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Abstract

In the seminal paper from 1960, Thistlethwaite and Campbell (1960) introduce the
key ideas underlying regression discontinuity (RD) designs, which, even if initially almost
completely ignored, have then acted as a fuse of a blowing number of studies applying
and extending RD designs starting from the late nineties. Building on the original idea by
Thistlethwaite and Campbell (1960), RD designs have been often described as designs that
lead to locally randomized experiments for units with a realized value of a so-called forcing
variable falling around a pre-fixed threshold. We embrace this perspective, and in this
discussion we offer our view on how the original proposal by Thistlethwaite and Campbell
(1960) should be formalized. We introduce an explicit local overlap assumption for a
subpopulation around the threshold, for which we re-formulate the Stable Unit Treatment
Value Assumption (SUTVA), and provide a formal definition of the hypothetical experiment
underlying RD designs, by invoking a local randomization assumption. A distinguishing
feature of this approach is that it embeds RD designs in a framework that is fully consistent
with the potential outcome approach to causal inference. We discuss how to select suitable
subpopulation(s) around the threshold with adjustment for multiple comparisons, and how
to draw inference for the causal estimands of interest in this framework. We illustrate our
approach in a study concerning the effects of University grants on students’ dropout.

Keywords: Causal Inference, Local Causal Effects, Local Randomization, Potential
Outcomes, Regression Discontinuity Designs

1. Introduction

Thistlethwaite and Campbell (1960) are considered to be the fathers of the regression dis-
continuity (RD) design and they deserve great recognition for their outstanding insight. It
is a pleasure and an honor for us to contribute to the discussion on the reprint of their
original article on the RD design.

In RD designs, the assignment to the treatment is determined, at least partly, by the
realized value of a variable, usually called the forcing or running variable, falling on either
side of a prefixed threshold or cutoff point. Thistlewaite and Campbell’s key intuition
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Regression Discontinuity Designs: Local Randomization Designs

was that in RD designs the comparisons of units with very close values of the forcing
variable, namely around the point where the discontinuity is observed, but different levels
of treatment, may lead to valid inference on causal effects of the treatment at the threshold.
Nevertheless Thistlethwaite and Campbell (1960) provided no formal description of the
design and no theoretical result. In practice, the approach they proposed was a regression
analysis with a causal interpretation, and indeed they referred to it as a “RD analysis”,
rather than a “RD design.” It was only later that Campbell (1969) called that type of
analysis “a design,” but again without giving any formal statistical presentation but only
relying on intuitions and analogies to the Fisher’s work on design.

Despite Thistlewaite and Campbell’s brilliant intuition, RD designs did not attract
much attention in the causal inference literature until recently, as the historical excursus
in Cook (2008) describes. It is only starting from the late 1990s that RD designs have
become increasingly popular in statistics, social science, economics and, more recently also
in epidemiology and the medical sciences. In the last two decades, causal inference in
RD designs has been a fertile area of research, and there has been a growing number of
studies applying and extending RD methods. General surveys can be found in Imbens and
Lemieux (2008) and Lee and Lemieux (2010). See also Athey and Imbens (2016) and the
edited volume by Cattaneo and Escanciano (2016) for more recent reviews, discussions, and
references.

In the modern causal inference literature, inference on causal effects in RD designs
uses a formal approach to causal inference rather than the regression framework that was
originally used by Thistlethwaite and Campbell (1960). Following one of the main strand of
the literature, we will frame RD designs in the context of the potential outcome approach
to causal inference (Rubin, 1974; Imbens and Rubin, 2015). See Constantinou and O’Keeffe
(2016) for an alternative perspective embedded in the decision theoretic approach to causal
inference (Dawid, 2000).

Traditionally, the forcing variable in RD settings is viewed as a pretreatment covariate
and RD designs are usually described as quasi-experimental designs with a non-probabilistic
assignment mechanism. Therefore inference in RD designs needs to rely on some kind
of extrapolation: the traditional inference approach in RD designs invokes smoothness
assumptions for the relationship between the outcome and the forcing variable, such as
continuity of conditional regression functions (or conditional distribution functions) of the
outcomes given the forcing variable. Under these smoothness assumptions, which imply
randomization at the single threshold value (Battistin and Rettore, 2008), observations
near the known cutoff are used to derive estimates of treatment effects at the threshold,
using global polynomial series estimators or local-polynomial (non-)parametric regression
methods and their asymptotic proprieties. In real applications, large-sample approximations
might be unreliable, especially if the sample size around the threshold is small, and exact
inference might be preferable. Some further discussion on this traditional approach and its
implication for inference is offered in Section 5.

Building on the original idea by Thistlethwaite and Campbell (1960), RD designs have
been often described as designs that lead to locally randomized experiments around the
threshold (Lee, 2008; Lee and Lemieux, 2010; Dinardo and Lee, 2011). Expanding on this
interpretation, a recent strand of the literature (e.g., Cattaneo et al., 2015; Li et al., 2015;
Sales and Hansen, 2015) is moving towards a formal and well-structured definition of the con-
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ditions under which RD designs can be formally described as local randomized experiments,
also discussing the relationship between local randomization and smoothness/continuity RD
assumptions (de la Cuesta and Imai, 2016; Skovron and Titiunik, 2015). We embrace this
new perspective, to which we have also proudly contributed (Li et al., 2015).

