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Abstract

Background: In the binary outcome framework to causal mediation, closed-form expres-
sions introduced by Valeri and VanderWeele for the natural direct and indirect effect odds
ratios (ORs) are established from a logistic outcome model by invoking several approxima-
tions that hold under the rare-disease assumption. Such ORs are expected to be close to
corresponding effects on the risk ratio (RR) scale based on a log-binomial outcome model,
however new insight indicates that this is not always verified. The objective was to report
on mediation results from these two models when the incidence of the outcome was <10%.

Methods: Standard (approximate) ORs and RRs were estimated using data on a cohort
of asthmatic pregnant women from Québec (Canada) and their babies. Prematurity and
low birthweight were the mediator and outcome variables, respectively, and two binary
exposure variables were considered: treatment to inhaled corticosteroids and placental
abruption. Exact closed-form effects expressed on the OR scale were also derived and
estimated using a SAS code we provide. A study based on two simulation scenarios was
subsequently devised to supplement on the substantive findings.

Results: Many approximate ORs and RRs estimated from our cohort analyses did not
closely agree. Approximate ORs were systematically observed farther from RRs in compari-
son with exact ORs, possibly leading to different conclusions regarding the null hypothesis.
Exact OR estimates were very close to RR estimates for exposure to inhaled corticos-
teroids, but less so for placental abruption. The approximate OR estimator was found
to exhibit important bias and undercoverage in the simulation scenario which featured a
strong mediator-outcome relationship.

c⃝2018 Mariia Samoilenko, Lucie Blais and Geneviève Lefebvre.
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Samoilenko, Blais and Lefebvre

Conclusions: Logistic and log-binomial outcome models can yield dissimilar binary-binary
mediation effects even if the outcome incidence is small marginally. Large discrepancies
between approximate ORs and RRs may indicate invalid inference for these ORs. Exact
OR estimates can be obtained for validation or to replace RRs if the log-binomial model
exhibits convergence problems.
Keywords: Causal Mediation, Binary Outcome and Mediator, Rare-Disease Assumption,
Natural Direct and Indirect Effects, Odds Ratio, Risk Ratio, Logistic Model, Log-Binomial
Model, Approximation

1. Introduction

The incidence of an outcome of interest is a factor to consider when selecting a model to
perform a causal mediation analysis of a binary outcome. When the outcome is rare, the
Valeri and VanderWeele (2013) regression-based counterfactual approach to mediation relies
on a logistic model for the outcome given the mediator, exposure, and confounders. In this
familiar mediation framework (Wang and Arah, 2015), the model-based expressions for the
natural direct and indirect effects of the exposure are given on the odds ratio (OR) scale.
For both binary and continuous mediators, the closed-form formula for each of these effects
is established using a series of approximations that are assumed to hold under the so-called
rare-disease assumption. In mediation applications and in epidemiology more generally, a
practical threshold for qualifying an outcome (disease) as rare is an incidence of less than 10%
(e.g., VanderWeele, 2016). Although restrictive on the outcome, this mediation regression
approach based on a logistic outcome model is appealing in practice due to its apparent
conceptual simplicity.

A number of mediation analysis approaches that do not impose constraints on the
rareness of the outcome are also available to practitioners. For instance, the simulation-
based approach introduced by Imai et al. (2010) allows for mediation analyses with non-rare
binary outcomes and returns effect estimates on a risk difference scale. The g-computation
approach of Daniel et al. (2011) and the imputation approach of Vansteelandt et al. (2012)
also do not require the studied binary outcome to be rare. These mediation approaches can
return estimates on the OR or the risk ratio (RR) scales, the latter scales being arguably
more familiar to health sciences practitioners than a risk difference scale when dealing with
binary outcomes. Lastly, the closed-form regression-based mediation framework can also
use a log-binomial (a.k.a. log-linear) outcome model as a replacement to the logistic model
when the outcome is not rare (Valeri and VanderWeele, 2013; Ananth and VanderWeele,
2011). As warned by Valeri and VanderWeele (2013), with a non-rare outcome the OR does
not approximate the RR anymore, and the proposed natural direct and indirect effect OR
estimators will be biased for the RR if a logistic regression is used to model the outcome.
As opposed to the logistic, the log-binomial model provides natural direct and indirect ef-
fect estimates on the RR scale exactly. These two modelling options, as well as the other
aforementioned approaches, have all been implemented in macros for mediation analyses
(Valeri and VanderWeele, 2013; Daniel et al., 2011; Starkopf et al., 2017; Steen et al., 2017;
Tingley et al., 2014) and are thus widely available for epidemiologists and data analysts.

In this paper, we report on mediation results obtained from the aforementioned regression-
based mediation framework using logistic and log-binomial outcome models in the case of
a rare outcome using maternal and perinatal data recorded in administrative databases for
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pregnant women with asthma from the province of Québec (Canada). Natural direct and in-
direct OR and RR effects obtained respectively from these two types of models have been sug-
gested to be close when the rare-disease assumption holds (VanderWeele and Vansteelandt,
2014). However, considering the binary case for both the outcome and the mediator, we
have observed that currently implemented approximate natural direct and indirect effect ORs
based on a logistic outcome model (Valeri and VanderWeele (2013) macro, CAUSALMED
procedure in SAS 9.4M5 and later releases) can substantially differ from corresponding RRs
obtained from a log-binomial outcome model even if the incidence of the outcome is less
than 10%. This phenomenon, which, to our knowledge, had not yet been documented, was
revealed to us on the basis of two data analysis scenarios involving prematurity (PTB) as
a mediator and low birthweight (LBW) as the outcome. The binary exposure considered
in our first scenario was treatment with inhaled corticosteroids during pregnancy while pla-
cental abruption was considered in the second scenario. Because exact closed-form formulas
of natural effects expressed on the OR scale can be derived from the logistic model, we
then decided to investigate whether approximate and exact OR estimators would behave
similarly. As detailed subsequently, exact OR inference simply consists in working with the
exact definitions for the conditional natural direct and indirect ORs, as opposed to working
with simplified expressions from these in the approximate OR approach.

