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Abstract

We are concerned with the unbiased estimation of a treatment effect in the context of

non-experimental studies with grouped or multilevel data. When analyzing such data with

this goal, practitioners typically include as many predictors (controls) as possible, in an

attempt to satisfy ignorability of the treatment assignment. In the multilevel setting with

two levels, there are two classes of potential confounders that one must consider, and

attempts to satisfy ignorability conditional on just one set would lead to a different treat-

ment effect estimator than attempts to satisfy the other (or both). The three estimators

considered in this paper are so-called “within,” “between” and OLS estimators. We gen-

erate bounds on the potential differences in bias for these competing estimators to inform

model selection. Our approach relies on a parametric model for grouped data and omitted

confounders and establishes a framework for sensitivity analysis in the two-level modeling

context. The method relies on information obtained from parameters estimated under a

variety of multilevel model specifications. We characterize the strength of the confounding

and corresponding bias using easily interpretable parameters and graphical displays. We

apply this approach to data from a multinational educational evaluation study. We demon-

strate the extent to which different treatment effect estimators may be robust to potential

unobserved individual- and group-level confounding.
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1. Introduction

In non-experimental settings researchers face considerable challenges in the identification

of treatment effects. Chief among these is the need to control for all confounders – the

covariates that predict both the treatment and outcome. Failure to include all confounders

can result in bias (Angrist and Pischke 2009; Greene 2003; Wooldridge 2010). The desire to

satisfy this requirement, sometimes referred to as the ignorability of treatment assignment

(Rubin 1978), can lead researchers to include as many covariates as possible in the model

and sometimes leads to the false intuition that each confounder (or set of confounders)

added will reduce the bias of the estimate.

However, recent work on bias amplification (Pearl 2012; Wooldridge 2010; Schisterman

et al. 2009) suggests that under certain conditions, including particular types of covariates

actually increases the bias due to omitted confounders, making the variable selection process

more complex. In related work, Middleton et al. (2016) and Clark and Linzer (2012) show

that bias amplification can be a problem in so-called “fixed effects” models (models that

yield a “within” estimator), which are often used when the data exhibit group, or multilevel,

structure. Thus, the decision to include group fixed effects is not without risk.

While it might seem counterintuitive, ignoring group structure can sometimes lead to es-

timators with less absolute bias as compared to estimators that account for group structure.

In particular this arises because in many studies, ignorability is unlikely to be satisfied, and

the bias of any estimator depends on the properties of any remaining, uncontrolled con-

founders. One approach to understanding the potential impact of unobserved confounders

is a sensitivity analysis (see, for example, Rosenbaum and Rubin 1983; Rosenbaum 1987;

Greenland 1996; Gastwirth et al. 1998; Lin et al. 1998; Robins et al. 2000; Rosenbaum

2002; Imbens 2003; McCandless et al. 2007; Rosenbaum 2010; VanderWeele and Arah 2011;

Harada 2013; Carnegie et al. 2016; Dorie et al. 2016). Beginning with Cornfield et al. (1959)

and made more precise in Rosenbaum and Rubin (1983), a sensitivity analysis relates the

uncontrolled confounders to treatment and outcome processes, allowing the researcher to

evaluate “what if” scenarios, which establish the strength of the two aforementioned re-

lationships needed to reduce or eliminate a treatment effect. Imbens (2003) built on the

framework of Rosenbaum and Rubin (1983) to establish a model-based sensitivity analysis

for a continuous outcome, binary treatment and binary confounder.

Building on model-based approaches, Middleton et al. (2016) show that the common

assumption that including indicators for groups “might help and never hurts” is wrong, con-

textualizing the roles of bias amplification and unmasking. In this paper, we take this idea

further, and show that the components of variance, estimable in multilevel models, provide

additional information about how much the improper choice of estimator or variables in

the model could hurt. We are able to bound the bias associated with different estimators
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in a framework that merges ideas from sensitivity analysis with information gleaned from

multilevel model parameter estimates (Gelman and Hill 2007; Singer and Willett 2003).

Somewhat surprisingly, a well-known variance ratio called the intraclass correlation coeffi-

cient (ICC; Shrout and Fleiss 1979) informs the practitioner’s choice of estimation model

and confidence in the findings.

The recommendation to include known and measurable confounders as controls is based

on the desire to satisfy the assumption that all confounders have been measured (also

known as the ignorability assumption). When the treatment effect is not very sensitive

to the addition or subtraction of individual covariates it is tempting to interpret this as

evidence that the threat due to unobserved confounding has been substantially reduced or

eliminated. For indeed the opposite holds – if one notices a change in the treatment effect

upon removing a covariate then said effect is sensitive to model specification therefore it

seems more likely that confounding remains. However when treatment effects are relatively

stable it is also possible that the included covariates simply have little effect on the treatment

estimate. Our methods offer some protection against drawing incorrect conclusions from

either scenario by incorporating variance components in the sensitivity analysis. The precise

way in which our methods relate to these two scenarios is described in Section 5.

In this paper, we develop a sensitivity analysis framework for the multilevel setting by

extending the work of Imbens (2003), Carnegie et al. (2016) and Middleton et al. (2016) via

the inclusion of group-level controls and confounders. Initially, we use information contained

in the multilevel structure to compare the asymptotic bias of three different treatment effect

estimators: the within, between and OLS estimators (see Greene 2003; Angrist and Pischke

2009). This yields a sensitivity analysis in which competing estimators’ performance can

be compared conditional on posited levels of confounding. We take this an important

step further: by capitalizing on the different bias properties of each estimator, we identify

limits on the potential impact of remaining unobserved confounders. While the omitted

confounders are by definition unobservable, information obtained by exploiting properties

of multilevel models reveals a “feasibility set” for the omitted confounders, greatly reducing

the researcher’s uncertainty about the potential for bias and greatly refining the sensitivity

analysis.1

The organization of the paper is as follows. In section 2, we propose a data generating

process that captures the key elements of confounding in the multilevel context, in which

the coefficient on a single predictor represents the targeted treatment effect, usually in

an observational study or broken randomized experiment. In section 3, we derive the

asymptotic bias for several estimators and examine their difference in absolute bias. From

1. Another way to understand this is that the covariance structure inherent in grouped data provides

information about feasible mean structure. This post hoc evaluation of potential confounding is similar

in spirit to post hoc power analysis.
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these we can establish direct comparisons in a confounding space derived from our model

parameters, and importantly, from some variance components and parameters that may be

estimated unbiasedly. Using identifiable parameters, we can infer some of the properties of

the confounding space, and specifically whether and when so-called within estimators are

more or less biased than OLS estimators, potentially due to amplification (Middleton et al.

2016; Pearl 2012). We then show that by fitting sequential multilevel models (MLMs), we

can learn what subset of the confounding space is consistent with our data and underlying

model assumptions. This is a key contribution that characterizes and restricts the set of

possible unobserved confounders dramatically and can greatly improve one’s confidence

about estimated treatment effects. In section 4, we apply this approach on real data,

presenting a multilevel sensitivity analysis across a range of confounding situations routinely

encountered. We conclude and discuss further work in section 5.

2. Multilevel framework

2.1 Data generating process

Our notation may be described as the composite form for nested multilevel structure (Scott

et al. 2013; Singer and Willett 2003; Singer 1998). We use subscript i to index the individual

(sometimes known as varying at level 1) and j for the group index (level 2). Examples

include students “nested” in schools, patients in hospitals, or individuals in neighborhoods.

In addition to the usual model formulation for studies with a univariate outcome Y

and single treatment Z, we follow the tradition of Lin et al. (1998) and Imbens (2003),

among others, by including in our model an unobserved confounder as well as sensitivity

parameters, which establish the magnitude of the confounding. The parameters link the

confounder to both the treatment and outcome and may be operationalized in many different

ways. Lin et al. (1998) posit a confounder U with two coefficients, γ0 and γ1 that may differ

for control and treatment, respectively. Imbens (2003) posits a binary confounder U with

parameters α and δ calibrating the impact on treatment and outcome, respectively. Using

some distributional assumptions, both authors integrate out the confounder, leaving an

adjusted treatment effect in terms of sensitivity parameters, often in the form of a product

of coefficients.

We build on this sensitivity framework by positing an additional layer of confounding

that operates exclusively at the group level. We name that confounder V , and specify how

that confounder links to treatment and response at the group level. We are able to add

this second confounder because we have more information in the multilevel structure, which

can be directly modeled, and the structure imposed by the model constrains the feasible

confounding at the individual and group level.
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The sensitivity analysis framework is developed by specifying unobserved (confounding)

covariates to the presumed data generating process (DGP). We include Uij , which varies

only within groups as well as Vj , which varies only between groups. In the educational

setting, with students nested in schools and a skill assessment as outcome, an example of

an unmeasured individual-level confounder might be student motivation. At the school

level, information about administrators’ adherence to system-wide guidelines could be an

unmeasured confounder. This is a natural multilevel extension of Imbens (2003) which

posits a single unobserved confounder (the vast majority of sensitivity analysis frameworks

posit only one unobserved confounder). It is also a practical way to establish more realistic

relationships between treatment, predictors, random effects and errors as suggested in Hill

(2013). As is quite standard in multilevel models, we include both group varying errors αj

(at level 2) and subject-specific errors εij (at level 1). Following Imbens (2003), we assume

that U and V are independent of each other, the observed covariates, and the additional

error terms α and ε. This is reasonable if we conceive of U and V as representing the portion

of unobserved confounding that is orthogonal to what we have observed. Henceforth we refer

to the model for Y conditional on everything else (Equation 1) as the response surface and

the model for Z conditional on everything but the outcome (Equation 2) as the assignment

mechanism.