In this discussion we offer our view on how the original proposal by Thistlethwaite and
Campbell (1960) should be formalized, that is, how their heuristic reasoning can be formally
described. Our view is based on the approach we propose in Li et al. (2015). A distinguishing
feature of this approach is that it embeds RD designs in a framework that is fully consistent
with the potential outcome approach to causal inference, providing a formal definition of the
hypothetical experiment underlying RD designs, based on a description of the assignment
mechanism, formalized as a unit-exchangeable stochastic function of covariates and potential
outcomes.

We provide a detailed description of this approach, discussing both theoretical and
practical issues, and highlighting issues that we feel are valuable topics for further research.
We focus on the sharp RD design, the original form of the design, where the treatment
status is assumed to be a deterministic step function of the forcing variable: All units with
a realized value of the forcing variable on one side of a prefixed threshold are assigned
to one treatment regime and all units on the other side are assigned to the other regime.
Nevertheless, our methodological framework applies also to fuzzy RD designs, where the
realized value of the forcing variable does not alone determine the receipt of the treatment,
although a value of the forcing variable falling above or below the threshold acts as an
encouragement or incentive to participate in the treatment (see Li et al., 2015, for details
on the probabilistic formulation of the assignment mechanism underlying fuzzy RD designs).

2. Our Interpretation of RD Designs as Local Randomized Experiments

Consider a sample or population of N units indexed by i = 1 . . . , N . Let Si denote the
forcing variable, on the basis of which a binary treatment Zi is assigned according to a RD
rule: If a unit has a value of S falling below (or above, depending on the specific application)
a predetermined threshold, s0, that unit is assigned to the active treatment, and s/he is
assigned to the control treatment otherwise. Therefore the treatment status Zi for each unit
i is a deterministic function of Si: Zi = 1{Si ≤ s0} where 1{·} is the indicator function.

Thistlethwaite and Campbell describes the approach they propose arguing that

The argument [justifying a RD analysis] – and the limitations on generality
of the result – can be made more specific by considering a “true” experiment
for which the regression-discontinuity analysis may be regarded as a substitute.
. . . a group of commended students who narrowly missed receiving the higher
award might be given opportunity of receiving extra recognition. Thus students
in Interval 10 in Figure 1 [in a neighborhood of the threshold, s0] might be
randomly assigned to the different treatment of C of M award and no C of M
award (Thistlethwaite and Campbell, 1960, page 310).

We propose to formalize their argument, formally reconstructing the hypothetical “true”
experiment underlying a RD design using a framework that is fully consistent with the po-
tential outcome approach. Throughout our discussion we also highlight the key differences
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between our approach and both the standard approach to RD designs, where smoothness
assumptions are invoked to estimate causal effects at the threshold, as well as alterna-
tive, more recent, attempts aiming at formally describing RD designs as local randomized
experiments.

Our reconstruction starts from re-defining RD designs step-by-step using the potential
outcome approach, which has two essential parts: (a) the definition of the primitive con-
cepts – units, treatments and potential outcomes; and (b) the definition of an assignment
mechanism determining which potential outcomes are realized, and possibly observed. For-
mally, the assignment mechanism is a probabilistic model for the assignment variable as a
function of potential outcomes and covariates. The careful implementation of these steps
is absolutely essential for drawing objective inferences on causal effects in any study, and
thus also in RD designs.

In RD designs, the treatment status, which a unit may be exposed to, depends on the
forcing variable, which is the assignment variable. Potential outcomes need to be defined
accounting for the alternative levels of the forcing variable and the assignment mechanism
needs to be specified as probabilistic model for the conditional probability of the forcing
variable given potential outcomes and covariates.

In the literature, the forcing variable is traditionally viewed as a pretreatment covariate
and RD designs are typically described as designs with an irregular assignment mechanism
breaching the overlap assumption: Pr(Zi = 1) = Pr(1{Si ≤ s0}) and Pr(1{Si ≤ s0}) =
1{Si ≤ s0}, if S is a fixed pretreatment covariate, and thus the probability of assignment
to treatment versus control is equal to zero or one for all units.

We revisit this perspective viewing the forcing variable, S, as a random variable with
a probability distribution, and propose to break the longtime interpretation of RD designs
as an extreme violation of the overlap assumption. Specifically, we formulate the following
assumption:

Assumption 1 (Local overlap). Let U be the random sample (or population) of units in
the study. There exists a subset of units, Us0, such that for each i ∈ Us0, Pr(Si ≤ s0) > ε
and Pr(Si > s0) > ε for some sufficiently large ε > 0.