The paper is organized as follows. We first review the studied regression-based counter-
factual approach to mediation analysis under binary outcome and mediator. More specifi-
cally, we present the natural direct and indirect approximate OR and RR formulas pertaining
to modeling the outcome using either the logistic or the log-binomial model, respectively,
while the mediator is taken to be modeled with a logistic regression. We then introduce
the exact OR expressions for the natural direct and indirect effects based on the logistic
outcome model. Descriptive statistics on the exposure, mediator and outcome variables
from our cohort are given, followed by the mediation results for the association between
inhaled corticosteroids and LBW and placental abruption and LBW obtained from both
models. Results from a simulation study based on two data-generation mechanisms are
then presented to supplement on the substantive findings.

2. Methods

2.1 Natural direct and indirect effects

Natural direct and indirect effects are described in terms of so-called nested counterfactuals,
Y (a,M(a∗)), which represent the outcome that would have been observed if exposure A
were set to a and mediator M to the value it would have taken if A were set to a∗, where
a∗ indicates a reference or baseline value of A (Robins and Greenland, 1992; Pearl, 2001)
At the unit level, the comparison between Y (a,M(a∗)) and Y (a∗,M(a∗)) entails the natu-
ral direct effect of changing exposure a to a∗, while the contrast between Y (a,M(a)) and
Y (a,M(a∗)) represents the natural indirect effect. Such comparisons can be made on sub-
populations conditional on covariates C (that is, in terms of average E[Y (a,M(a∗))|C = c])
and reported, for instance, using differences or using odds or risk ratios if the outcome is
binary.
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2.2 Standard binary-binary closed-form regression-based counterfactual
approach to mediation

With a binary outcome Y and binary mediator M , the Valeri and VanderWeele (2013)
counterfactual approach to mediation based on the logistic model assumes the following
regression equations for the data:

logit{P (Y = 1|A = a,M = m,C = c)} = θ0 + θ1a+ θ2m+ θ3am+ θ
′
4c, (1)

logit{P (M = 1|A = a,C = c)} = β0 + β1a+ β
′
2c, (2)

where A is the exposure variable (either binary or continuous) and C are adjustment co-
variates. The set of covariates must be selected carefully for the identification of mediation
effects and must be such that the following three assumptions hold: (i) no unmeasured
treatment-outcome confounding; (ii) no unmeasured mediator-outcome confounding; and
(iii) no unmeasured treatment-mediator confounding. A fourth assumption also requires
that there be no mediator-outcome confounders affected by treatment. In addition to these
confounding assumptions, the no-interference, consistency, and composition assumptions
are required for identification. All these assumptions above ensure that nested potential
outcome expectations can be calculated using the mediation formula E[Y (a,M(a∗))|C =
c] =

∑
mE[Y |A = a,M = m,C = c]P (M = m|A = a∗,C = c). We refer the reader to

VanderWeele and Vansteelandt (2009) and VanderWeele (2015) for further details on causal
mediation assumptions.

If regression models (1) and (2) are correctly specified, the aforementioned identification
assumptions hold, and the outcome Y is rare, then the (conditional) natural direct (NDE)
and indirect (NIE) effects on the OR scale, comparing binary exposure level 1 to 0, can be
approximated as (Valeri and VanderWeele, 2013; VanderWeele, 2015) :

ORapp
NDE(c) =

exp(θ1)(1 + exp(θ2 + θ3 + β0 + β
′
2c))

1 + exp(θ2 + β0 + β
′
2c)

, (3)

ORapp
NIE(c) =

(1 + exp(β0 + β
′
2c))(1 + exp(θ2 + θ3 + β0 + β1 + β

′
2c))

(1 + exp(β0 + β1 + β
′
2c))(1 + exp(θ2 + θ3 + β0 + β

′
2c)

. (4)

The natural direct effect (3) can be interpreted as the comparison of the odds of the outcome
Y if each unit of the subpopulation with C = c had been exposed, but the mediator had
been fixed to what it would have been under no exposure, to the odds of the outcome Y if
each unit had been unexposed and the mediator had been fixed at its natural level under
no exposure. The natural indirect effect (4) can be interpreted, conditionally on C = c, as
the comparison of the odds of the outcome Y if each unit of the subpopulation had been
exposed, and the mediator had been fixed to what it would have been under exposure, to
the odds of the outcome Y if each unit had been exposed, but the mediator had been fixed
at its natural level.

Point estimates for ORapp
NDE(c) and ORapp

NIE(c) are obtained by replacing the parameters
in (3-4) by their estimated values. Confidence intervals for these effects can be obtained by
the delta method or the bootstrap (Casella and Berger, 2002; Chernick, 2011) .

Under a log-binomial model for the outcome, the studied regression-based approach
instead assumes that

log{P (Y = 1|A = a,M = m,C = c)} = θ∗0 + θ∗1a+ θ∗2m+ θ∗3am+ θ∗′
4 c, (5)
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while the mediator model remains as in (2). The NDE and NIE on the RR scale are then
expressed as:

RRNDE(c) =
exp(θ∗1)(1 + exp(θ∗2 + θ∗3 + β0 + β

′
2c))

1 + exp(θ∗2 + β0 + β
′
2c)

, (6)

RRNIE(c) =
(1 + exp(β0 + β

′
2c))(1 + exp(θ∗2 + θ∗3 + β0 + β1 + β

′
2c))

(1 + exp(β0 + β1 + β2
′c))(1 + exp(θ∗2 + θ∗3 + β0 + β

′
2c))

. (7)

The interpretation of RRNDE(c) and RRNIE(c) is similar to that of ORapp
NDE(c) and ORapp

NIE(c)
excepts that it compares risks instead of odds. The estimation of RRNDE(c) and RRNIE(c)
also proceeds similarly.