The equations and assumptions that specify our data generating process (DGP) are

summarized here (see also Appendix A):

Yij = τZij +Xijβ
y + ζyUij +Wjγ

y + δyVj + αyj + εyij (1)

Zij = Xijβ
z + ζzUij +Wjγ

z + δzVj + αzj + εzij (2)

αy ∼ N(0, ψy), αz ∼ N(0, ψz), cov(αy, αz) = 0 (3)

εy ∼ N(0, σ2y), εz ∼ N(0, σ2z), cov(εy, εz) = 0 (4)

cov(αy, εy) = 0, cov(αz, εz) = 0, cov(αy, εz) = 0, cov(αz, εy) = 0

Uij ∼ N(0, σ2u), Vj ∼ N(0, σ2v), cov(U, V ) = 0 (5)

cov(Υ, εy) = 0, cov(Υ, εz) = 0, cov(Υ, αy) = 0, cov(Υ, αz) = 0, Υ ∈ {U, V }. (6)

Here Yij represents our outcome for subject i in group j, and Zij is the corresponding

subject-specific treatment, which we specify as continuous. Observed covariates divide

naturally into two types: Xij , which vary only within groups (e.g., the student’s sex), and

Wj , which vary only between groups (e.g., average teacher salary in the school). Note that

any observed covariate can be split into these two parts via group mean centering (Enders
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and Tofighi 2007; Neuhaus and Kalbfleisch 1998; Raudenbush 2009; Townsend et al. 2013),

and we do this automatically in software.2

Note that while group effects in the DGP are assumed to follow a normal distribution,

this is not overly restrictive if one allows for large values of the variance parameters (ψy, ψz).

This is consistent with Gelman and Hill (2007), who argue that unrestricted group effects

are simply those derived from a distribution with infinite variance.3 Moreover, our results

follow from orthogonality, not normality, assumptions. As we will see, estimation often

relies on simpler assumptions that intentionally only partially align with the DGP.

2.2 Estimating a treatment effect τ with grouped data

We wish to estimate τ , the treatment effect, using the model specified for Y , but we will

never observe the U or V leading to individual- and group-level confounding. Individual-

level confounding violates the strict exogeneity assumption of “fixed effect” models (within-

estimator models). Group-level confounding violates the so-called “random effects assump-

tion” of the between estimator model. The OLS estimator is biased when either assumption

is violated. See Greene (2003) for additional details.

Although each individual estimator will likely yield biased estimates, we will show how

the properties of each reveal important information that characterizes the unobserved con-

founding. We first define these estimators of τ in the context of grouped data.

• τ̂W (within estimator): This can be implemented in many ways, one of which is

to group-mean center all variables (including Z) and then regress the outcome on

these transformed predictors, reporting the coefficient on centered Z. The resulting

estimate τ̂W is equivalent to the so-called fixed effects estimate, τ̂FE , obtained by OLS

estimation on a model with indicators for each group (see Townsend et al. 2013, for

further details.). Translating the exogeneity assumption to the notation of our DGP,

this estimator assumes E(Zij(ζ
yUij + εyij)) = 0, which will only hold when either

ζy = 0 or ζz = 0.

• τ̂B (between estimator): This can also be implemented by group-mean centering all

predictors (including Z), adding the group means to the regression, and then reporting

the coefficient on the group mean of Z (in practice, estimation of between and within

effects can be made simultaneously). The random effects assumption translates to

2. Available at: https://github.com/priism-center/pre-CRAN/tree/master/compBiasMLM. Relately we

can also conceive of U and V as distinct parts of the same unobserved covariate – the part that works

at the individual level and the part that works at the group level.

3. We implicitly use this unrestricted version with indicator variables for group effects in so-called fixed

effects models.
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E(Zij(δ
yVj + αyj )) = 0, which will only hold when either δy = 0 or δz = 0. For sev-

eral different approaches and discussion, see Allison (2006); Neuhaus and Kalbfleisch

(1998); Griliches and Hausman (1986).

• τ̂OLS (OLS estimator): Here, we estimate the (pooled; see Gelman and Hill 2007)

treatment effect without group-mean centering Z. The ordinary least squares estima-

tor ignores the group structure; we demonstrate the utility of this estimator in what

follows.

We do not include the generalized least squares (GLS) estimator, also known as the

random effects estimator, in our discussion. It is a weighted-average of the within- and

between-estimators, but the weights introduce an additional parameter that we are unable

to unbiasedly estimate, and as such, we cannot easily “learn” from this model. See Townsend

et al. (2013) and Appendix B for some discussion. Causal researchers may note that these

estimators are sometimes use to target different estimands. However, in this case we assume

a DGP with constant treatment effects, therefore each of these estimators is estimating the

same estimand, τ .

2.3 Bias

We know that U and V are unobserved and introduce omitted variables bias when we

attempt to estimate the treatment effect τ . However, asymptotically, the within-estimator

(τ̂W ) is robust to bias introduced by V and the between estimator (τ̂B) is robust to bias

introduced by U . The OLS estimator (τ̂OLS) is robust to neither, but provides a potential

estimation strategy which offers a different hedge against either form of bias through an

implicit down-weighting process. In Appendix B, we provide more derivation details for the

asymptotic omitted variables bias under the various estimators τ̂W , τ̂B and τ̂OLS . We now

explore how these bias formulas may be exploited to bound the bias in our estimators.

Fixing the number of groups J and letting the sample size N go to infinity, the bias of

the fixed effects (within) estimator is

Bias[τ̂W ] =
ζyζzσ2u

σ2z + (ζz)2σ2u
(7)

The asymptotic bias for the between estimator, holding group size NJ constant (and letting

the number of groups J = N/NJ →∞) is:

Bias[τ̂B] =
ζyζzσ2u/NJ + δyδzσ2v

(σ2z + (ζz)2σ2u)/NJ + ψz + (δz)2σ2v
(8)

Asymptotically, the bias is:
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Bias[τ̂B] =
δyδzσ2v

ψz + (δz)2σ2v
(9)

We see that, asymptotically, the within estimator is unbiased with respect to group

confounding (δz and δy do not appear in the expression for the bias). On the other hand for

large group size the between estimator is unbiased with respect to individual confounding

(ζz and ζy do not appear in the expression for the bias). In practice however, group size

may be relatively small, in which case equation (8) is more accurate and the bias for the

between estimator depends on both individual and group-level confounding.

For the OLS estimator, asymptotically, the bias is:

Bias[τ̂OLS ] =
ζyζzσ2u + δyδzσ2v

σ2z + (ζz)2σ2u + ψz + (δz)2σ2v
(10)

Clearly, it is a function of both individual and group-level confounding. However, the σ2z
and ψz terms in the denominator offer an additional down-weighting of the bias induced by

the terms in the numerator, as compared to the asymptotic bias formulas for the between

and within estimators. These reveal the latter’s vulnerability: should the variance terms

in the denominator be relatively small, bias-inflation (of the numerator) is likely to occur.

See Middleton et al. (2016); Pearl (2012); Clark and Linzer (2012) for further discussion.

2.3.1 Comparison of Biases: “danger” zones

These bias equations demonstrate that no single estimator is uniformly preferable; bias is

situation dependent. We can “map” the zones in which within, between or OLS estimators

would be preferred, conditional on assumptions about sensitivity parameter product terms

ζyz = ζyζz and δyz = δyδz. We define the confounding space to be the coordinate plane with

x-axis ζyz and y-axis δyz. As we move away from the origin, in which there is no confounding,

the degree of between and within group confounding grows. Each of our estimators will

be more or less biased under these differing conditions. This form of sensitivity analysis,

in which properties of an unobserved confounder are mapped to bias, were developed in

Rosenbaum (2002) and Rosenbaum and Rubin (1983), but our approach is based more

closely on Imbens (2003) and the generalization thereof by Carnegie et al. (2016) and

Middleton et al. (2016). The extension to multilevel forms of confounding is underexplored

in the literature.

For this discussion, we can assume σ2u = σ2v = 1 without loss of generality. We will

primarily use version (9) of the between estimator in which group size is large for model

development, but may have the option of reverting to the finite group size results with real

data, where the group size might not be considered large. To proceed we define two terms
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(see also Appendix A):

cW = σ2z + (ζz)2

cB = ψz + (δz)2 (11)

Crucially, these sums are estimable unbiasedly from a model based on the DGP for Z; they

correspond to the within and between group level variance components, respectively (the two

components in each sum are not separately identifiable). Moreover we can benchmark the

magnitude of these terms because a common measure of between versus within variation,

ICCZ = cB/(cB + cW ), is a function of these terms and roughly characterizes different

scenarios that we might expect in real data.

We first consider the case in which Bias[τ̂B] ≤ Bias[τ̂W ]. This inequality translates into

an observable condition: ∣∣∣∣δyδzcB

∣∣∣∣ ≤ ∣∣∣∣ζyζzcW

∣∣∣∣ ⇐⇒ ∣∣∣∣ δyδzζyζz

∣∣∣∣ ≤ cB
cW

(12)

When the magnitude of between-to-within group confounding (as captured in our parame-

ters δ and ζ) is smaller than the estimable ratio of between-to-within group variance in the

treatment model (net of predictors), the between estimator will exhibit less absolute bias

than the within estimator.4 While we do not know the values of ζyz = ζyζz or δyz = δyδz,

we can identify portions of the confounding space (defined by these parameters) for which

one estimator is less biased (asymptotically) than another. The inequality establishes a

set of lines in the coordinate plane, intersecting at the origin, forming a partition into four

regions, where each side of the partition represents superior performance of one estimator

over another. The magnitude of the ratio drives the magnitude of the difference.