Assumption 1 is essentially a local overlap assumption implying that there exists a subpop-
ulation of units, each of whom has a probability of having a value of the forcing variable
falling on both sides of the threshold sufficiently faraway from both zero and one. Assump-
tion 1 implies that each unit belonging to a subpopulation Us0 has a non-zero marginal
probability of being assigned to either treatment levels: 0 < Pr(Zi = 1) < 1 for all i ∈ Us0 .
Therefore for units belonging to the subpopulation Us0 , an overlap assumption holds, and
this represents a main and key distinction with the traditional description of RD designs.
Assumption 1 is a local overlap assumption in the sense that a unit with a realized value of
the forcing variable falling very faraway from the threshold does not probably belong to the
subpopulation Us0 and may have a zero probability of having a value of the forcing value
falling on the other side of the threshold.

It is worth noting that Assumption 1 does not require that the subpopulation Us0 is
unique; it only requires that there exists at least one subpopulation Us0 . Also the value ε
in Assumption 1 has not a substantive meaning, but it is only a methodological tool for
formally describing the subpopulation Us0 .

159

[1
8.

19
1.

88
.2

49
]  

 P
ro

je
ct

 M
U

S
E

 (
20

24
-0

4-
19

 0
8:

12
 G

M
T

)



Mattei and Mealli

Assumption 1 plays a key role in the definition of the causal estimands: Under Assump-
tion 1, we can focus on causal effects for a subpopulation, Us0 , rather than on causal effects
at the threshold, which are the causal estimands typically considered in RD designs. The
correct definition of causal effects depends on the specification of potential outcomes. Each
unit in the subpopulation Us0 can be exposed to alternative values of the forcing variable,
therefore, in principle, potential outcomes need to be defined as function of the forcing
variable. Let NUs0 be the number of units belonging to a subpopulation Us0 and let s be
an NUs0−dimensional vector of values of the forcing variables with ith element si. For each
unit i ∈ Us0 , let Yi(s) denote the potential outcomes for an outcome variable Y : Yi(s) is
the value of Y for unit i given the vector of values of the forcing variable, s.

Working with the potential outcomes Yi(s) raises serious challenges to causal inference
because the forcing variable is a continuous variable, and so generates a continuum of
potential outcomes, and potential outcomes for a unit may be affected by the value of the
forcing variable of other units. To face these challenges, within the subpopulation Us0 , we
formulate a modified Stable Unit Treatment Value Assumption (SUTVA, Rubin, 1980),
specific to RD settings:

Assumption 2 (Local RD-SUTVA). For each i ∈ Us0, consider two treatment statuses
z
′
i = 1(s′i ≤ s0) and z

′′
i = 1(s

′′
i ≤ s0), with possibly s

′
i 6= s

′′
i . If z

′
i = z

′′
i , that is, if either

s
′
i ≤ s0 and s

′′
i ≤ s0, or s

′
i > s0 and s

′′
i > s0, then Yi(s

′
) = Yi(s

′′
).

Assumption 2 introduces two important simplifications. First, it rules out interference
between units, implying that potential outcomes for a unit cannot be affected by the value
of the forcing variable (and by the treatment status) of other units. Second, Local RD-
SUTVA implies that for units in the subpopulation Us0 , potential outcomes depend on the
forcing variable solely through the treatment indicator, z, but not directly, so that, values of
the forcing variable leading to the same treatment status define the same potential outcome.
The key implication of Assumption 2 is that it allows us to write Yi(s) as Yi(zi) for each unit
i ∈ Us0 , avoiding to define potential outcomes as functions of the forcing variable. Therefore
under local RD-SUTVA for each unit within Us0 there exist only two potential outcomes,
Yi(0) and Yi(1): they are the values Y if the unit had a value of the forcing variable falling
above and below the threshold, respectively.

Local RD-SUTVA is an important limitation and its plausibility depends on the sub-
stantive meaning of the forcing variable and on the support of S for each unit. It may be
plausible for the subpopulations Us0 , comprising units who have a relatively large probabil-
ity that the realized values of S fall in a neighborhood around s0, but it is arguably plausible
for the whole study population, and this may be a major obstacle to the generalization of
results from RD designs.

Under local RD-SUTVA, causal effects are defined as comparisons of the potential out-
comes Yi(0) and Yi(1) for a common set of units in Us0 . They are local causal effects in that
they are causal effects for units belonging to a subpopulation Us0 . Typical causal estimands
of interest in RD designs are average treatment effects. If focus is on the finite population
Us0 , then the average treatment effect is the Sample Average Treatment Effect defined as

τSs0 =
1

NUs0

∑
i∈Us0

[Yi(1)− Yi(0)]
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If the NUs0 units are considered as a random sample from a large superpopulation (where
Assumptions 1 and 2 hold), the causal estimand of interest is the Population Average
Treatment Effect:

τs0 = E [Yi(1)− Yi(0)|i ∈ Us0 ]

Statistical inference for causal effects requires the specification of an assignment mecha-
nism, i.e., the process that determines which units has a value of the forcing variable falling
above or below the threshold, and so which potential outcomes are realized and which
are missing. In our approach to RD designs the assignment mechanism is a probabilistic
model for the conditional probability of the forcing variable given potential outcomes and
covariates. The specification of this assignment mechanism is the distinguishing feature of
the approach we propose. Specifically, we formalize the concept of a RD design as local
randomized experiment invoking the following assumption:

Assumption 3 (Local randomization) For each i ∈ Us0,

Pr (Si|Xi, Yi(0), Yi(1)) = Pr(Si)

where Xi is a vector of pretreatment variables.