2.3 Exact closed-form mediation effect formulas for binary-binary logistic
models

One must appreciate that expressions (3) and (4) for the NDE and NIE are approximate
formulas established by invoking the rare-disease assumption multiple times. When com-
paring (3) with (6) and (4) with (7), we remark that each pair possesses the same analytical
form albeit different parameter values (i.e., θ vs θ∗), leading to simplified interpretation and
statistical inference for the ORs. Because the estimation of mediator regression coefficients
β does not depend on the choice of outcome model, these ORs would thus be interpretable
as RRs when all outcome regression coefficients in (3) and (4) are close to corresponding
coefficients in (6) and (7), respectively. Nonetheless, it is straightforward to show that the
NDE and NIE on the OR scale can be formulated exactly as:

ORNDE(c) =
P (Y (1,M(0)) = 1|C = c)/(1− P (Y (1,M(0)) = 1|C = c))

P (Y (0,M(0)) = 1|C = c)/(1− P (Y (0,M(0)) = 1|C = c))
, (8)

ORNIE(c) =
P (Y (1,M(1)) = 1|C = c)/(1− P (Y (1,M(1)) = 1|C = c))

P (Y (1,M(0)) = 1|C = c)/(1− P (Y (1,M(0)) = 1|C = c))
, (9)

where

P (Y (1,M(1)) = 1|C = c) = P (Y = 1|A = 1,M = 1,C = c) · P (M = 1|A = 1,C = c)

+P (Y = 1|A = 1,M = 0,C = c) · P (M = 0|A = 1,C = c)

=
exp(θ0 + θ1 + θ2 + θ3 + θ

′
4c)

1 + exp(θ0 + θ1 + θ2 + θ3 + θ
′
4c)

· exp(β0 + β1 + β
′
2c)

1 + exp(β0 + β1 + β
′
2c)

+
exp(θ0 + θ1 + θ

′
4c)

1 + exp(θ0 + θ1 + θ
′
4c)

· 1

1 + exp(β0 + β1 + β
′
2c)

, (10)
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P (Y (1,M(0)) = 1|C = c) = P (Y = 1|A = 1,M = 1,C = c) · P (M = 1|A = 0,C = c)

+P (Y = 1|A = 1,M = 0,C = c) · P (M = 0|A = 0,C = c)

=
exp(θ0 + θ1 + θ2 + θ3 + θ

′
4c)

1 + exp(θ0 + θ1 + θ2 + θ3 + θ
′
4c)

· exp(β0 + β
′
2c)

1 + exp(β0 + β
′
2c)

+
exp(θ0 + θ1 + θ

′
4c)

1 + exp(θ0 + θ1 + θ
′
4c)

· 1

1 + exp(β0 + β
′
2c)

, (11)

P (Y (0,M(0)) = 1|C = c) = P (Y = 1|A = 0,M = 1,C = c) · P (M = 1|A = 0,C = c)

+P (Y = 1|A = 0,M = 0,C = c) · P (M = 0|A = 0,C = c)

=
exp(θ0 + θ2 + θ

′
4c)

1 + exp(θ0 + θ2 + θ
′
4c)

· exp(β0 + β
′
2c)

1 + exp(β0 + β
′
2c)

+
exp(θ0 + θ

′
4c)

1 + exp(θ0 + θ
′
4c)

· 1

1 + exp(β0 + β
′
2c)

. (12)

We refer the reader to the Appendix for further details on how one can start from the
exact ORs (8-9) and end with the approximate ORs (3-4). When comparing approximate
ORs (3-4) with exact ORs (8-9) combined with (10-12), one immediately appreciates the
lesser complexity of the expressions pertaining to the approximate ORs, which facilitates
statistical inference. We conjecture that an important incentive for the wide adoption of the
approximate OR approach in practice was the availability of standard error formulas based
on the delta method, which is lacking for the exact OR inference thus far.

2.4 Data and variables

The data used in this paper come from two administrative databases in Québec: the Régie de
l’assurance maladie du Québec (RAMQ) and the Maintenance et exploitation des données
pour l’étude de la clientèle hospitalière (MED-ECHO) databases. Our cohort comprises
pregnancies from asthmatic women who delivered between 1998 and 2008 and is a subset of
pregnancies used in the study by Samoilenko et al. (2016); inclusion and exclusion criteria
for the larger cohort can be found in this reference. Our analyses used the most recent
pregnancy per woman during the follow-up period, for a total of n=6197 pregnancies. LBW
and PTB measures were available for all pregnancies, as well as exposure information on use
of inhaled corticosteroids during pregnancy (yes/no) and occurrence of placental abruption
(yes/no). Both unadjusted (crude) and adjusted analyses were planned to verify whether
our findings would be affected by the inclusion of covariates in the outcome and mediator
models; as such, two sets of covariates which differed in size (4 versus 27) were considered
in (1) (or (5)) and (2) (see Table A1 in Appendix). Of note, in the inhaled corticosteroids
exposure analysis, placental abruption was considered as a potential confounder for PTB
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and LBW and was therefore included in corresponding large set analysis, and vice-versa for
the placental abruption exposure analysis.

2.5 Statistical analyses

Descriptive statistics were obtained to describe marginal and conditional probabilities for the
outcome (LBW), mediator (PTB) and both exposures (inhaled corticosteroids and placental
abruption) in our cohort.

Using the macro by Valeri and VanderWeele (2013), we obtained the unadjusted natural
direct and indirect OR effect estimates of each exposure on LBW, with PTB as the mediator
variable, based on standard expressions (3) and (4), respectively. The total effect of each
exposure was also obtained and corresponded to the multiplication of the NDE and NIE
(that is, TOTAL=NDE×NIE). Confidence intervals (at 95%) were calculated using the
delta method and the bootstrap with percentile approach using 1000 replications. Similarly,
we obtained the unadjusted RR results using the Valeri and VanderWeele (2013) macro.
This was done by using the log-binomial (log-linear) option for the outcome model; note
that this macro allows only for a logistic model for the binary mediator. Bootstrap intervals
for the RRs were obtained with the same random seeds as for the ORs. Exact inference for
the ORs was based on the formulas presented in (8-9), and the bootstrap method with 1000
replications was also used to construct 95% confidence intervals. The whole analysis was
then repeated for each set of adjustment covariates, where results are reported conditionally
on the mean level of the covariates C. For these adjusted analyses, we manually added an
option to the log-binomial outcome model statement (intercept=-4). This option is proposed
in the SAS documentation to help ensure probabilities between 0 and 1 for the reference
level when the log-binomial estimation procedure is started (Fang, 2011).