While there are several pairwise comparisons of methods that one could make, this

paper focuses on the within versus OLS estimator comparison. This mirrors the decision

to control for group effects using the so-called fixed effects estimator or not, as discussed in

Middleton et al. (2016) and Clark and Linzer (2012). In order for the bias in OLS to be

less than or equal to the bias in the within estimator, we require:

∣∣∣∣ζyζz + δyδz

cW + cB

∣∣∣∣ ≤ ∣∣∣∣ζyζzcW

∣∣∣∣ ⇐⇒ ∣∣∣∣ζyζz + δyδz

ζyζz

∣∣∣∣ ≤ cW + cB
cW

⇐⇒
∣∣∣∣1 +

δyδz

ζyζz

∣∣∣∣ ≤ 1 +
cB
cW

(13)

Note that 1 + cB/cW = 1/(1− ICCZ).

Figure 1 displays the difference in bias (OLS minus within) that would be incurred in

a set-up corresponding to our DGP under two different assumptions about the ICC for the

assignment mechanism, denoted ICCZ . Thus the blue regions correspond to products of

4. Going forward, we use the term bias and absolute bias to mean the latter, for convenience of exposition.
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the sensitivity parameters when the OLS model leads to worse results than the fixed effects

model. The pink regions correspond to combinations of the sensitivity parameters when

the OLS model leads to better results than the fixed effects model. In order to make a fair

comparison, the quantity cW + cB was held constant for the two ICCZ scenarios. As in

the prior discussion, we assume the variance of our confounders to be one, as these set the

scale of ζyz and δyz.

When ICCZ is moderate at 0.50 (left panel, figure 1), OLS provides a reasonable hedge

against fairly large bias. Referring to (13), when cW = cB, we see that the line ζyz = δyz

(indicated on plot) defines scenarios in which we are indifferent as to whether or not to

control for group effects. This suggests that while one will always be indifferent between

the within-estimator and the OLS estimator at the origin (when there is no confounding),

the line that indicates which is preferred will only fall on the 45◦ line when ICCZ=0.50.

On either side of the line, in the upper right and lower left quadrants (I and III), half of the

confounding space (blue) suggests that including fixed effects is the best solution and half

the space (pink) suggests that excluding fixed effects is the best solution. However, when

sign(ζyz) 6= sign(δyz), which is true for the upper left and lower right quadrants (II and

IV), very few scenarios would recommend including group (fixed) effects. This is due to the

strictly positive signs of cW and cB.

In the right panel of Figure 1, when ICCZ is smaller at 0.25, the within estimator has

lower absolute bias than OLS in a larger portion of the plane, particularly in quadrants I

and III. On average, however, the bias difference is smaller than the left panel (indicated

by lighter shades of both colors).

In general, a practitioner can estimate cB and cW unbiasedly through variance compo-

nent estimates from multilevel models for Z. From these, one can construct the absolute

bias difference plot and assess whether inclusion of group effects is prudent or whether cau-

tion is advised. In real data analyses, we do not know in which portion of the confounding

space we reside, but our substantive knowledge about a research question may help us as-

sign probabilities to different regions of the plot. Moreover, as we shall demonstrate, we

can constrain the possibilities further.

This “confounding space” framework suggests that one can and should evaluate the

potential implications of unobserved confounders for the particular problem. For example, in

order for the within-estimator to be unbiased, one must assume that unobserved confounding

is on the x-axis of our confounding space; alternatively, one would have to assume that the

ICC for Z is very small, forcing the bias difference also to be small.5 We examined several

5. This only suggests that neither method is superior; they may both be highly biased, of course, should

confounding be strong or susceptible to amplification.
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papers that document the ICC for different variables and domains6 and found that an ICC

of about 0.25 was quite common in fields such as education, social and behavioral studies,

while it tends to be a bit lower in biological and health studies (Altonji and Mansfield 2011;

Donner and Koval 1980; Hedges and Hedberg 2007; Hedges et al. 2007; Thompson et al.

2012). The ICC tends to reduce to about half of that size with full controls in a model. That

the ICC is rarely zero suggests that the estimation method (and thus model specification)

matters; if one estimates the ICC and it is near 0.50, then our framework suggests that

OLS has lower absolute bias over a wider range of the confounding space (for any square

centered at the origin), whereas for ICC below 0.25, the within estimator has less absolute

bias over a greater range of scenarios. If one wants to make a safer bet on the treatment

effect, the ICC and the resulting bias maps allow a more informed choice.

To reiterate, there is information in the data, revealed via multilevel modeling, that

can inform the analyst as to which scenarios lead to greater absolute bias and what is the

potential size of that bias difference. To assume that confounding is very close to the origin

and that the ICC for Z is small is imprudent and unnecessary; the former may be overly

optimistic and the latter may be directly evaluated a posteriori.

Figure 1: Difference in absolute bias when ICCZ = 0.50 and 0.25, respectively:

|bias[τ̂OLS ]| − |bias[τ̂W ]| estimators for a range of within and between group con-

founding. The blue regions correspond to combinations of the sensitivity param-

eter products when the OLS model leads to worse results than the fixed effects

model; the pink regions correspond to the opposite situation.

6. The goal of these papers was primarily to document ICC for use in power studies; thus, these estimates

are an attempt to consolidate substantive knowledge about what to commonly expect in real studies.
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3. Bounds on parameters from models of Y and Z

The above discussion emphasizes estimable components of variance from the assignment

mechanism and makes no attempt to constrain the sensitivity parameters. This is consis-

tent with the view that such parameters are given, or ranges of them are explored in a

sensitivity analysis, which is true. We now shift the focus to implicit constraints on these

parameters imposed by the data and DGP. As such, we subsequently refer to {ζy, ζz, δy, δz}
as confounding parameters. Given our DGP, we have clear expressions for the bias for each

of our estimators as a function of components of the response surface. Thus, if two mod-

els estimate the same effect but with different biases, then the difference in these biased

estimates provides an estimate of a bias difference relationship. We now develop models

and expressions for bias differences to exploit the fact that the functional form of this bias

difference is known asymptotically, conditional on our confounding parameters.

It is common in the multilevel setting to estimate models with fewer predictors first

and then include additional predictors, documenting changes in the proportion of variance

components explained. A set of nested sequential models explain different components

of variance in the same way that R2 may increase as one adds predictors to a regression

model. Under our causal inferential framework, estimates of the treatment effect are biased

whenever there are omitted confounders, and it would seem that this MLM sequential model

approach induces additional bias through the intentional omission of predictors. However,

under the DGP given by Equations (1)-(6), we precisely know the form of that bias. We

even have consistent estimators of the bias difference using multiple model specifications. A

key insight is that these bias differences are consistent when confounders are defined as per

our DGP. We essentially begin our analysis in a state of ignorance, in which confounding, as

parameterized by ζyz and δyz can take on any value in R2, but through multiple multilevel

model estimates, we will learn that only a limited subspace of R2 is consistent with the

data and our understanding of its multilevel structure. This approach allows us to partially

identify the characteristics of the confounders (see Gustafson 2015, for discussion of partial

identification).

3.1 Multistage models for Y

We build Models MY
0 and MY

1 for Y . The first model contains no predictors. The second

model contains group-mean centered individual-level predictors, denoted Xij − X̄·j , the

corresponding group means, X̄·j , as well as any other group level predictors Wj . This

process will yield a set of variance components that will change from model MY
0 to model

MY
1 , and we will use these to identify plausible values for the confounding parameters.

Both models contain the terms (Zij − Z̄·j) and Z̄·j , allowing us to estimate the within and

between treatment effect estimators simultaneously, under two different model specifications
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(and thus bias). The orthogonality of terms in this hybrid model specification (Neuhaus

and Kalbfleisch 1998) ensures that predictor effects are isolated to specific components of

variance as well.

We name the parameters in MY
0 and MY

1 slightly differently to distinguish them from

prior MLM equations and to emphasize the smaller number of identifiable parameters in

these models:

Yij = βy00 + τW0(Zij − Z̄·j) + τB0Z̄·j + αyj0 + εyij0 [MY
0 ] (14)

Yij = βy01+(Xij−X̄·j)βyW1+X̄·jβ
y
B1+τW1(Zij−Z̄·j)+τB1Z̄·j+Wjγ

y
1 +αyj1+εyij1 [MY

1 ] (15)

with αyj0 ∼ N(0, σ2
αy
0
), αyj1 ∼ N(0, σ2

αy
1
), εyij0 ∼ N(0, σ2

εy0
), and εyij1 ∼ N(0, σ2

εy1
), all mu-

tually independent, where τW0, τW1 are the corresponding within-group treatment effects

and τB0, τB1 are the corresponding between-group treatment effects. These are models, not

DGPs, so under our true DGP, τW0 6= τW1 6= τB0 6= τB1 6= τ , due to (intentional) model

misspecification and omitted confounders U and V . We will exploit the fact that estimates

of {τW0, τW1, τB0, τB1} will vary depending on the magnitude, direction and type of con-

founding. Note as well that in our estimated models, we separate within- and between-group

predictors and use group-mean centering to enforce this. Restricting the predictors to vary

strictly within or between groups allows us to attribute the change in variance components

from MY
0 to MY

1 as strictly derived from one or the other type of predictor as well as expect

the variances to be non-increasing as such predictors are added. Thus, going forward, all

within-group predictors are given by X∗ = Xij − X̄·j and all between-group predictors by

W ∗ = {Wj , X̄·j} to emphasize the separation, which is central to the analysis.

We first fit model MY
0 , which has intentionally omitted predictors X∗ and W ∗. The

parameter estimate τ̂W0 is equivalent to a within-group estimator (Allison 2006; Neuhaus

and Kalbfleisch 1998). The exact form of the bias term (due to all omitted predictors) is

given in Appendix B expression (B.11), but we repeat it here for exposition purposes under

the newly introduced notation, and note that in the appendix, X represents individual-level

predictors and W represents group-level predictors, so we are just changing the notation

slightly to be consistent with that derivation.

In what follows, we use the asymptotic expectations for the bias expressions without

indicating the limit notationally, for convenience; without loss of generality, continue to

assume σ2u = σ2v = 1. Note as well that any parameters listed are true values from the DGP

equations (1)-(6), not estimated in our models – the latter parameters have subscripts to

differentiate them.