Note that Assumption 3 can be relaxed assuming that local randomization holds condi-
tional on pretreatment variables, and the analysis of RD designs under ignorable assignment
mechanisms given covariates is a valuable topic for future research. This is an assumption
similar to those considered in Mealli and Rampichini (2012); Angrist and Rokkanen (2015)
and Keele et al. (2015).

Assumption 3 implies that for each unit i ∈ Us0 , Pr(Si ≤ s0|Xi, Yi(0), Yi(1)) = Pr(Si ≤
s0) = Pr(Zi = 1), which amounts to state that within the subpopulation Us0 a Bernoulli
trial has been conducted, with individual assignment probabilities depending only on the
distribution of the forcing variable, not on either the potential outcomes or pretreatment
variables. In other words, Assumption 3 implies that the treatment is randomly assigned in
some small neighborhood, Us0 , around s0, formalizing the key idea by Thistlethwaite and
Campbell (1960) that a “true” experiment has been conducted in a neighborhood of the
threshold (Thistlethwaite and Campbell, 1960, page 310).

3. Inference on Local Causal Effects for a Subpopulation Us0
3.1 Selection of subpopulations Us0
Assumptions 1-3 amount to assuming that within subpopulations Us0 a classical randomized
experiment has been conducted, therefore if at least a true subpopulation Us0 were known,
we could draw inference on causal effects for the subpopulation Us0 using standard methods
for analyzing randomized experiments (e.g., Imbens and Rubin, 2015). Unfortunately, in
practice, the true subpopulations Us0 are usually unknown. Therefore an important issue,
in practice, is the selection of a subpopulation Us0 .

In principle, a subpopulation may come in any shape or form. Following Li et al.
(2015), we limit our choice to symmetric intervals around s0 for convenience, assuming that
for units belonging to a supposedly existing subpopulation Us0 , the realized value of the
forcing variable falls in a symmetric interval around the threshold. Formally, we assume:
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Assumption 4 There exists h > 0 such that for each ε > 0, Pr(s0−h ≤ Si ≤ s0+h) > 1−ε,
for each i ∈ Us0.

Recall that Assumptions 1-3 (and Assumption 4) do not imply that Us0 has to be unique,
therefore we are not interested in finding the largest h, but we only aim at determining
plausible values for h.

It is worth noting that the bandwidth choice problem also arises in more conventional
RD approaches but for a very different objective. In standard RD approaches, where focus
is on estimating causal effects at the threshold, neighborhood selection approaches are
usually based on criteria related to local or global polynomial regression methods used to
approximate the unknown conditional expectations of the potential outcomes and to obtain
an “optimal” extrapolation towards the threshold (see Cattaneo and Vazquez-Bare, 2016,
for a review of these methods). In our framework, the objective is to find a subpopulation
where Assumptions 1 through 3 are plausible. Consistently the approach for selecting
bandwidths h we proposed in Li et al. (2015) exploits Assumption 3. Assumption 3 is
a “local” randomization assumption, in the sense that it holds for a subset of units, but
may not hold in general for other units. Specifically, Assumption 3 implies that within a
subpopulation Us0 all observed and unobserved pretreatment variables are well balanced in
the two subsamples defined by assignment, Z. Therefore, under the assumption that all
relevant variables known (or believed) to be related to both treatment assignment and the
potential outcomes are observed, within a subpopulation Us0 any test of the null hypothesis
of no effect of assignment on covariates should fail to reject the null. Rejection of the
null hypothesis can be interpreted as evidence against the local randomization assumption,
at least for the specific subpopulation at the hand. Cattaneo et al. (2015) also exploits
balance tests of covariates to select a suitable subpopulation around the threshold, but
their approach aims at selecting the largest subpopulation.

Assessing balance in the observed covariates raises problems of multiple comparisons,
which may lead to a much higher than planned type I error if they are ignored (e.g., Ben-
jamini and Hochberg, 1995). Cattaneo et al. (2015) prefer to take a conservative approach,
by conducting tests for the null hypothesis of balance for each covariate separately, and
ignoring the problem of multiplicities. We believe that it may be extremely valuable to
account for multiplicities in RD settings, also to avoid to end up with overly small subpop-
ulations.