All exact OR results were generated using a contributed SAS code inspired by the
Valeri and VanderWeele (2013) macro. In our code, unlike in this macro, the bootstrap
datasets are generated using the SAS procedure PROC SURVEYSELECT which has been
described as an efficient way to implement bootstrap computations (Cassell, 2007). Our
code is made available in the paper’s Supplemental Material and is illustrated using a large
synthetic dataset generated according to each of the two simulation scenarios considered
herein. The exact OR results obtained on our cohort were also compared to the OR results
returned by the imputation mediation approach implemented in the R package medflex

(Steen et al., 2017). For this approach, we used the outcome model specification (1) to cre-
ate an expanded imputed dataset on which the following conditional mean model for the
nested counterfactuals Y (a,M(a∗)), for a, a∗ = 0, 1, was fitted:

logit{P (Y (a,M(a∗)) = 1|C = c)} = γ0 + γ1a+ γ2a
∗ + γ3aa

∗ + γ
′
4c. (13)

Our combined choice of outcome model (1) and natural effect model (13) followed the
recommendation of Vansteelandt et al. (2012) in that the former should at least reflect the
structure of the latter, with a∗ substituted by M . Results using a log link function instead
of a logit in (13) were also obtained to assess the correspondence between this alternative
imputation approach and the log-binomial approach yielding equations (6-7).

Approval from the Commission d’accès à l’information du Québec was obtained prior to
requesting and linking the information from the MED-ECHO and RAMQ databases. These
analyses were approved by the ethics committee of the Hôpital du Sacré-Coeur de Montréal.
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2.6 Design of simulation study

For completeness, we compared the performance of the approximate and exact OR ap-
proaches in two simulated scenarios that both featured a rare outcome marginally. The
data-generation mechanism in each scenario is summarized in Table 1 and yields a marginal
probability of the outcome approximatively equal to 9.5% in each of them. Scenario 1 corre-
sponds to a scenario in which the conditional probability of the outcome is relatively small
in each of the four strata corresponding to combinations of levels of the exposure and me-
diator. Scenario 2 is such that the conditional probability of the outcome is large for one
stratum of the mediator, as could be found in our real data examples. For each simulation
scenario, 1000 samples of size n=2000 or 10,000 were nonparametrically generated using se-
quential Bernoulli sampling for variables A, M , and Y . Approximate and exact closed-form
estimates of natural effects expressed on the OR scale were obtained on each sample as in
the substantive examples.

For each simulation scenario, the true mediation RRs and ORs were calculated from
Table 1. The bias, standard deviation, root mean square error (RMSE), and coverage
probability of the approximate and exact OR estimators were then estimated based on the
1000 samples generated; the true mediation RRs as well as the true mediation ORs were
used as reference values.

3. Results

3.1 Results from cohort analyses

The marginal and conditional probabilities for the outcome (LBW), mediator (PTB) and
both exposures (inhaled to corticosteroids and placental abruption) are presented in Table
2. LBW and PTB were observed in 7.54% and 9.29% of the pregnancies constituting our
cohort, respectively, both smaller than the 10% threshold for rare outcomes. We remark,
however, that while LBW is rare marginally, it is very common among PTB infants; this is
the case also when conditioning on each level of both exposures. In particular, occurrence of
LBW was seen to exceed 70% among PTB pregnancies with placental abruption. Unlike for
pregnancies exposed to inhaled corticosteroids, PTB was not rare among pregnancies with
placental abruption (32.27%).

Table 3 presents, for each exposure, outcome regression coefficients based on the logistic
and log-binomial models for the crude and small set adjusted analyses (results for the largest
set of covariables are not presented due to convergence problems in the log-binomial model).
More precisely, regression coefficients pertaining to exposure (θ1, θ∗1), mediator (θ2, θ∗2), and
exposure-mediator interaction (θ3, θ∗3) appearing in expressions (3-4) and (6-7) are shown
in these tables. For exposure to inhaled corticosteroids, we found that the logistic and log-
binomial regression coefficients associated with the mediator variable did not closely agree,
both in the crude and small set adjusted analyses. For placental abruption, we also found
notable discrepancies between the two models, with, in particular, large relative differences
for the exposure-mediator interaction regression coefficients.

Tables 4-5 present the mediation results for our analyses. These tables reveal that many
approximate OR and RR estimates did not closely agree, as could be expected from results
shown in Table 3. Moreover, in all analyses where RR results were available, the approxi-
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mate ORs were systematically observed to be farther from corresponding RRs in comparison
with exact ORs. Exact ORs were very close to RR estimates for exposure to inhaled corti-
costeroids, but less so for placental abruption. Exact ORs were also systematically farther
away from the null than RRs, except for two estimates in the smallest adjusted analysis for
exposure to inhaled corticosteroids. In these two cases, exact ORs and RRs were nevertheless
very close to each other.

For exposure to inhaled corticosteroids more specifically, the approximate OR NDE was
found smaller than the corresponding RR and exact OR in both the unadjusted and small set
adjusted analyses. For instance, the unadjusted approximate OR NDE point estimate was
0.843 while the same NDE on the RR and exact OR scales were 0.999 and 0.998, respectively.
Moreover, in the fully adjusted analysis, the approximate OR for NDE was 0.682 while the
corresponding exact OR was 0.862 (RR result not available). For this adjusted approximate
OR, we rejected the null hypothesis of no effect (95% CI: 0.491, 0.947) while we did not
for the exact OR (95% CI: 0.704, 1.055). For all reported results for exposure to inhaled
corticosteroids, the length of the confidence intervals associated with the approximate ORs
was also larger than those associated with the RRs and exact ORs.

For placental abruption, we observed that both approximate and exact ORs did not
approximate the RRs well. The discrepancy between the approximate ORs and RRs was
however larger than the one observed between the exact ORs and RRs. For example, in the
small set adjusted analysis, the relative error for the approximate OR NIE point estimate
for interpretation as measure of RR was 38.4% ((3.026-2.186)/2.186) while it was 23.3% for
the exact OR NIE ((2.696-2.186)/2.186). Bootstrap confidence intervals for the adjusted
approximate ORs exhibited excessively large upper bounds due to convergence problems in
a non-negligible number of bootstrap datasets. In general, some numerical instability was
observed for all measures across bootstrap datasets.