Bias[τ̂W0] =
ζyζz + βy ′V (X∗)βz

σ2z + (ζz)2 + βz ′V (X∗)βz
(16)

Fit model MY
1 . Let τ̂W1 be the estimate of τ from a within-group estimator for this

model. The exact form of the bias term is given in Appendix B expression (B.5), but we
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repeat it here, as a function of the confounding parameters:

Bias[τ̂W1] =
ζyζz

σ2z + (ζz)2
(17)

We now write the estimators in terms of the true values of the treatment effect and

the bias: τ̂W0 = τ + Bias[τ̂W0], where τ is the true treatment effect, and Bias[τ̂W0] is

the bias associated with model MY
0 , while τ̂W1 = τ + Bias[τ̂W1]. Then τ̂W0 − τ̂W1 =

Bias[τ̂W0] − Bias[τ̂W1] (the true τ ’s cancel). We apply this to the derived expressions for

asymptotic bias, and find (as a function of finite common group size Nj):

τ̂W0 − τ̂W1 = Bias[τ̂W0]− Bias[τ̂W1] =
ζyζz + βy ′V (X∗)βz

σ2z + (ζz)2 + βz ′V (X∗)βz
− ζyζz

σ2z + (ζz)2
(18)

Applying the same procedure, deriving the bias difference for the between estimators of

τ for models MY
0 and MY

1 , yields

τ̂B0 − τ̂B1 = Bias[τ̂B0]− Bias[τ̂B1] (19)

=
(ζyζz + βy ′V (X∗)βz)/Nj + δyδz + γy ′V (W ∗)γz

(σ2z + (ζz)2 + βz ′V (X∗)βz)/Nj + ψz + (δz)2 + γz ′V (W ∗)γz

− ζyζz/Nj + δyδz

(σ2z + (ζz)2)/Nj + ψz + (δz)2
,

which has a simpler form when group size is very large.

3.2 Multistage models for Z

Now fit the corresponding models (without and with controls, respectively) for Z:

Zij = βz00 + αzj0 + εzij0 [MZ
0 ] (20)

Zij = βz01 + (Xij − X̄·j)βzW1 + X̄·jβ
z
B1 +Wjγ

z
1 + αzj1 + εzij1 [MZ

1 ] (21)

with αzj0 ∼ N(0, σ2αz
0
), αzj1 ∼ N(0, σ2αz

1
), εzij0 ∼ N(0, σ2εz0

), and εzij1 ∼ N(0, σ2εz1
), all mutually

independent. We can unbiasedly estimate all of the variance components for the Z process,

with σ̂2εz0
, σ̂2εz1

, estimates of the denominator sums in (18): σ2z + (ζz)2 + βz ′V (X∗)βz and

σ2z + (ζz)2, respectively, which we can shorthand as cW0 and cW1, referring to a partition of

the Z process variance, as per (11). Similarly, σ̂2αz
0
, σ̂2αz

1
, respectively, are estimates of certain

terms in the denominator sums in (19): ψz + (δz)2 + γz ′V (W ∗)γz and ψz + (δz)2, which we

can shorthand as cB0 and cB1 as per (11). We replace products of confounding parameters

by using these definitions and notation: ζyz = ζyζz, δyz = δyδz, βyz = βy ′V (X∗)βz and

γyz = γy ′V (W ∗)γz. Then under our assumptions,

∆W = Bias[τ̂W0]− Bias[τ̂W1] =
ζyz + βyz

cW0
− ζyz

cW1
(22)

∆B = Bias[τ̂B0]− Bias[τ̂B1] =
(ζyz + βyz)/Nj + δyz + γyz

cW0/Nj + cB0
− ζyz/Nj + δyz

cW1/Nj + cB1
(23)
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See Appendix A for summary of notation. We maintain the “finite number of groups”

version of the equations in this case, as it is easy to remove the terms later. We note that

expressions for βyz and γyz have only one term each that is not unbiasedly estimable – the

parameters {βy, γy} from the equations in models MY
0 and MY

1 , respectively. We also note

that the above expressions are for fixed group size in the asymptotics.

3.3 A multistage OLS model

There is one more piece of information that we have yet to use. While we cannot fit a GLS

(or random-effects) model without introducing an additional parameter λ (see Appendix B,

equation (B.8)), we can fit OLS models without introducing any new parameters.7 We fit

new models MY
2 and MY

3 , in which we do not group-mean center Z, as

Yij = βy02 + τO2Zij + εyij2 [MY
2 ]

Yij = βy03 + (Xij − X̄·j)βyOW3 + τO3Zij + X̄·jβ
y
OB3 +Wjγ

y
O3 + εyij3 [MY

3 ]

using OLS (thus the subscript ‘O’). These assume simpler error structure with εyij2 ∼
N(0, σ2

εy2
) and εyij3 ∼ N(0, σ2

εy3
) independent, and no group effects.

Then the bias difference equations for OLS (maintaining the definitions of X∗ and W ∗)

are:

Bias[τ̂O2]− Bias[τ̂O3] =
ζyζz + βy ′V (X∗)βz + δyδz + γy ′V (W ∗)γz

σ2z + (ζz)2 + βz ′V (X∗)βz + ψz + (δz)2 + γz ′V (W ∗)γz

− ζyζz + δyδz

σ2z + (ζz)2 + ψz + (δz)2

and the asymptotic change in bias between MY
2 and MY

3 can be written:

∆O = Bias[τ̂O2]− Bias[τ̂O3] =
ζyz + δyz + βyz + γyz

cW0 + cB0
− ζyz + δyz

cW1 + cB1
. (24)

3.4 Constraints to confounding parameters

We now have three equations (22)-(24), and four unknowns, ζyz, δyz, βyz, γyz. Our sequential

models MY
0 -MY

3 provide estimates of ∆W , ∆B and ∆O. We can add a fourth equation,

effectively assigning a value to one of the four unknowns, and then all others will be a

function of it. This set of equations constrains the space of confounding parameters from

the entire δyz − ζyz plane to a single line. We can express all relationships with this linear

7. Adding a new parameter with a new equation is problematic in this context; in particular, we cannot

estimate λ unbiasedly.
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system of equations (letting group size go to infinity for the between estimators):
1

cW0
− 1

cW1
0 1

cW0
0

0 1
cB0
− 1

cB1
0 1

cB0
1

cW0+cB0
− 1

cW1+cB1

1
cW0+cB0

− 1
cW1+cB1

1
cW0+cB0

1
cW0+cB0

0 0 0 1




ζyz

δyz

βyz

γyz

 =


∆W

∆B

∆O

η


(25)

The fourth row in the set of equations specifies the value of one open parameter, η; we

evaluate the conditions for the matrix inversion when the open parameter is in the third or

fourth column. The requirement reduces to cW0
cW1
6= cB0

cB1
, which will be easily satisfied if both

types of predictors reduce the unexplained group and individual level variation in different

proportions. This can also be understood as the within and between estimators providing

different information about the unknown parameters. In addition, for this parametrization,

cB1 6= cB0 and Nj > 1 is required in the finite group-size equations (not shown). In MLMs,

this translates to some additional variance of the type associated with the open parameter

η needs to be explained by MZ
1 over MZ

0 .

From (25), we can solve for ζyz, δyz and βyz given γyz = η, e.g. As alluded to above,

our choice to allow either βyz or γyz to vary was not arbitrary. First, we are most interested

in the relationship between ζyz and δyz; we characterize this as the confounder space.

Expressing these parameters in terms of a less central parameter enables this.

The solution to the system of equations is a line in confounder space. While this is

a dramatic improvement, in terms of restricting the plausible confounding scenarios, the

line is still of infinite length, covering a wide range. However, practically speaking, con-

founders exhibiting “effect sizes” beyond one or two standard deviations are implausible,

so restricting the line to a segment could be governed by substantive knowledge. Fortu-

nately, we are also able to further restrict the set of possible scenarios by learning from

the data and models. We first form a bound for γyz = γy ′V (W ∗)γz by noting that

it is a particular covariance, Cov(W ∗γy,W ∗γz). From the Cauchy-Schwartz inequality,

|Cov(W ∗γy,W ∗γz)| ≤
√

Var(W ∗γy)Var(W ∗γz), and this translates to |γy ′V (W ∗)γz| ≤√
γy ′V (W ∗)γyγz ′V (W ∗)γz. The second term in the product, γz ′V (W ∗)γz, may be esti-

mated unbiasedly from (21). The first term, γy ′V (W ∗)γy, requires a little more work; it

may be bounded by noting that it captures a portion of between group variation in Y .

Unfortunately, even the between group variation estimable from an unconditional means

model for Y , call this cyB, may underestimate γy ′V (W ∗)γy when group effects in Z negate

the additional group effects in Y , under our DGP. So a potential bound for γy ′V (W ∗)γy is

cyB, but it may not be sufficient. Bound cyB fails when τWγz = −Wγy; this is when the

contribution of γy ′V (W ∗)γy to the total variance in Y is masked. This worst case “cancel-

lation” should provide us with an alternative upper bound for γy ′V (W ∗)γy; this is when
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γy = −τγz. That condition implies γy ′V (W ∗)γy = τ2γz ′V (W ∗)γz, so that |τ |γz ′V (W ∗)γz,

is an alternative upper bound for |γyz|. We set a bound by choosing the maximum of

|τ |γz ′V (W ∗)γz,
√
cyBγ

z ′V (W ∗)γz, and the (biased, so possibly under-) estimated value of√
γy ′V (W ∗)γyγz ′V (W ∗)γz. Underestimation could occur because cyB may be biased. By

choosing the largest of three estimates, the overall approach is conservative; the bound

under the cancellation scenario (γy = −τγz) will overcompensate when cancellation does

not occur. One may be surprised to require a value for τ , but it may be chosen to be

conservative. In practice, one often has some sense of the magnitude of the treatment effect

size (the sign is not needed for this bound).