In the literature, there exist several approaches to tackle the problem of multiple com-
parisons. From a causal inference perspective, we can use a randomization-based mode of
inference, and implement randomization tests adjusted for multiplicities (Lee et al., 2016).
As an alternative we can opt for a Bayesian model-based approach, using a Bayesian mul-
tiple testing method (e.g., Berry and Berry, 2004; Scott and Berger, 2006). The Bayesian
procedure provides a measure of the risk (posterior probability) that a chosen interval
around the threshold defines a subpopulation of units that does not exactly matches any
true subpopulation, including subjects for which Assumptions 1 through 3 do not hold (see
Li et al., 2015).
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3.2 Inference

Once subpopulations where Assumptions 1 through 3 are plausible have been selected, we
can move to the analysis phase, using any procedure for estimating causal effects from
classical randomized experiments, including randomization-based or Bayesian model-based
modes of inference.

Randomization inference and Bayesian methods, not relying on asymptotic approxima-
tions, are particularly attractive in RD settings where the analysis may rely on a small
sample size. Randomization inference provides exact inferences for the finite selected pop-
ulation Us0 , focusing on finite sample causal estimands. From a Bayesian perspective, all
inferences are based on the posterior distributions of causal estimands, which are functions
of potential outcomes. Therefore inference about sample-average and population-average
estimands can be drawn using the same inferential procedures.

A model-based approach requires to specify a model for the potential outcomes. It is
worth noting, however, that modeling assumptions play a distinctive role in our setting.
They are not necessary and are mainly introduced to adjust for covariates and improve in-
ference: In our setting, model assumptions essentially play the same role as in classical ran-
domized experiments. Conversely, model assumptions are generally crucial in conventional
approaches to RD design, where focus is on specifying ‘optimal’ functional forms relating
the outcome to the forcing variable to draw inference on causal effects at the threshold.

Adjusting for both pretreatment variables and the realized values of the forcing variable
may be valuable in our approach to RD designs. If the true subpopulations Us0 were known,
in theory, we would not need to adjust for S, because local randomization guarantees that
for units in Us0 values of the forcing variable falling above or below the threshold are
independent of the potential outcomes. Nevertheless, in practice, the true subpopulations
Us0 are usually unknown and the risk that a chosen interval around the threshold defines
a subpopulation that includes units not belonging to the any true subpopulation, Us0 , is
not zero. Systematic differences in the forcing variable S that, by definition, occur between
treatment groups may affect inference in the presence of units who do not belong to any
subpopulation Us0 . Therefore in order to account for the presence of these units, it might
be sensible to conduct inference conditioning on both covariates and the realized values of
the forcing variable.

Covariates and forcing variable can be easily incorporated in a Bayesian approach, and
they may also help reduce posterior variability of the estimates. Adjusting for S, and
possibly for covariates, may be more difficult in randomization-based inference, even if
there exist some results in the literature that may be fruitfully exploited in our RD setting
(Rosenbaum, 2002; Conti et al., 2014).

4. An Illustrative Example: The Effect of University Grants on Dropout

We illustrate our framework in an example concerning the impact of University student-
aid policies on academic careers, using data from the cohort of first-year students enrolled
between 2004 to 2006 at University of Pisa and University of Florence (Italy). In Italy,
state universities offer grants every year to a limited number of eligible freshmen. In order
to get a grant, a student must both meet some eligibility criteria, which are based on
an economic indicator of the student’s family income and assets falling below or above a
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prefixed threshold, as well as apply for the grant. Therefore the grant assignment rule
appeals to a RD design, with the economic indicator acting as the forcing variable. Let S
be the student’s family economic indicator.

In this study, for simplicity, we focus on the effect of eligibility, thus neglecting both
the application status and the actual receipt of the grant. The effect of eligibility must
be interpreted as an intention-to-treat effect (ITT). The eligibility rule appeals to a sharp
RD design: Students are eligible if their family economic indicator is below the threshold
of 15 000 Euros, and are ineligible otherwise. Therefore for each student i the eligibility
indicator is equal to Zi = 1{Si ≤ 15 000}. The outcome variable of primary interest is
dropout at the end of the first year. Let Yi(z) be an indicator for dropout given eligibility
status z, and let Yi = Yi(Zi) be the actual dropout indicator observed. In addition, a vector
of pretreatment variables, Xi, is observed for each student.

Table 1 presents means for the sample of 16 361 students grouped by eligibility status,
Zi. Eligible freshmen, including students from very low-income families, show different
characteristics from ineligible students: on average they have lower high-school grades,
and are less likely to come from a science high school and to choose a technical major in
University.

We first apply the regression-based approach proposed by Thistlethwaite and Campbell
(1960). We divide the forcing variable into evenly-spaced bins and calculate the proportion
of students dropping out in each bin. Then, we fit linear regression functions to the obser-
vations on either side of the cutoff point, under the assumption that there exists a linear
relationship between the outcome (dropout) and the forcing variable.

Figure 1 presents the results. As we can see in Figure 1, there exists a discontinuity at the
threshold, which can be interpreted as average treatment effect of eligibility at the threshold
according to the original heuristic reasoning of Thistlethwaite and Campbell (1960). The
estimate of the ITT effect at the threshold based on the linear regression approach is
approximately equal to -0.037%, suggesting that the eligibility reduces dropout for students
from families with a value of the economic indicator near the threshold.