The results for the imputation approach based on models (1) and (13) are presented in
the last two columns of Tables 4-5. The results obtained with this approach were overall
similar to those obtained with the exact OR approach, but a larger discrepancy between
results was observed for the large set adjusted analysis with placental abruption exposure.
In general, some discrepancy in the adjusted analyses results was to be expected given that
model specification (13) of the imputation approach implies constant OR mediation effects
across covariate levels, unlike the regression-based ones (for both approximate and exact OR
closed-forms). For the unadjusted analyses, results from the imputation approach with the
log link function were very similar to those obtained with the regression-based approach with
a log-binomial outcome model (results not shown). The imputation approach bootstrap CIs
(with log link) were not returned by medflex for the small set adjusted analysis for inhaled
corticosteroids exposure due to numerical problems. Moreover, contrary to the log-binomial
approach using Valeri and VanderWeele (2013) macro with the intercept initial value = -4
in the outcome model, medflex did not return results (point estimates and CIs) for the
small set adjusted analysis for the placental abruption exposure. For both exposures, no
results could be obtained from medflex for the large set adjusted analysis, as was also the
case with the log-binomial approach.

To concentrate on the impact of the rare-disease assumption, we have avoided so far
discussing aforementioned confounding assumptions within the context of our analyses. Of
course, it is unlikely that the unadjusted and small set adjusted analyses are sufficient
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to fulfill confounding assumptions (i)-(iii), thus hindering the causal interpretation of corre-
sponding estimates. Moreover, the assumption of no mediator-outcome confounders affected
by treatment is also highly questionable. For instance, use of inhaled corticosteroids may in-
fluence uptake of other asthma medications that could then influence both PTB and LBW.
The quality of a causal mediation analysis is evidently connected to the respect of these
assumptions. While one often has no or only limited control on these, it is otherwise for the
rare-disease assumption discussed herein.

3.2 Results from simulation study

The simulation study results for both scenarios are presented in Tables 6-7, where each table
corresponds to results obtained using either the true mediation RRs or the true mediation
ORs as reference, respectively.

For each effect in Scenario 1, we observed that the bias of the approximate OR estimator
was systematically slightly larger than the bias of the exact OR estimator, as interpreted as a
RR (top part of Table 6). The standard deviation of the approximate OR estimator was also
larger than that of the exact OR. In Scenario 1, the coverage probabilities associated with
the natural direct and indirect effects obtained from the approximate OR approach were
close to the 95% nominal value when n=2000, but decreased below 90% with n=10,000.
In comparison, the natural direct and indirect effect coverage probabilities for the exact
OR approach stayed closer to 95% at both sample sizes, indicating the increased adequacy
of this approach to yield estimates interpretable as RRs. Similar comments regarding the
comparative performances of the approximate and exact OR estimators could be done for
Scenario 1 from Table 7, while globally noting smaller biases and better coverage probabilities
when taking the true mediation ORs as reference.

The intrinsic features of the estimators were exacerbated in Scenario 2. Large biases were
seen for the approximate OR estimator and poor coverage probabilities were obtained with
either the true RRs or ORs as references. A striking result is the 0.4% coverage probability
for the natural direct effect from this approach when n=10,000 (with the true direct effect
RR as reference); in contrast, the exact OR approach yielded a coverage probability of
92.4%. Important to mention is the adequacy of the exact OR approach to return estimates
interpretable as OR, with coverage probabilities near 95% when taking the true ORs as
reference (see bottom part of Table 7).

4. Discussion

In this paper, we have provided evidence that extra consideration is warranted when estimat-
ing natural direct and indirect effects with binary mediators and outcomes. Approximate
ORs and RRs returned by studied standard logistic and log-binomial regression-based me-
diation approaches did not closely agree in our cohort analyses, although it was expected
otherwise since the incidence of the outcome was less than 10%. In these analyses, the
degree of agreement between the exact ORs and the RR estimates varied according to the
nature of exposure, but was better than the one observed between the approximate ORs and
the RRs. We have also made the troubling observation that approximate OR inference can
lead to different conclusions regarding the null hypothesis of absence of effect as opposed
to inference based on the exact OR scale. This indicates that data analysts must be cau-
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tious when applying mediation models in this context. Although regularly invoked in the
causal mediation literature, the rare-disease assumption is rarely, if ever, explicitly defined.
While the 10% marginal threshold is commonly used in epidemiology, herein it failed to
provide valid grounds for the approximate ORs mediation approach. A more precise but
more abstract definition of a rare outcome is an incidence which implies the approximate
equivalence between the logit and the log of the probability of the occurrence of the outcome
(e.g., VanderWeele and Vansteelandt, 2010; Valeri and VanderWeele, 2013). As seen in the
Appendix, the approximate OR formulas (3-4) are derived from exact formulas (8-9) by re-
peatedly invoking this equivalence. What should be noted, however, is that this equivalence
must hold conditionally on variables, including the mediator, throughout the derivation of
equations (3-4). Indeed, the fact that the rare-disease assumption needs to hold in all strata
formed by conditioning variables is already known, but perhaps underappreciated, in general
applications based on the logistic regression model (Cummings, 2009).

One hypothesis we put forward to explain the results we obtained in our cohort analyses
is the strong relationship between the mediator (PTB) and the outcome (LBW): while the
probability of LBW is small in the cohort overall, it is large for babies that are PTB, thus
violating the rare-disease assumption in one stratum of the mediator. Indeed, this is a likely
explanation to the discrepancy observed between regression coefficients associated with the
mediator in the logistic and log-binomial outcome models, coefficients which are involved
in the approximate OR and RR mediation effect expressions (3-4) and (6-7). As seen in
our analyses, disagreement between mediation effect measures can be further exacerbated
in presence of significant exposure-mediator interaction or when conditioning on covariates.
One studied simulation scenario (Scenario 2), which violated the rare-disease assumption
in one stratum of the mediator, also led to results similar to those found on the basis of
our cohort data (recall Tables 6-7). In that scenario, the approximate OR estimator was
found highly biased and showing very poor coverage performance. The logical consequence
of these results would be that standard mediation applications based on the logistic model
should preclude considerations of mediators that are strongly associated with the outcome.
With this in mind, it will thus be interesting to further characterize how the discrepancy
between the approximate OR and RR (or exact OR) results may arise in practice.