3.5 Characteristics of the line in confounder space

The prior results indicate that multistage multilevel models can be used to constrain the

confounding space to a line segment. We highlight a few characteristics of that line that

are implied by the form of the equations. Additional details are given in Appendix C. The

first slightly unexpected implication of the system of equations is that their solution for

non-degenerate cases is always a positively sloped line in the δyz − ζyz plane. The slope is

the ratio of two variance components, and since these must be non-negative, the sign must

be non-negative too. While expressions can be derived for the points at which the line

crosses either axis, they do not reduce to a simple form. One insight gained is that only a

very limited set of values for the confounding parameters would result in the line crossing

quadrant II. This is the scenario in which the signs of unobserved within confounding is

positive, while it is negative for the corresponding between group confounding. To date, we

have not found a dataset and model yielding a line in quadrant II, but they clearly can be

created in simulated data.

3.6 Further implications of the framework

Assuming the DGP approximates the observed process reasonably well, the system of equa-

tions (25) have strong implications for what must be true in the absence of confounding or

situations in which confounding is minimal. For example, if ζyz = 0, then the first row of

(25) reduces to βyz = cW0∆W and we have identified βyz unbiasedly. Forming the contra-

positive, we can learn about the plausibility of the unbiasedness assumption, ζyz = 0. The

extent to which β̂yz 6= ĉW0∆̂W is evidence against the supposition that ζyz = 0. Similarly, if

we make the assumption that ζyz = 0 and δyz = 0, then using the third row of (25), we have

the expression βyz + γyz = (cW0 + cB0)∆O. Under these two assumptions, all terms in this

expression can be estimated unbiasedly, providing us with additional necessary conditions

for unbiasness to hold. In the example using real data, we demonstrate how versions of

these implications may be utilized.
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Of course, we could find less directly testable implications under weaker assumptions

(for example we might know the sign of some parameters once we know the sign of the bias

difference). The complex interplay established by the system of equations suggests that we

learn a great deal by simply determining in which portion of the confounding space we are

most likely to reside, given our modeling assumptions (DGP) and data.

3.7 Simulation Study

To confirm the intuition discussed above and to begin to understand the inferential proper-

ties of the model-based estimates in finite samples, we conduct a simulation study. Rather

than being a full model-based approach, our sensitivity analysis relies on the asymptotic bias

of a set of related estimators. This framework limits our ability to make inferential state-

ments about point estimates and coverage, but this is common in the realm of sensitivity

analysis, in which we explore hypotheticals.

The primary purpose of this simulation study is to verify the somewhat bold implications

of our modeling framework, namely, that a set of multilevel model fits to a given dataset

imply a highly constrained set of possible confounders a posteriori. These, in fact, are

limited to a line segment in the δyz − ζyz plane; the “truth” must be contained in this

segment. Does this work in practice? Before delving into the details of the simulation we

note that several factors are likely to introduce error in the specification of the line segment,

and our goal is to quantify the potential impact that they may have. Examples of error-

inducing factors include: the idealized nature of asymptotic expectations, the potential

numerical instability of linear equations8 and the DGP linearity and additivity assumptions

themselves. We only control for the latter.

For the simulation study, we focus on a case in which the sample size is moderately

sized: 100 groups of size 40. This is close to the “middle of the road,” in which asymptotics

are unlikely to fully hold, and sampling variability could be moderate. An important choice

is the range of ICCZ that we explore. We report results for the range 0.4 − 0.6, as it is

where problems are more likely to emerge (we computed similar assessments with ICC in

the 0.15− 0.35 range as well, with comparable or better results in terms of coverage).

To explore the space of confounding, we vary the parameters {ζy, ζz, δy, δz} so that they

approximately assume the values {−1.0,−0.7,−0.5,+0.5,+0.7,+1.0}9, while the values of

σ2α and σ2ε are fixed at 1 for both Y and Z models. The treatment effect (τ) is set to one,

but the implicit effect size, based on the variance of the Z process, varies from 1.5 to 1.8.

The predictors X and W are simulated as standard normals, and enter the DGP for Y

8. Several terms defining the relationships between confounding parameters are reciprocals of differences in

variance components.

9. Before entering the DGP, ζy and δz are perturbed by plus or minus 10%, respectively, to prevent

singularity of the matrix in the system of equations.
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and Z with the corresponding coefficients β and γ set to 1. These choices yield 64 = 1296

unique tuples of confounding parameters, with 0.40 ≤ ICCZ ≤ 0.60.

For each of the 1296 combinations, we simulate 100 datasets drawn from the DGP with

the two confounders, U and V , included but effectively unknown to the analyst. We then

apply our method to each simulated dataset, using τ = 1.5 in the bounds calculation. By

choosing a small τ , we potentially underestimate the bounds on γyz upon which we rely

for constructing (bounded) line segments, so this is a conservative choice for the simulation

study. Each dataset and model fit yields a single line segment in confounding space, and

the set of 100 (all under the same DGP) form an ensemble of segments that cover a portion

of the confounding space. The maximum and minimum coordinates from the line segment

identify two diagonally opposite corners of a rectangle, establishing our marginal bounds

for each confounding parameter across the corresponding axis.

In the presence of uncertainty, identifying a subset of the confounding space consistent

with the data and model is important. Asymptotically, we expect the line to contain the

true confounding parameters, but it is an approximation in a finite sample. Our simulation

determines how often we successfully identify the range of the confounding parameters given

sampling variability common to real data for an exemplary case in which confounding has a

strong effect (ICCZ ≈ 0.50). We calculate this success rate in our simulations by computing

the percent of simulated line segments for which the corresponding rectangle covers the true

(δyz, ζyz) used in the DGP. This rate does not represent classical confidence bounds; rather,

it is simply an assessment of the success of our method in covering the true confounding

parameters.

Coverage as defined in this way is 100% for δyz, while it is between 90% and 100% for

ζyz. Thus, our method is excellent at identifying a subset of the confounding space that

contains the true value of δyz. Note as well that for 93% of the cases, coverage for ζyz is at

least 95%, and recall that our choice of τ was conservative (small). If we had simulated using

a larger value of τ , the line segment would be longer, and the enclosing rectangle larger,

so we would cover the true within-group parameter more often. Upon closer inspection,

we find that the specific draws from the DGP whose corresponding lines fail to cover the

true parameters involve a system of linear equations that tend to have larger condition

numbers.10 A conservative strategy would thus include screening based on this condition

number. When computing the line segment determined by the system of equations, we can

report the condition number of the associated matrix. In these simulations, if we exclude

cases in which the condition number exceeds 6000, then of those remaining, we fail to

10. A large condition number implies that small perturbations in the terms in the linear equations yield

large changes in the solution, which in our case is the line segment.
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cover ζyz only 1.3% of the time.11 The line segment in analyses with a smaller condition

number is thus extremely likely to contain the true confounding parameters, which is a

major step forward, in terms of evaluating the conditions required for the treatment effect

to be unbiased.

The use of a bounding rectangle is a marginal analysis (each parameter taken separately),

which is useful, but in practice, we will be generating line segments and we are interested in

determining how often the space covered by an ensemble of segments “covers” points in the

true segment; this is a more specific test of an oracle property of our method. We compute

the line segment determined by the (true) parameters of the DGP, using the same choice

for τ = 1.5 in the bounds.12 We note that the ensemble of line segments is, for the most

part, quite precisely estimated. Variation from sample to sample is not tremendous, unless

the line was determined from a system of equations with a very large condition number.

For a two-dimensional test of coverage, we take the ensemble of line segments generated by

a tuple, remove those generated from a linear system with condition number larger than

1000 (about 5% of lines across the full set of simulations), and then take the convex hull of

the remaining line segments.13 Across 1296 confounding scenarios, we have 100% coverage

by this convex hull 98% of the time, with all but five scenarios with coverage at or above

95% (the lowest was 87% but the four remaining were at 94%).

We looked more closely at the five scenarios with line coverage below 95% and find them

to be only slightly atypical, but all similar to each other. Their main characteristic is that

the signs of ζy, ζz terms are opposing, as are the signs of the δy, δz terms, and those terms’

magnitudes are relatively small. The ICCZ is close to 0.60 in four out of five cases. The

opposing signs could lead to partial masking of variance components in the Y process, and

thus our bounds on the line would rely on the guess for τ in one of the bounding terms. In

fact, upon visual inspection we see that the “true” line (based on the known DGP) extends

slightly outside the space of the sampled lines, and this is where the lack of coverage occurs

(it is not a matter of the slope being incorrect; rather, the ensemble of line segments are

slightly too short as they are based on a conservative bound set by the choice of τ .).

Overall, these simulations suggest that in moderately sized samples the framework and

resulting sensitivity analysis are fairly robust to different types of confounding. With smaller

levels of confounding or smaller ICCs, our methods have equal or better coverage properties.

11. A cutoff of 6000 excludes fewer than 0.8% of cases, and of these, 20% would have shown acceptible

coverage of the true parameter.

12. This idealized case and its corresponding line most closely resemble a situation in which we have a very

large sample and group size.

13. Removing outlying lines before taking the convex hull is again, a conservative approach. We used a

condition number of 1000 to remove essentially all outliers, as these would inappropriately expand the

convex hull.
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4. Example using IEA Data

We apply this form of sensitivity analysis to a study conducted by the International As-

sociation for the Evaluation of Educational Achievement (IEA) in 1970-1971. The study

adopted, as measures of verbal ability, a test of reading comprehension, a brief test of speed

of reading, and a brief test of word knowledge. Student, teacher and school level covariates

were collected. The test was undertaken on three levels, 10-year-old students, 14-year-old

students, and students in the final grade of the secondary school. The analysis we present

here is based on the final secondary school grade. A multinational study, participating edu-

cational systems for this outcome include: Australia, Belgium (Flemish), Belgium (French),

Chile, England, Finland, France, Hungary, Iran, Israel, Sweden, Thailand, and USA, among

others.14 In this two level (students within schools) analysis, we used number of books at

home as the treatment variable, the sex of student, hours spent on homework per week, the

raw score of a word knowledge test as individual level controls, with the size of the school,

and type of community the school serves (a measure of urbanicity) as group level controls.