Since the publication of Thistlethwaite and Campbell’s paper in the early sixties the lit-
erature has evolved, and regression or modeling assumptions have been replaced by smooth-
ness/continuity assumptions on the relationship between the outcome and the forcing vari-
able. Table 2 shows estimates of, and 95% confident intervals for, the (population) ITT
effects at the threshold derived under the assumption that the conditional distribution
functions of the potential outcomes given the forcing variable are continuous in the forcing
variable at the threshold. We apply local polynomial estimators, using both a rectangular
and a triangular kernel, where the smoothing parameter, the bandwidth, is selected using
modern fully data-driven methods, namely, the Coverage Error Rate (CER)-optimal band-
width proposed by Calonico et al. (2016), used to derive confidence intervals for the average
causal effect at the threshold, and two Mean Square Error (MSE)-optimal bandwidths, the
Imbens-Kalyanaraman (IK) optimal bandwidth proposed by Imbens and Kalyanaraman
(2012) and an upgraded version of it proposed by Calonico et al. (2014). For illustrative
purposes, in Table 2 we focus on estimates based on standard local polynomial estimators.
Nevertheless, estimates from bias-corrected/robust local polynomial estimators can be also
easily applied (see, e.g., Calonico et al., 2014, for details).
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Table 1: Italian University Grant Study: Summary Statistics
All Z = 0 Z = 1

Variable (n = 16 361) (n = 4 281) (n = 12 080)

Assignment variables
Forcing variable (S) 11148.16 17373.12 8942.12
Grant receipt status (Z) 0.74 0.00 1.00

Outcome variable
Dropout (Y ) 0.38 0.36 0.39

Pre-treatment variables (X)
Gender 0.60 0.58 0.60
High School Type

Humanity 0.27 0.26 0.27
Science 0.30 0.36 0.28
Tech 0.39 0.36 0.40
Other 0.05 0.02 0.05

High School grade 81.13 81.94 80.84
Year

2004 0.40 0.40 0.39
2005 0.34 0.36 0.34
2006 0.26 0.23 0.27

University (Pisa) 0.42 0.39 0.43
Major in University

Humanity 0.23 0.22 0.23
Social Science 0.26 0.23 0.26
Science 0.13 0.13 0.13
Bio-Med 0.14 0.14 0.14
Tech 0.19 0.22 0.18
Other 0.06 0.06 0.06
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Figure 1: Regression of dropout on the forcing variable

Family economic indicator

P
ro

po
rt

io
n 

of
 s

tu
de

nt
s 

dr
op

pi
ng

 o
ut

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●●

●●●●

0 5000 10000 15000 20000

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Table 2: Italian University Grant Study: Local Polynomial Estimates of the ITT Effect

Local polynomial Rectangular Kernel Triangular Kernel
regression of order p τs0 s.e. 95% CI τs0 s.e. 95% CI

CER-optimal bandwidth = 1 316.695 (n = 2 796)

p = 0 −0.034 0.018 [−0.069; 0.002] −0.045 0.021 [−0.087;−0.003]
p = 1 −0.066 0.037 [−0.138; 0.006] −0.056 0.040 [−0.134; 0.023]
p = 2 −0.039 0.054 [−0.145; 0.067] −0.039 0.058 [−0.152; 0.074]

MSE-optimal bandwidth = 2 138.827 (n = 4 451)

p = 0 −0.027 0.014 [−0.056; 0.001] −0.032 0.017 [−0.065; 0.001]
p = 1 −0.041 0.029 [−0.098; 0.016] −0.057 0.032 [−0.119; 0.005]
p = 2 −0.082 0.043 [−0.166; 0.003] −0.068 0.046 [−0.157; 0.022]

IK optimal bandwidth = 3 619.086 (n = 7 346)

p = 0 −0.005 0.011 [−0.027; 0.017] −0.022 0.013 [−0.047; 0.004]
p = 1 −0.054 0.022 [−0.098;−0.011] −0.051 0.025 [−0.099;−0.003]
p = 2 −0.045 0.033 [−0.111; 0.021] −0.056 0.036 [−0.126; 0.014]

As we can see in Table 2, the results are quite sensitive to the choice of both the
bandwidth and the polynomial order. The size of the effects changes substantially across
different bandwidths, although most of the 95% confidence intervals includes zero. Esti-
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mates are also rather unstable across different polynomial orders, especially when the MSE-
and IK-optimal bandwidths are used. Nonzero-order polynomials lead to estimate some-
what larger effects than the zero-order polynomial. In some scenario even the choice of the
kernel makes a difference. For instance, when the IK-optimal bandwidth and zero-order
polynomial are used, the size of the estimate based on the rectangular kernel is about 1/5
of that based on the triangular kernel (−0.005 versus −0.022).

The high sensibility of the inferential results to the critical choices underlying standard
RD analyses casts serious doubts on the credibility of the estimates. We argue that these
results might strongly rely on extrapolation and model assumptions, especially if the local
randomization assumption does not hold for subpopulation of students with a value of the
forcing variable falling within a neighborhood defined by some optimal bandwidths, such
as the MSE- or IK-optimal bandwidth.