In the meantime, we advise data analysts to systematically obtain mediation effects
from both logistic and log-binomial outcome models even if the 10% threshold for the out-
come is satisfied marginally. Using the SAS code we provide, exact OR estimates can also be
obtained for validation purposes or to replace RRs if the log-binomial model exhibits conver-
gence problems. Further developing exact OR inference will be important since convergence
problems with the log-binomial model are notorious (e.g., Localio et al., 2007). Indeed, tak-
ing advantage of the inferential stability of the logistic model while ensuring proper inter-
pretation of mediation results would seem important. Other mediation approaches that do
not rely on the rare-disease assumption may also be considered for validation. In this work,
our medflex implementation of the imputation approach by Vansteelandt et al. (2012) was
found aligned with the proposed exact OR approach. While the goal here was not to provide
extensive comparisons between these two approaches, it is nevertheless appropriate to men-
tion that the proposed exact OR approach can be easily conceptualized with general expo-
sure variables, similarly to the approximate OR approach (Valeri and VanderWeele, 2013),
while the imputation approach is less amenable to continuous exposures (Vansteelandt et al.,
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2012). Moreover, we agree with Starkopf et al. (2017) that, in practice, the choice of esti-
mation method is often based on software preference; as such, our SAS macro can be useful
for applied researchers for whom SAS is the first choice for conducting mediation analyses.

We have seen from our cohort analysis that the two approaches studied which directly
targeted the natural direct and indirect effects on the RR scale exhibited numerical prob-
lems even when adjusting for a small number of covariates. These two approaches were
characterized by the use of a log link function specification in their implementation (recall
model (5) and model (13) with log instead of logit). Although RRs are widely accepted to
be more interpretable than ORs, the results obtained herein exposed difficulties with current
approaches that are conceived exact for the former scale. Additional practical problems can
thus be faced for those who are not willing to use, for instance, the proposed exact OR
approach or the imputation approach with a logit link function to obtain mediation results.
This suggests that numerically stable estimation strategies for binary outcome should also
be put forward for the estimation of mediation effects on the RR scale.

To conclude, this paper provides strong incentive for moving away from the exclusive
consideration of standard (approximate) closed-form OR formulas in binary-binary causal
mediation analyses. Our work underlined the opaque behavior of the approximate OR ap-
proach in settings where it was deemed reasonable to apply at first sight. While other data
could lead to only negligible differences between the approximate OR approach and the other
approaches investigated herein, our substantive and simulated results are concerning enough
to support aforementioned systematic cross-checking of binary-binary mediation results. We
believe that our proposal amounts to good statistical practice, for which robustness of sta-
tistical outputs is assessed and reported results validated. Finally, although we have only
considered the binary-binary case in our study, it is reasonable to expect that similar cross-
checking would need to be done when using a continuous mediator and a binary outcome.
This will need to be verified in the future.

Key Messages

• The Valeri and VanderWeele logistic regression-based counterfactual approach to me-
diation for a binary outcome and a binary mediator, derived from rare-disease ap-
proximations, can fail to provide natural direct and indirect effect odds ratios (ORs)
interpretable as relative risks even when the outcome has a small incidence (<10%).

• To ascertain results, data analysts using this approach should systematically compare
mediation effects obtained from a logistic model for the outcome and those obtained
when instead using a log-binomial model.

• Exact closed-form estimates of natural effects expressed on the OR scale, which do
not invoke rare-disease approximations, can additionally be obtained for purposes of
validation using the contributed SAS macro %OR_exact_formulas.
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Table 1: Data simulation: probabilities for the exposure, mediator and outcome in
Scenario 1 and Scenario 2

Probability Scenario 1 Scenario 2

P (A = 1) 0.50 0.15

P (M = 1|A = 0) 0.10 0.10

P (M = 1|A = 1) 0.15 0.15

P (Y = 1|A = 0,M = 0) 0.07 0.05

P (Y = 1|A = 0,M = 1) 0.10 0.40

P (Y = 1|A = 1,M = 0) 0.10 0.05

P (Y = 1|A = 1,M = 1) 0.21 0.70
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Table 2: Marginal and conditional probabilities (%) for outcome (Y ) low birthweight,
mediator (M) prematurity, separately for exposures (A) to inhaled corticosteroids and
placental abruption among asthmatic pregnant women from Québec, Canada, 1998-2008

Exposure: Exposure:
ICS Placental Abruption

P (Y = 1) 7.54 7.54

P (M = 1) 9.29 9.29

P (A = 1) 55.85 3.55

P (M = 1|A = 0) 9.65 8.45

P (M = 1|A = 1) 9.01 32.27

P (Y = 1|M = 0) 2.78 2.78

P (Y = 1|M = 1) 53.99 53.99

P (Y = 1|A = 0,M = 0) 2.39 2.67

P (Y = 1|A = 0,M = 1) 57.58 51.68

P (Y = 1|A = 1,M = 0) 3.08 6.71

P (Y = 1|A = 1,M = 1) 50.96 70.42
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Table 3: Outcome model regresion coefficients: logistic regression model vs log-binomial
regression model

Unadjusted (crude) analyses Adjusted analyses: small set

Regression Logistic Log- Relative Regression Logistic Log- Relative
coefficient model binomial differenced coefficient model binomial differenced

model (%) model (%)

Exposure: ICS Exposure: ICS

Aa 0.26 0.26 2.75 Aa 0.28 0.26 5.75

M b 4.02 3.18 26.20 M b 4.09 3.20 27.76

A ∗M c -0.53 -0.38 40.32 A ∗M c -0.55 -0.42 31.19

Exposure: PA Exposure: PA

Aa 0.97 0.92 4.66 Aa 1.00 0.94 6.29

M b 3.66 2.96 23.62 M b 3.73 2.96 25.85

A ∗M c -0.17 -0.61 -73.08 A ∗M c -0.25 -0.68 -63.97

Abbreviations: ICS, inhaled corticosteroids; PA, placental abruption
a: θ1 in logistic model (1), θ∗1 in log-binomial model (5);
b: θ2 in logistic model (1), θ∗2 in log-binomial model (5);
c: θ3 in logistic model (1), θ∗3 in log-binomial model (5);
d: (θi − θ∗i )/θ