Within-school controls were group mean centered as required by our modeling framework.

The dependent variable is the reading comprehension test raw score. All variables, includ-

ing the outcome, were standardized to aid in interpretation. Each country is treated as a

different dataset in our analysis. Results from three countries, Italy, Scotland and Sweden

are presented. The countries chosen reflect a range of scenarios one might experience in

practice. Three of the fifteen countries in our analysis dataset yielded condition numbers

larger than 1000, so these were not considered in our selection.

For any country, the first row of Table 1 lists estimates of the treatment effect τ for the

within, between and OLS estimators, respectively, for a model that excludes all predictors

other than the treatment. The second row provides estimates for models that include the

available predictors. Analysts typically privilege the second set of estimates over the first,

as potential confounders have been controlled, increasing the plausibility of ignorability.15

However, we use the difference in these two (third row, estimates of ∆W ,∆B,∆O), which

we have shown can be used to narrow the viable range of any remaining confounding. We

also summarize the variance components estimated from the models for Z in Table 2. These

are important inputs to our constraint equations. The terms we note as cW and cB, which

contain within and between group variation, respectively, are further denoted by subscripts

0 and 1 to indicate models without and with controls, respectively, and are presented in

Table 2. From these, we can estimate intra-class coefficients (ICCZ), which succinctly

14. See Peaker (1975) and the following link (http://ips.gu.se/english/Research/research databases/

compeat/Before 1995/Six Subject Survey/SSS Sample) for a detailed description of the sampling de-

sign.

15. For all three countries, the within and OLS treatment effect estimates are highly significant, at conven-

tional levels; the between estimates are similarly significant, except for Italy, for which p = 0.06.
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Treatment Effect (τ̂)

Country/Model Within Between OLS

Italy

without predictors 0.12 0.33 0.22

with predictors 0.06 0.11 0.08

difference (∆bias) 0.06 0.23 0.14

Scotland

without predictors 0.20 0.52 0.28

with predictors 0.08 0.52 0.15

difference (∆bias) 0.12 0.00 0.14

Sweden

without predictors 0.14 0.40 0.17

with predictors 0.08 0.28 0.09

difference (∆bias) 0.06 0.12 0.07

Table 1: Multilevel model-based estimates of treatment effect for models excluding and

including individual and school predictors.

Country cW0 cB0 ICCZ0 cW1 cB1 ICCZ1

Italy 0.75 0.28 0.27 0.74 0.22 0.23

Scotland 0.81 0.19 0.19 0.78 0.14 0.15

Sweden 0.93 0.08 0.08 0.91 0.04 0.04

Table 2: Multilevel model-based within and between schools variance components and

ICCZ estimates for models for Z excluding and including individual and school

predictors.

summarize the proportion of total variation in treatment that is between groups, net of

controls.

In the system of equations given in (25), we examine a grid of values for open parameter

η = γyz, bounding the range using the constraints derived in the last section. These bounds

are not likely to be sharp, as we are choosing the maximum of three bounds to ensure

that we are not misled by potentially biased estimates involved in the construction of the

bounds. In practice, we use the minimum of this bound and a complementary bound based

on setting the open parameter η = βyz rather than γyz and utilizing a correspondingly

modified version of (25). This allows us to tighten the bounds somewhat in some instances.
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We create a bias difference plot for the within versus the OLS estimators for the model

including predictors (MY
1 or MY

3 ), across a range of (δyz, ζyz) based on the constraints

implied by the range for η = γyz. These plots initially provide us with two pieces of

information: a finite range of (δyz, ζyz) consistent with the data and model; and the extent

to which absolute bias is larger or smaller when using the within or OLS estimators.

Figure 2: Difference in absolute bias for Italy: |bias[τ̂OLS ]|− |bias[τ̂W ]| for a range of within

and between group confounding (see text for more details)

Refer to Figure 2 for Italy. Recall that axis scale and range are determined by the

endpoints of the line segment. The range of plausible standardized ζyz is much larger than

that of δyz when you focus on the scale. Being able to constrain the sensitivity analysis to

this rectangle within the δyz−ζyz plane is an important contribution of this approach. Note

that the ICCZ1 for Italy is moderate, at 0.23, so the potential for bias when comparing
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Figure 3: Difference in absolute bias for Scotland: |bias[τ̂OLS ]| − |bias[τ̂W ]| for a range of

within and between group confounding (see text for more details)
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Figure 4: Difference in absolute bias for Sweden: |bias[τ̂OLS ]| − |bias[τ̂W ]| for a range of

within and between group confounding (see text for more details)
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estimators is moderate, when you examine the color scale, which is in standard deviation

units of the outcome.

We now explain the additional elements of these figures. First, a thick grey line is in-

cluded in the plot. The data, model and asymptotic-expectation-based constraint equations

imply this further restriction on confounders ζyz and δyz; namely, this line is our “point

estimate” of their values, consistent with the observed data and assumed model.16 Again,

this is a dramatic restriction on the potential for confounding. Without bounds and the

system of equations (25) based on multiple multilevel fits, we could only have plotted ζyz

versus δyz based on cW1 and cB1, but we could not have restricted the range of plausible

scenarios, neither in terms of the range of the axes (the rectangle) nor to the line segment

itself.

In addition to the line, we plot four points. A circle is situated at the intersection

of ζyz = 0 and the grey line. This represents the point of no within-group confounding

that is consistent with the data and DGP model. It is a single point, and a corresponding

estimate of τ can be calculated (to be discussed shortly). Next, symbol ‘+’ marks the

intersection of δyz = 0 and the grey line. This represents the assumption of no remaining

group-level confounding that is consistent with the data and DGP. It is a single point as well.

Ideally, these points would be very close to each other and thus near the origin, representing

minimal or no unobserved confounding. When these two points are far from the origin, the

hypothesis of no unmeasured confounders is not supported in the following sense. Since

the truth lies on the grey line, one that does not pass through or near the origin suggests

that either there is group-level confounding or individual-level confounding present. The

data, relying on a model for confounding, informed us of this fact. The estimates of τ may

be “corrected” by subtracting the asymptotic bias derived in our formulas, plugging in the

confounding parameters (δyz, ζyz) given by each location on the line. These are given for

key points on the line segment as well. The “less biased” estimator (in an absolute sense,

based on the asymptotic bias inequality (13)) is reported, and indicated by a subscript ‘o’

or ‘w’ (OLS or within, respectively).

These points and the line upon which they reside form a sensitivity analysis of the

implications of group- and subject-level confounding in this multilevel setting. The range of

estimates for τ for different confounding parameters indicates how sensitive findings are to

the assumptions. In addition, the absolute bias difference between estimators indicates the

level of the “danger zone”17 and the trade-off between estimators. Note that rather than

“zoom in” on these points, we show the restricted subset of the coordinate plane consistent

16. Given that our results are based on asymptotic expectations, the line is what we would expect in very

large samples, assuming the parameters estimated remain approximately the same.

17. We use this term to refer to confounding scenarios in which one estimation method (under its assump-

tions) has much larger absolute bias than another.
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with data and model. Arguably, when the data and model do not restrict the subset to

be near the origin, one must allow that the potential for unobserved confounding may be

large.

Next, a square symbol is placed on the grey line at a point based on the estimated value

of βyz. Under conditions derived previously (ζyz = 0; see Section 3.6), our models will yield

unbiased estimates of this parameter; if so, they provide the value of the fourth unknown in

our linear system of equations, which implies a specific point (on the grey line) in the δyz−ζyz

plane. The extent to which the square’s location differs from the circle’s is evidence against

the unbiasedness with respect to subject-level confounding. Their distance suggests evidence

opposing the assumption; i.e., if ζyz = 0, then βyz should be unbiased, so the two points

should be (nearly) coincident. It is a thought experiment, the implications of which can

be made explicit, with their discrepancy offering evidence against the original assumption.

For Italy, the distance is not tremendous, and the two estimates of the treatment effect,

although recommended for different estimators, are close. Both indicate a treatment effect

close to zero.

In the same manner, symbol ‘×’ is placed at a point based on the estimated value

of γyz, and the extent to which this differs from the point marked ‘+’ is evidence that

group level confounding should be a concern.18 In Figure 2, for Italy, the symbols ‘+’

and ‘×’, representing the assumption that δyz = 0, are somewhat near each other, with

corresponding τ values near 0.5. OLS estimates are less absolutely biased near these points,

but the difference is not too large. Unfortunately, we cannot determine the direction of

bias from the points on these plots (the true τ could be to either ‘side’ of the corrected

estimates). Thus, each point represents a confounding scenario based on some restrictive

assumption. To the extent that all points are close to one another, a consistent story is

plausible. To the extent that they diverge, one must concede that further confounders may

be lurking.

While the two stories (based on assumptions regarding within- or between-group con-

founding) are not identical, they are similar, in that the treatment effect size is small or

zero. However, each is based on a strong assumption of the lack of one form of confounding,

and we have no way of knowing whether the remaining points on the grey line are plausible.

The range of plausible scenarios would suggest negative treatment effects in quadrant I,

as well as much larger positive treatment effects in quadrant III. This range is large, but

a substantive researcher could contend that a negative treatment effect is not consistent

with theory, and thus one could further restrict the sensitivity analysis to reflect this. For

Italy, this contention implies that there remains individual level confounding with ζyz < 0.

18. Note that if either ζyz 6= 0 or δyz 6= 0, γyz may be biased, but we wish to explore the extent to which

the implications of this estimate are consistent with those that only assume the latter.
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A cautious practitioner might choose to use OLS over a within-group estimator given this

evidence.