We finally apply the approach we propose, starting by selecting suitable subpopulations
Us0 (see Section 3). We apply randomization-based tests with adjustment for multiplicities
to find subpopulations of units where our RD assumptions are plausible. All the covariates
listed in Table 1 are considered and we believe that they include all relevant potential
confounders.

Table 3 shows randomization-based adjusted p-values for the null hypotheses that the
covariates have the same distribution between treated and untreated students for subpopula-
tions defined by various bandwidths, included the optimal bandwidths used in the standard
RD analysis. Table 3 also shows p−values for the whole sample with S between 0 to 20 000
Euros (column named “ALL”) for comparison.

All variables are well balanced for subpopulations defined by bandwidths strictly lower
than 1 500. For larger subpopulations some covariates, such as the “indicator of university”
are clearly unbalanced. Therefore reasonable subpopulations include students with realized
values of the forcing variable within at most 1 500 Euro around the threshold. It is worth
noting that only the CER-optimal bandwidth is lower than 1 500 Euro; the MSE- and IK-
optimal bandwidths are larger, and define subpopulations where there is clear evidence that
covariates are significantly different between eligible and ineligible students. This imbalance
justifies, at least partially, the high sensibility of standard RD results to the choice of the
bandwidth and model assumptions.

Given the selected subpopulations Us0 , we use a Neyman approach for inference. Table 4
shows estimates of, and 95% confidence intervals (based on the Normal approximation) for
the ITT effect for bandwidths ranging from 500 to 1 500 Euros. The estimated ITT effects
are similar across different bandwidths: All the estimates are negative, suggesting that
eligibility reduces dropout, but most of them are not significant at the 5% level. Only for
the subpopulation of students within 1 000 Euros around the threshold, the 95% confidence
interval do not cover zero. For this subpopulation the estimated ITT effect of eligibility
is a reduction in dropout rate of about 4.7%. The precision of the estimates could be
improved adjusting for covariates using a model-based Bayesian approach, which involves
model assumptions. Recall that, however, under our framework, identification does not rely
on model assumptions; they are only used to improve inference.
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Table 3: Italian University Grant Study: Adjusted p-values for the null hypothesis that
covariates have the same distribution between eligible and ineligible students for
various subpopulations

Local Polynomial
Local Randomization Bandwidths Bandwidths

Variable 500 1000 1500 2000 5000 All 1316.695 2138.827 3619.086
(Sample size) (1 042) (2 108) (3 166) (4 197) (9 846) (16 361) (2 796) (4 451) (7 346)
Gender 1.000 1.000 1.000 1.000 0.307 0.058 1.000 1.000 0.953
High School Type

Humanity 1.000 0.999 1.000 1.000 0.973 0.996 1.000 1.000 1.000
Science 1.000 1.000 1.000 0.909 0.001 0.001 1.000 0.686 0.227
Tech 1.000 1.000 1.000 1.000 0.084 0.001 0.998 1.000 1.000
Other 0.432 0.720 0.402 0.281 0.004 0.001 0.541 0.250 0.081

High School Grade 0.991 1.000 1.000 1.000 1.000 0.001 1.000 1.000 1.000
Year

2004 1.000 1.000 1.000 1.000 1.000 0.987 1.000 1.000 1.000
2005 1.000 0.943 1.000 1.000 0.847 0.066 0.999 1.000 0.877
2006 1.000 1.000 1.000 1.000 0.788 0.001 1.000 1.000 0.939

University (Pisa) 0.998 1.000 0.117 0.006 0.001 0.001 0.602 0.018 0.004
Major in University

Humanity 0.965 0.295 0.405 0.910 0.969 0.970 0.562 0.955 1.000
Science 1.000 1.000 0.999 0.998 1.000 1.000 1.000 0.995 0.991
Social Science 1.000 1.000 1.000 1.000 0.998 0.001 1.000 1.000 1.000
Bio-Med 0.995 0.698 0.999 0.999 1.000 1.000 0.992 0.990 1.000
Tech 0.965 0.984 1.000 1.000 0.123 0.001 1.000 1.000 0.717
Other 0.989 1.000 1.000 1.000 0.858 0.993 1.000 1.000 1.000

Table 4: Italian University Grant Study: Estimates of, and 95% Confidence Intervals for,
the ITT Effect for various subpopulations Us0 based on Neyman’s approach

Bandwidth τSs0 s.e. 95% CI

500 −0.026 0.030 [−0.085; 0.033]
1000 −0.047 0.021 [−0.088;−0.005]
1500 −0.020 0.017 [−0.054; 0.014]

CER-optimal bandwidth
1316.695 −0.034 0.018 [−0.069; 0.002]
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5. Discussion

There exist alternative approaches to formalize and analyze RD designs as local random-
ized experiments. Simultaneously with, but separately from Li et al. (2015), Cattaneo et al.
(2015) and Sales and Hansen (2015) propose different sets of assumptions within a neigh-
borhood of the threshold that allow one to exploit a local randomization assumption as an
identification and estimation strategy in RD designs. Our approach presents subtle but im-
portant differences with the methodological framework proposed by Cattaneo et al. (2015)
and Sales and Hansen (2015). In particular, we develop a framework for RD analysis that
is fully consistent with the potential outcome approach, by clearly defining the treatments
and potential outcomes and separating and defining the critical assumptions.