∗
i , i = 1, 2, 3.
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Appendix

Building and expanding on Online Appendix in Valeri and VanderWeele (2013), p.17-18, we
show in the sequel how approximate expressions (3-4) can be obtained from exact expres-
sions (8-12) in two steps as follows. In the first step, the rare-disease assumption (RDA) is
used to replace (8) and (9) by

P (Y (1,M(0)) = 1|C = c)

P (Y (0,M(0)) = 1|C = c)

and
P (Y (1,M(1)) = 1|C = c)

P (Y (1,M(0)) = 1|C = c)
,

respectively. In the second step, the exact expressions (10-12) for P (Y (1,M(1)) = 1|C = c),
P (Y (1,M(0)) = 1|C = c) and P (Y (0,M(0)) = 1|C = c) are replaced by

exp(θ0 + θ1 + θ2 + θ3 + θ
′
4c)︸ ︷︷ ︸

simplified by RDA

· exp(β0 + β1 + β
′
2c)

1 + exp(β0 + β1 + β
′
2c)

+ exp(θ0 + θ1 + θ
′
4c)︸ ︷︷ ︸

simplified by RDA

· 1

1 + exp(β0 + β1 + β
′
2c)

,

exp(θ0 + θ1 + θ2 + θ3 + θ
′
4c)︸ ︷︷ ︸

simplified by RDA

· exp(β0 + β
′
2c)

1 + exp(β0 + β
′
2c)

+ exp(θ0 + θ1 + θ
′
4c)︸ ︷︷ ︸

simplified by RDA

· 1

1 + exp(β0 + β
′
2c)

,

and

exp(θ0 + θ2 + θ
′
4c)︸ ︷︷ ︸

simplified by RDA

· exp(β0 + β
′
2c)

1 + exp(β0 + β
′
2c)

+ exp(θ0 + θ
′
4c)︸ ︷︷ ︸

simplified by RDA

· 1

1 + exp(β0 + β
′
2c)

,

respectively.
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Table A1: Inclusion of covariates in small and large set analyses

Full set 1 Full set 2 Reduced
(ICS exposure) (PA exposure) set

Number of included variables 27 27 4
Mother’s and baby’s characteristics
Maternal age at the beginning of pregnancy X X X
(< 18, > 18-34, > 34 years)
Baby’s sex (male/female) X X X
Receipt of social assistance in the year before or during X X
pregnancy (yes/no)
Urban residency at delivery (yes/no) X X
Maternal chronic conditions in the year before or
during pregnancy
Antiphospholipid syndrome (yes/no) X X
Chronic hypertension (yes/no) X X
Diabetes mellitus (yes/no) X X X
Cystic fibrosis of the pancreas (yes/no) X X
Uterine defects (yes/no) X X
Pregnancy-related variables
Gestational diabetes (yes/no) X X X
Eclampsia/pre-eclampsia (yes/no) X X
Anaemia during pregnancy (yes/no) X X
Placental conditionsa (yes/no) X X
Placental abruption (yes/no) X n/a
Vaginal bleeding (yes/no) X X
Maternal infections during pregnancy b (yes/no) X X
Fetal-maternal hemorrhage (yes/no) X X
Pregnancy-induced hypertension (yes/no) X X
Use of beta-blockers during pregnancy (yes/no) X X
Asthma-related variables
ICS during pregnancy (yes/no) n/a X
Leukotriene-receptor antagonists during pregnancy (yes/no) X X
SABA during pregnancy (0, > 0-3, >3 doses/week) X X
Oral corticosteroids during pregnancy (yes/no) X X
Intranasal corticosteroids during pregnancy (yes/no) X X
≥ 1 ED visit for asthma during pregnancy (yes/no) X X
LABA during pregnancy (yes/no) X X
≥ hospitalization for asthma during pregnancy (yes/no) X X
Severity of asthma in the year before conception X X
(mild, moderate, severe)

Abbreviations: ED, emergency department; ICS, inhaled corticosteroids; LABA, long-acting beta2-
agonists; PA, placental abruption; SABA, short-acting beta2-agonists.
a: Single umbilical artery, velamentous umbilical cord insertion, bilobate placenta, suboptimal implantation
site, placenta previa, placental anomalies, and cord anomalies: yes, if at least one condition is present; no,
otherwise;
b: Urinary-genital infections, malaria, trypanosomiasis, cytomegalovirus, toxoplasmosis, rubella, herpes
virus: yes, if at least one condition is present; no, otherwise;
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Technical Appendix for: “Comparing logistic and log-binomial
models for causal mediation analyses of binary mediators and
rare binary outcomes: evidence to support cross-checking of

mediation results in practice”

This technical appendix is structured as follows.
In the first section, we provide specific details on the Valeri-VanderWeele macro %me-

diation (Valeri and VanderWeele, 2013) and how it can be applied. In the second section,
we describe our macro %OR_exact_formulas which implements the exact odds ratio infer-
ence for mediation presented in the main paper. The third section introduces the macro
%simul_data which serves to generate simple mediation data (exposure A, mediator M ,
and outcome Y ) on which the %mediation and %OR_exact_formulas macros can be ap-
plied. The fourth and last section presents the results of mediation analyses performed on
two large datasets of size n = 100, 000 generated with the %simul_data macro on the ba-
sis of Scenarios 1 and 2 (scenarios described in Table 1 of the manuscript). We refer the
reader to the SAS code contained in the file “simulation_execution.sas” to replicate the
results found in this last section; for each scenario, the file “simulation_execution.sas”
performs first the data generation and then executes, in order, the mediation analyses using
the %mediation and %OR_exact_formulas macros.