Evaluating the implications of the lack of within or between group confounding is impor-

tant even if one plans to use so-called econometric fixed effects (within group) estimators,

which are unbiased in the presence of group confounding. Should the evaluation give the

practitioner reason to doubt that within-group confounding has been removed, then the

within-group estimator will be biased, and the extent of this bias ought to be examined.

In Figure 3, for Scotland, we first note that the range for both within and between

group confounding (the rectangular portion of the δyz − ζyz plane) is smaller than it was

for Italy. Our bounds on the line are strong enough to restrict us to this smaller range or

“strength” of confounding. In other words, the mixtures of confounding (between, within)

consistent with the data and models cover a smaller portion of the coordinate plane, the

majority being in quadrant IV. However, the differences between estimates under different

assumptions are more dramatic in the sense that estimates of τ at the two intersections of

the grey line and ζyz = 0 and δyz = 0 disagree by over 1 unit. The ‘+’ and ‘×’ symbols

are somewhat near each other, as are the circle and square, so there is at least an internal

consistency under different assumptions on the extent of confounding. However, these two

different assumptions (within or between group confounding being negligible) yield quite

different estimates of τ .

Perhaps the discrepancy between all four estimates gives the practitioner reason to pause

and reconsider the set of control variables, particularly within group, where the extent of

confounding is likely to be large. The location of the bulk of the line segment suggests that

OLS offers a “hedge” against the potential within group confounding. The OLS estimate of

τ in Table 1 is 0.15, which is about twice the within-group estimate, but is somewhat robust

to failure of that estimator’s key assumption. Equally to the point, if one fit the within

estimator and did not perform the above sensitivity analysis, one would be ignoring the

bulk of a posteriori evidence that ignorability (at the individual level) was not satisfied.19

Thus, blindly utilizing a within-estimator in this situation is inadvisable.

Figure 4, for Sweden, might at first appear to resemble the graphic for Italy but there are

important differences, which we now highlight. While the estimates of τ assuming ζyz = 0

or δyz = 0 are similar to those of Italy, and differ by about 0.5, the pattern of the implied

estimates of βyz and γyz differs – the ‘×’ should be closer to the ‘+’, but the square is,

suggesting a greater discrepancy in the implications of the assumptions. Such discrepancy

should give the researcher reason to pause and reassess the sufficiency of the controls. Upon

deeper inspection, however, it appears that the magnitude of both types of confounding is

19. The proportion of the confounding space that is consistent with ignorable individual-level confounding

is small. The plot provides the implications of various assumptions; one would have to have very strong

priors to ignore so much of the potential confounding space.
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smaller for Sweden (the portion of the plane is smaller upon examining the axes’ scales).

Further, the difference in estimates obtained by using the OLS versus within estimators is

smaller than it was for Italy. The results are less sensitive to choice of estimator, yet about

as sensitive to assumptions regarding the extent of remaining confounding. Perhaps bias

amplification or unmasking (Middleton et al. 2016; Pearl 2012) is less of a concern given this

lack of sensitivity to estimator. Again, this country is an example in which individual-level

confounding dominates the sensitivity analysis, suggesting that ignorability is questionable.

However, the choice of estimator cannot compensate for this, given the small difference in

magnitude of OLS versus within estimates on the line segment determined by the analysis.

5. Discussion

This approach to multilevel sensitivity analysis provides the researcher with far more in-

formation about the range and impact of potential omitted confounders than the results

obtained from using any of the individual estimators on its own. Furthermore it provides

more information than traditional sensitivity analyses that explore the impact of a single

confounder. Our approach quantifies the extent to which different estimators can be ex-

pected to disagree on treatment effect, allowing one to choose an estimator with smaller

absolute bias, depending on the assumptions regarding remaining confounding. The frame-

work builds on that established by Imbens (2003), provides a model-based assessment of

potential bias amplification and unmasking as per Middleton et al. (2016) and Pearl (2012)

and is a natural extension of Carnegie et al. (2016) to the multilevel setting. In contrast to

much of the prior research on sensitivity analysis, however, this use of sequential multilevel

models to partially identify a subspace of “viable” confounders limits the set of feasible

confounding parameters using empirical evidence, rather than thought experiments.

The bolder implication of our modeling framework is that estimates from sequential

multilevel models imply a highly constrained set of possible confounders, ultimately limited

to a line segment in the δyz − ζyz plane. If our models and assumptions are correct, and

we have closely approximated the data generating process, the “truth” should be contained

in a finite line segment. The points of intersection of this segment with the two axes,

the extent to which estimates differ from one another, and the additional point estimates

based on alternative confounding assumptions are quite revealing about the plausibility

of and tradeoffs between methods. Moreover, the distance between these points and the

origin suggest the degree of additional within and between group confounding. Prior to

the development of this tool, researchers could learn very little about the plausibility of

confounding scenarios through sensitivity analysis and instead were forced to examine the

entire space of confounders.
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Importantly, our methods offer some protection against drawing incorrect conclusions

from the scenario in which changes in treatment effect estimates upon adding controls

decreases the researchers confidence in the model. In this case, one has evidence via changes

in τ̂ that an omitted confounder initially biased the treatment effect. It is safe to assume that

variance components change with the addition of these new predictors. Given our change

in bias formulas (22-24) and using equation (22) for the within estimator as an example,

the change in bias implies that ζyz+βyz

cw0
6= ζyz

cw1
. When the difference in the denominators

is small, βyz must be changing, and we have evidence that we have removed the impact of

a confounder. When the denominators differ, we have reduced the remaining unexplained

variance, leaving less room, so to speak, in which the omitted confounders U and V can

operate. This identifies the line in the confounding space and tightens the bounds we make

on it as a segment.

Under a scenario in which additional predictors do not change the treatment effect

estimate nor reduce variance components (between and within groups), we will not be able

to impose a restriction on the confounding space consistent with the data and model. This

should disabuse us of the notion that we have a robust estimate of the treatment. Thus,

in very different scenarios, our multilevel sensitivity framework does more to unpack the

meaning behind changes in τ̂ (or lack thereof).

We have shown how the assumptions of our DGP lead to the ability to identify a re-

duced set of feasible confounding. It is important to consider the extent to which the

current findings rely on these assumptions particularly with regard to independence be-

tween confounders and observed predictors, as well as among the confounders themselves.

Regarding the first consideration, if observed predictor Xij were correlated with unobserved

confounder Uij , then by necessity, we would have to introduce a parameter that captured

that relationship in addition to those already posited. While nothing precludes this type of

formulation, we adopt the simpler assumption used by Imbens (2003), which is that U and

in our case V are formulated net of observed variables. Put another way, we conceptualize

U as that part of omitted confounder that is orthogonal to the rest of the confounders.

This allows us to use as much existing software, particularly for MLMs, as possible, as

these impose the traditional assumptions of independence of random components with each

other and with predictors. If we were to approach this problem using a Bayesian inferential

framework, additional parametrization would not pose a problem.

The assumption that group and subject random effects (α and ε terms) are also orthog-

onal to U and V is less restrictive than it might first appear. In fact, one could model the

correlations between (αy, αz) and (εy, εz) across response and treatment models directly,

and this is equivalent to our DGP under a renaming of parameters. Let αy
′

= αy + δyU

and αz
′

= αz + δzU . Let εy
′

= εy + ζyV and εz
′

= εz + ζzV . This removes U and V from
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the model, and we have closed-form expressions for cor(αy
′
, αz

′
) = δyz√

(1+(δy)2)(1+(δz)2)
and

cor(εy
′
, εz

′
) = ζyz√

(1+(ζy)2)(1+(ζz)2)
in terms of the original confounding parameters. While

at first it might appear that we have only two relationships to model, the correlations im-

plicitly depend, respectively, on two variances, σ2αy and σ2εy , neither of which is estimable

unbiasedly in our DGP for Y (recall that group structure in Z can mask group structure

in Y and thus yield underestimates of variance components in Y). This reparametrization

could prove more intuitive to some researchers, and thus equivalent plots of confounding

space may be made from these as well. The four equivalent parameters, two correlations

and two variances, are only partially identified as well.

While we believe that this sensitivity analysis greatly extends the concrete tools an

analyst can apply to causal inference problems, there are some limitations to the method-

ology. First, it relies on asymptotic bias results; to the extent that our sample is not large

enough for these to be a good approximation to the bias, we may have unstable results.

Our use of the condition number as a screen should protect against this somewhat. Related

to this is the lack of an inferential framework for the estimates at different stages of the

analysis. For example, we do not have a sampling distribution for parameters defining the

line segment. This is due indirectly to our desire to build on already existing R software

libraries. Although (asymptotic) inference is readily available for estimated parameters of

MLMs, the inference is incorrect under model misspecification, and our framework relies

on model building exploiting a set of highly-controlled model misspecifications. Inference

cannot be easily corrected, for example, to account for relationships across treatment and

response models. Bootstrap standard errors have been considered, but these are unsta-

ble and formulation is non-trivial in realistic MLM scenarios. Future work will instead

explore a Bayesian framework for specifying the unobserved heterogeneity, re-establishing

our sensitivity analysis as a set simultaneous (linked) equations similar to seemingly unre-

lated regressions (SUR; see (Greene 2003)). Preliminary findings for this extension of the

framework are quite promising.
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Appendices

A. Table of Notation

Model Parameters

τ Treatment effect

βy, βz Subject-level predictor effects for response (Y) and treatment (Z)

γy, γz Group-level predictor effects for response (Y) and treatment (Z)

ζy, ζz Effects for subject-level confounder (U) on response and treatment

δy, δz Effects for group-level confounder (V) on response and treatment

Model Random Effects

αy, αz Group random effects for response and treatment

εy, εz Subject level random effects (error) for response and treatment

Model Variance Parameters

σ2y , σ
2
z Subject-level error variance for response and treatment

ψy, ψz Group-level error variance for response and treatment

Composite Parameters

cW = σ2z + (ζz)2 Total subject-level variance for treatment model

cB = ψz + (δz)2σ2y , σ
2
z Total group-level variance for treatment model

βyz = βyβz Strength of subject-level confounding due to observables (X)

γyz = γyγz Strength of group-level confounding due to observables (W)

ζyz = ζyζz Strength of subject-level confounding due to unobservable (U)

δyz = δyδz Strength of group-level confounding due to unobservable (V)

Estimated Model-Specific Parameters

ĉW0, ĉW1 Total subject-level variance for treatment models MZ
0 , MZ

1 , resp.