Sales and Hansen (2015) propose to use regression methods to remove the dependence
of the outcome from the forcing variable, and then assume that the transformed version of
the outcome is independent of treatment assignment, that is, Z in our notation.

The key assumption in Cattaneo et al. (2015) – named ‘local Randomization’ – does
not actually define an assignment mechanism as the conditional probability of the assign-
ment variable given covariates and potential outcomes, which is the general definition of
assignment mechanism in the potential outcome approach to causal inference (Imbens and
Rubin, 2015). The local randomization assumption proposed by Cattaneo et al. (2015) has
two components. The first component amounts to assuming that the marginal distributions
of the forcing variable are the same for all units inside a specific subpopulation. This as-
sumption does not formally define an assignment mechanism but simply implies that the
values of the forcing variable can be considered “as good as randomly assigned.” The second
component requires that potential outcomes depend on the values of the forcing variable
only through treatment indicators. We view this assumption as part of SUTVA, that is, as
part of the definition of potential outcomes, rather than as an assumption on the assignment
mechanism.

The birth of these alternative interpretations and formalizations of a RD designs has
raised some discussion on the relationship between local randomization and continuity RD
assumptions (e.g., de la Cuesta and Imai, 2016; Skovron and Titiunik, 2015).

It is worth noting that in approaches to RD designs where the forcing variable is viewed
as a pre-treatment covariate, the conditional independence assumption trivially holds, but
it cannot be exploited directly due to the violation of the overlap assumption. In these
settings some kind of extrapolation is required, and in order to avoid that estimates heavily
rely on extrapolation, previous analyses focus on causal effects of the treatment for units
at the threshold under smoothness assumptions, such as continuity assumptions.

Some authors (de la Cuesta and Imai, 2016; Cattaneo et al., 2015; Skovron and Titiunik,
2015; Sekhon and Titiunik, 2016) argue that the local randomization assumption is not
required for the RD design. According to us, this sentence may be misleading and deserves
some discussion.

Continuity assumptions and our local randomization assumption are different assump-
tions: they lead to identify and estimate different causal estimands. Local randomization
is not required to identify and estimate causal effects at the threshold, the causal effects
typically considered in the RD design literature, but it is required to identify and estimate
causal effects around the threshold.

169



Mattei and Mealli

Although causal effects at the threshold are identified under continuity assumptions,
which imply that randomization took place precisely at the threshold, we argue that infer-
ence under local randomization may be more robust. Specifically, even if focus is on causal
effects at the threshold, and continuity assumptions are invoked for inference, in practice,
in any analysis of data we are always forced to actually use information on units that are
far away from the threshold, relying on some form of extrapolation. In the literature, the
choice of a sub-sample of units in a neighborhood of the threshold is usually based on local or
global polynomial regression approximations of the unknown conditional expectations of the
potential outcomes given the forcing variable. Recently fully data-driven methods, based
on selecting an optimal bandwidth under squared error loss (for the local-linear regression
estimator, the local polynomial estimator and generalizations) have become increasingly
popular (Imbens and Kalyanaraman, 2012; Calonico et al., 2014). These methods do not
guarantee, however, that units with a value of the forcing variable falling above and below
the threshold have similar distributions of the covariates. If pre-treatment variables are not
well-balanced between units above and below the threshold, inference may be highly sensi-
tive to functional assumptions, such as the choice of a local estimator, that is, the choice of
the weights from the kernel defining the local estimator. Conversely, if the local random-
ization assumption holds, and the neighborhood around the threshold is selected aiming
at choosing a sub-sample of units where pre-treatment variables are well-balanced between
units above and below the threshold, we expect that inference is robust with respect to
model assumptions, including the choice of kernels of local estimators. This is analogous
to the result about consistency of regression-based estimates of average causal effects from
randomized experiments, where consistency does not rely on the linearity of the relationship
between outcome, treatment and covariates (Imbens and Rubin, 2015, Chapter 7).

Under local randomization causal estimands of interest are causal effects for units be-
longing to a sub-population Us0 , which generally includes units with values of the forcing
variable falling in a neighborhood “away” from the threshold. Therefore, under local ran-
domization we can identify and estimate causal effects away from the threshold. Alternative
ways to generalize RD results aways from the cutoff point require additional ignorability-
type assumptions (e.g., Battistin and Rettore, 2008; Mealli and Rampichini, 2012; An-
grist and Rokkanen, 2015). Mealli and Rampichini (2012) combine unconfoundedness and
differences-in-differences approaches to extend estimates of causal effects from RD analyses
away from the cutoff point. Ways to further exploiting randomization-type assumptions to
generalize results from RD analyses away from the threshold are still under investigation.
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