1. Valeri-VanderWeele macro %mediation

The file “all_macros.sas” contains the original Valeri-VanderWeele macro %mediation with
the following minimal modifications:

1. In the step BOOTSTRAP PROCEDURE, the argument seed=0 in the ranuni function was
changed to 1234 to fix the state with which a pseudo-random number generator was
initialized in order to obtain reproducible results (if seed=0, the time of day is used
to initialize the seed stream; see SAS documentation https://support.sas.com/
documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a000202926.htm);

2. The intercept was set to -4 in the log-binomial (log-linear) outcome model to increase
the chance that the outcome probability falls into the interval (0, 1) (Fang, 2011).

Before each mediation analysis using the %mediation macro, the user has to close the SAS
session in order to delete all temporary SAS files due to the previous execution of the %me-
diation macro (i.e., each %mediation macro execution requires to open a new SAS session)
(Valeri and VanderWeele, 2013). The user can invoke this macro from the “all_macros.sas”
file as follows:

filename macros "...\all_macros.sas";

c©2018 Mariia Samoilenko, Lucie Blais and Geneviève Lefebvre.
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%include macros;

It is recommended to add the following statement before to run the %mediation macro to
suppress printing to the log:

options nonotes nosource nosource2 errors=0;

To change the options back to the default and start printing to the log again, the user has to
submit the following OPTIONS statement (see SAS code “simulation_execution.sas” for
an example):

options notes source source2 errors=20;

We refer the readers to Valeri and VanderWeele (2013) for the details on how to assign
values to the macro variables in the macro %mediation by these authors.

2. Macro %OR_exact_formulas

The SAS macro %OR_exact_formulas is developed for binary outcome, mediator and expo-
sure. It provides estimates of the natural direct and indirect effects (NDE and NIE), and of
the total effect (TE) on the OR scale using exact logistic-based expressions (refer to expres-
sions (8-9) in the main paper). The user can invoke this macro from the “all_macros.sas”
file as follows:

filename macros "...\all_macros.sas";
%include macros;

This file also contains three auxiliary sub-macros called automatically by the principal
macro %OR_exact_formulas (directly or via other sub-macros) during the different execu-
tion steps. Before running the macro %OR_exact_formulas, the user needs to delete the
data sets “crude_boot_estimates” and “adjusted_boot_estimates” from the library WORK.
The following statements can be used (see also SAS code “simulation_execution.sas” for
an example):

proc datasets library = WORK noprint;
delete crude_boot_estimates adjusted_boot_estimates;
run; quit;

The user needs to assign values to the macro variables for the principal macro
%OR_exact_formulas only (no user-specifications are required for the sub-macros). See
Technical Appendix Table 1 for macro variables’ description and their possible values.
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Technical Appendix Table 1: Macro %OR_exact_formulas variables

Macro variable Description Remarks

mydata Name of the input data

exposure Name of the binary exposure (0/1
coding); must be in the input
data

mediator Name of the binary mediator
(0/1 coding); must be in the in-
put data

outcome Name of the binary outcome (0/1
coding); must be in the input
data

adjusted adjusted=0 for unadjusted me-
diation analysis;
adjusted=1 for covariate ad-
justed mediation analysis

cvar If adjusted analysis is required
(adjusted=1), the user needs
to specify the list of adjustment
variables (covariates) as follows:
cvar = covariate1 covariate2
... covariaten

Use space to separate covariates’
names. All categorical variables
need to be entered as dummy
variables.

interaction interaction=1 if an exposure-
mediator interaction term is in-
cluded in the model;
interaction=0 otherwise

iter Number of bootstrap samples
(e.g., 1000)

Bootstrap (percentile method) is
the default option to calculate
the 95% confidence intervals for
NIE, NDE, and TE.

3. Macro %simul_data

This macro simulates a sample of n observations for the purpose of unadjusted mediation
analysis for a binary outcome (Y ), mediator (M) and exposure (A). The data are generated
nonparametrically according the assigned values for the marginal probability P (A = 1), and
the conditional probabilities P (M = 1|A = i), P (Y = 1|A = i,M = j), i, j ∈ {0, 1}. To
simulate data using %simul_data macro, the user has to specify the values for the number n
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of observations to generate, the random seed, the exposure marginal probability P (A = 1),
and the mediator and outcome conditional probabilities P (M = 1|A = 0), P (M = 1|A = 1),
P (Y = 1|A = 0,M = 0), P (Y = 1|A = 0,M = 1), P (Y = 1|A = 1,M = 0),
P (Y = 1|A = 1,M = 1). Firstly, the macro %simul_data generates the binary exposure A
(i.e., it generates n observations from a Bernoulli(pA), where pA = P (A = 1)). Secondly, for
each generated value of A, the macro generates the binary mediator from a Bernoulli(pM ),
where pM = P (M = 1|A = i), i ∈ {0, 1}. Thirdly, for each previously generated pair (A,M),
the binary outcome Y is generated from a Bernoulli(pY ), where pY = P (Y = 1|A = i,M =
j), i, j ∈ {0, 1}. The user can invoke this macro form the “all_macros.sas” file as follows:

filename macros "...\all_macros.sas";
%include macros;

See Technical Appendix Table 2 for macro variables’ description and their possible values.

Technical Appendix Table 2: Macro %simul_data variables

Macro variable Description Remarks

n Number of observations to simu-
late

seed Random seed to initialize a pseu-
dorandom number generator

The seed value must be a positive
integer

pr_A P (A = 1) Real number in the interval (0, 1)

pr_M_0 P (M = 1|A = 0) Real number in the interval (0, 1)

pr_M_1 P (M = 1|A = 1) Real number in the interval (0, 1)

pr_Y_00 P (Y = 1|A = 0,M = 0) Real number in the interval (0, 1)

pr_Y_01 P (Y = 1|A = 0,M = 1) Real number in the interval (0, 1)

pr_Y_10 P (Y = 1|A = 1,M = 0) Real number in the interval (0, 1)

pr_Y_11 P (Y = 1|A = 1,M = 1) Real number in the interval (0, 1)

4. Mediation effects estimated from two large synthetic datasets generated on
the basis of Scenario 1 and 2

See Technical Appendix Table 3 for results.
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