. (2013) in the adjusted analysis for low BW;
c: baby’s sex and the covariates used at least in one model for the perinatal outcomes studied in
Cossette et al. (2013);
d: covariates selected by applying the BAC algorithm as in Lefebvre et al. (2014).

Table E.1: Average treatment effects (primary analyses, 7374 pregnancies) estimated with
different strategies for variables selection using continuous GPS approach: difference in the
dose-response function values estimated at the medians of compared ICS-dose categories.

Categories of ICS doses compared (µg/day)
> 0-125 vs 0 (None) > 125-250 vs 0 (None) > 250 vs 0 (None)
ATEa 95% CIb ATEa 95% CIb ATEa 95% CIb

Set 1c -8.75 -22.45, 6.26 -27.04 -61.57, 11.66 -68.02 -140.57, 9.84
Set 2d -7.76 -21.65, 7.18 -22.93 -58.57, 15.68 -55.77 -128.85, 23.33
Set 3e -9.78 -23.38, 4.69 -28.70 -63.99, 8.93 -72.16 -144.82, 2.07

Abbreviations: ATE, average treatment effect (grams); BAC, Bayesian Adjustment for Confound-
ing; BW, birth weight; CI, confidence interval; GPS, generalized propensity score.
a: the median values are, respectively. 0, 57.65, 176.20 and 392.43 µg/day;
b: confidence intervals calculated using cluster bootstrap (Field and Welsh, 2007);
c: baby’s sex and the covariates used by Cossette et al. (2013) in the adjusted analysis for low BW;
d: baby’s sex and the covariates used at least in one model for the perinatal outcomes studied in
Cossette et al. (2013);
e: covariates selected by applying the BAC algorithm as in Lefebvre et al. (2014).
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