ĉB0, ĉB1 Total group-level variance for treatment models MZ
0 , MZ

1 , resp.

τ̂W0, τ̂W1 Within treatment effect estimate for outcome models MY
0 , MY

1 , resp.

τ̂B0, τ̂B1 Between treatment effect estimate for outcome models MY
0 , MY

1 , resp.

τ̂O2, τ̂O3 Between treatment effect estimate for outcome models MY
2 , MY

3 , resp.

B. Bias Derivations

From Middleton et al. (2016), based on Greene (2003), we begin with a general regression

model with treatment variable Z, with specified covariates S∗ independent of these, and a

set of omitted covariates labeled O. The DGP for outcome Y is

Y = S∗β
S +OβO + τZ + ε′, (B.1)

but we fit this model:

Y = S∗β
S ′ + τ ′Z + ε′, (B.2)
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inducing bias through the omission of O. Then the bias on τ (the treatment effect) can be

written

Bias[τ̂ ] = E
[(
Z ′Z − Z ′S∗[S′∗S∗]−1S′∗Z

)−1
Z ′OβO

]
, (B.3)

where βO are the coefficient(s) on omitted variable(s) O in the DGP. This expectation will be

shown to simplify into ratios of estimators of covariances and conditional variances. We then

apply the continuous mapping (CM) and Slutsky theorems, letting the sample size N grow.

It is in this sense that we are deriving and utilizing asymptotic expectations. Typically,

these asymptotics are the limit, as the number of individuals goes to infinity; whether we

hold the number of groups constant will depend on the context. In what follows, assume

(wlog) that the variables are mean-centered, so that all marginal expectations are zero.

Bias for the Within or Fixed Effects Estimator

When estimating using fixed effects, O = [U ] and S∗ = [X W D] (D are separate indicators

for each group; refer to Section 2.3 for remaining definitions). Substituting into Equation

(B.3), we get:

Bias[τ̂W ] = E
[(
Z ′Z − Z ′S∗[S′∗S∗]−1S′∗Z

)−1 (
Z ′Uζy

)]
(B.4)

We recognize estimators within the expression. With implicit sample size indexing the

terms,
{

1
N

[
Z ′Z − Z ′S∗[S′∗S∗]−1S′∗Z

]}−1 →p var(Z | X,W,D)−1, using the CM theorem

twice (the expectation operator is the the first continuous mapping, while the reciprocal

is the second, defined on the positive real numbers). Similarly, 1
NZ

′Uζy →p ζ
ycov(Z,U),

applying the CM theorem with the expectation operator. Lastly, we apply the expectation

operator and Slutsky’s theorem to show that the product in the expression converges to the

product of the two limits:

lim
N→∞

Bias[τ̂W ] = E

[
ζycov(Z,U)

var(Z | X,W,D)

]
=

ζyζzσ2u
σ2z + (ζz)2σ2u

(B.5)

Bias for the between estimator

For this estimator, we set Z in Equation (B.3) to reflect the between estimator only, so that

if there are J groups with common group size NJ , we set {Z}ij = Z̄·j , for each subject i

in group j (Z̄·j is the mean treatment for group j and is repeated for each member of the

group).

Setting O = [U V ] and S∗ = [X W ], substituting into Equation (B.3), and using a

similar limit argument, we get:
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lim
N→∞

Bias[τ̂B] = E

[
ζycov(Z,U) + δycov(Z, V )

var(Z | X,W )

[
(B.6)

Then substituting our group mean version of Z and evaluating the asymptotic expecta-

tion, as J →∞, holding group size constant, the bias is:

lim
J=N/NJ→∞

Bias[τ̂B] = E

[
ζycov(Z̄·j , U) + δycov(Z̄·j , V )

var(Z̄·j | X,W )

]
=

ζyζzσ2u/NJ + δyδzσ2v
(σ2z + (ζz)2σ2u)/NJ + ψz + (δz)2σ2v

(B.7)

The NJ terms arise due to the independence of all but one term in the mean Z̄·j with U .

Bias for GLS or random effects

While we do not utilize the GLS or random effects estimator in our sensitivity analysis, it

is a compromise between the two prior estimators, taking a weighted average of both based

on the ICC and group size. This yields a weighted bias in the treatment effect, as follows

(here, we show the bias as an approximation, rather than repeat the limit argument).

Bias[τ̂GLS ] ≈ ζyζzσ2u + λδyδzσ2v
σ2z + (ζz)2σ2u + λ (ψz + (δz)2σ2v)

(B.8)

where λ =
σ2
y

σ2
y+NJψy . Given our embedded unobserved confounding, λ can not be estimated

unbiasedly. The introduction of an additional parameter is one reason that we do not utilize

the GLS estimator in our framework.

Bias under OLS

When estimating using OLS, O = [U V D] and S∗ = [X W ]. Substituting into Equation

(B.3), we get:

lim
N→∞

Bias[τ̂OLS ] = E

(Z ′Z − Z ′S∗[S′∗S∗]−1S′∗Z)−1
Z ′Uζy + Z ′V δy +

∑
j

Z ′Djα
y
j


(B.9)

The term,
∑

j Z
′Djα

y
j , has expectation zero under our DGP assumptions. Thus, for the

OLS estimator, the bias is:

lim
N→∞

Bias[τ̂OLS ] = E
ζycov(Z,U) + δycov(Z, V )

var(Z | X,W )
=

ζyζzσ2u + δyδzσ2v
σ2z + (ζz)2σ2u + ψz + (δz)2σ2v

(B.10)

We do not repeat the limit derivation, as it similarly applies CM and Slutsky’s theorems

and the expectation operator.
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Bias in models with observed covariates excluded

It is common in the multilevel setting to estimate models with fewer predictors first and then

include additional predictors, learning from the changes in variance components. Before we

can provide estimates of bias differences, we need an expression for the bias under the model

with no predictors. In terms the DGP defined in (B.1), we are omitting both S∗ and O

from the estimation model, and deriving the bias associated with that estimator. These

omissions lead to additional terms in the expressions for bias, as follows.

lim
N→∞

Bias[τ̂W0] =
ζyζz + βy ′V (X)βz

σ2z + (ζz)2 + βz ′V (X)βz
(B.11)

lim
J=N/NJ→∞

Bias[τ̂B0] =
(ζyζz + βy ′V (X)βz)/Nj + δyδz + γy ′V (W )γz

(σ2z + (ζz)2 + βz ′V (X)βz)/Nj + ψz + (δz)2 + γz ′V (W )γz
(B.12)

The expression for the OLS estimator includes a similar set of additional terms:

lim
N→∞

Bias[τ̂O2] =
ζyζz + βy ′V (X)βz + δyδz + γy ′V (W )γz

σ2z + (ζz)2 + βz ′V (X)βz + ψz + (δz)2 + γz ′V (W )γz
(B.13)

C. Characteristics of the line describing plausible confounders

We first show that the line-segment solution for non-degenerate cases is always a positively

sloped line in the δyz − ζyz plane.

To see this, we solve the system for either δyz or ζyz in terms of η and the estimable

parameters cW0, cB0, cW1, cB1. We use the simpler expression for between estimator bias in

which group size NJ → ∞. We find that ζyz = κW + cW1
cB0−cB1

η and δyz = κB + cB1
cB0−cB1

η,

with κW and κB representing two constants that do not depend on η. It is natural to assume

cB0 > cB1 (from what we know about sequential variance components models). Eliminating

η from the full expressions yields

ζyz = κW +
cW1

cB1
(δyz − κB).

Since all variance parameters are non-negative, the slope of the relationship is always posi-

tive.

We can also simplify the expression for the intercepts. That for ζyz is κW − cW1
cB1

κB

while the δyz intercept is κB − cB1
cW1

κW . The point (κB, κW ) is the “center” of the line,

corresponding to η = 0, which also identifies the quadrant in the plane from which the line

of plausible confounders emanates. The expression for κB can be simplified.

κB = −cB0cB1∆B

cB0 − cB1
.

We can assume cB0 > cB1, in which case sign(κB) = −sign(∆B).
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The expression for κW is more complicated.

κW = κ∗
{

(cB1 + cW1)((cB0 + cW0)∆O − cW0∆W )− cB0cB1(cB0 − cB1 + cW0 − cW1)

cB0 − cB1
∆B

}
.

where κ∗ = cW1
cB0cW1−cB1cW0

. We can assume cW0 > cW1 and cB0 > cB1, in which case

differences between variance parameters, such as cB0 − cB1 will all be positive. While the

sign of the main expression is not a simple expression, it is determined by the signs and

relative magnitudes of the bias differences. The sign of κ∗ will be positive when cW1
cW0

> cB1
cB0

,

otherwise the sign flips. The equation tracks the relative change in within and between

group variation with the addition of predictors, with the more common situation being

relatively less within variation being explained. Some insight may be gained by noting that

the terms preceding ∆O are likely to be large in magnitude in comparison to the “weights”

for ∆W and ∆B, so the sign of κW is largely a function of the sign of the κ∗ and ∆O. A

practical implication of this is that when κB is negative, implying that ∆B > 0, only a very

constrained set of situations would allow κW to be positive.
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