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1. Introduction

We enjoyed reading the commentary by Bross about the appropriate role for a statistician
as critic (Bross, 1960). It was an important discussion to initiate at the time the article
was written, particularly in light of the highly contentious and scientifically critical debate
about the link between smoking and cancer, which involved some of the leading statistical
minds of the era (Cornfield, 1954; Cornfield et al., 1959). We believe discussions about the
role of a statistical critic are equally if not more relevant today given that our ability to
casually critique the work of research “proponents,” to use Bross’ term, and to disseminate
such comments broadly in unrefereed venues has increased exponentially since the time that
Bross was writing. Given the complexity and breadth of the issues involved, we focus our
discussion on Brosss contention that a critic should have a tenable counter-hypothesis. We
further position our comments within the context of causal inference where some additional
subtleties arise with regard to satisfying this requirement.

2. Tenable counter-hypotheses

For a critic’s counter-hypothesis to be tenable, Bross maintains that “a minimal requirement
would be that the effects predicted from the critic’s hypothesis should be in line with the
actual data, at least in direction and order of magnitude.” This seems reasonable in the
abstract, but there is not a well-defined criterion for meeting this requirement. For example,
how should we achieve this goal if we wish to estimate a causal effect from observational
data when even reliably estimating the direction of effects requires making strong, often
untestable, assumptions? To illustrate these issues, we consider the common scenario where
a proponent is investigating a hypothesis about a causal effect of an exposure on an outcome
using observational data. We describe how “dogmatic” statistical criticism (e.g., that you
cannot infer causation from observational data) can lead to further methodological errors
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Tenability of Counterhypotheses

and fail to shed light on whether a proponent’s hypothesis or a critic’s counter-hypothesis
should be considered more credible. Finally, we discuss how sensitivity analysis may provide
a path forward.

2.1 Observational Data

Let us consider a specific situation in which the proponent’s initial hypothesis is about a
causal effect. For example, suppose that a proponent claims that exposure to the measles,
mumps, and rubella (MMR) vaccine increases the occurrence of autism. Let us also as-
sume for the moment that no randomized or natural experiment is available. According
to Bross’ criterion, a critic who disagreed with the proponent’s claim would need to posit
a counter-hypothesis, such as that the MMR vaccine has no effect on autism incidence.
Further, according to Bross, this counter-hypothesis should be supported by, or at least
not inconsistent with, existing observational data. Let us assume that the critic has ac-
cess to a reasonably-sized, child-level observational dataset with accurate measurements
of what vaccines the child received (and when), subsequent developmental assessment re-
sulting in an autism diagnosis, and pre-treatment measurements of potential confounders.
What kinds of estimates from this dataset might we be willing to accept as supportive of a
counter-hypothesis?

Even ignoring the (not insubstantial) issues around statistical and practical significance
(Berger and Selke, 1987; Gelman and Loken, 2013; Wasserstein and Lazar, 2016), major
issues loom. We know that any given estimate of E[Y | Z,X] (where Y is the outcome, Z
is the treatment, and X is a vector of potential confounding covariates unaffected by the
treatment) is unlikely to be an unbiased estimate of the true estimand, e.g. E[Y (1)−Y (0)]
(where Y (0) and Y (1) are potential outcomes with the typical definitions, as in Rubin,
1978). There are several reasons for this, but first and foremost it is unlikely that we have
satisfied the so-called ignorability assumption, Y (1), Y (0) ⊥ Z|X. Colloquially speaking
(and ignoring some technical subtleties, see, for instance Greenland et al., 1999), this means
it is unlikely in most observational studies that we have measured all confounding covariates.

In the absence of a design that creates this independence structure, we are left to consider
how estimates of the causal estimand behave when we only control for subsets of X that
are insufficient to guarantee ignorability. For example, suppose the truth is that vaccines
decrease the incidence of autism (even though the marginal association is positive). This
could lead to a situation where analyses that include a proper subset of the sufficient set
confounders yield estimates that are not only biased but of the wrong sign. Such a situation
(which arguably is not terribly rare) would make it all too easy to use the data as “evidence”
that supports a variety of different counter-hypotheses; that is, it would be easy to show
that the estimands corresponding to a counter-hypothesis of a positive effect are “in line
with the data.”

A more confusing situation arises when we posit a point hypothesis (as opposed to the
directional hypothesis above), such as that the true effect of MMR vaccine on autism is 0 (for
a discussion of the evidence that supports this claim see Plotkin et al., 2009). Supporting
such a counter-hypothesis would be complicated, not only because estimates from analyses
that do not satisfy ignorability might have different signs and magnitudes, but also because
it is unclear what it means to support a point null hypothesis.
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2.2 Randomization to the rescue?

How can we proceed if it is uncertain or unlikely that ignorability is satisfied? An overly
simplistic solution to the problem might be to require that only evidence from randomized
experiments be accepted to support a counter-hypothesis. After all, in its pure form the
randomized experiment justifies the assumption of (strong) ignorability. Bross (1960) and
other contemporaries (including, notably, (Cornfield, 1954)) expressed frustration however
that statisticians were using the “gold standard” of the randomized experiment as a cudgel
to beat down all attempts to make a causal claim using observational data. In fact Bross
(1960) highlights this practice in the article in the section on “dogmatic criticism”.

We are concerned by reflexive dogmatic criticism as well. One problem with the emphasis
on a controlled or natural experiment is that we may ignore evidence about causal effects
if that evidence is derived from non-randomized experiments. This tunnel vision can be
particularly problematic when investigating research questions that do not lend themselves
to randomized experiments for ethical or logistical reasons. An additional problem is that
we may end up overstating the infallibility of randomized (controlled or naturally occuring)
experiments that occur in practice, no matter their vulnerabilities. Many complications can
and often do arise that would preclude a researcher from making a causal claim, even in
the context of a randomized experiment, without making additional assumptions. These
complications include but are not limited to missing data, noncompliance, measurement
error, and grouped data structures. Combinations of these issues are common and are even
more difficult to handle (for example, see Barnard et al., 2003; Reardon and Raudenbush,
2013). In situations where the randomized experiment is free from such complications
or when additional required assumptions seem plausible (e.g. the exclusion restriction
in a randomized experiment with noncompliance or a missing at random assumption to
recover missing data), randomized experiments are nonetheless almost always limited in
their generalizability (Stuart et al., 2015).

Even given these well-known limitations, there persists a belief that a study with ran-
domization is necessarily a more rigorous approach to a causal inquiry than a study with-
out this feature (Imai et al., 2008). This confidence tends to extend to so-called natural
experiments as well (see, for example, Duncan et al., 2004), including methods such as
instrumental variables, regression discontinuity, and even, oddly, fixed effects models for
identifying causal effects. Yet we know that when the assumptions of these methods fail
to hold, things can go badly quickly (Angrist et al., 1996; Reardon and Raudenbush, 2013;
Martens et al., 2006; Middleton et al., 2016). Moreover, even when one of these method-
ologies works well, it will, like randomized experiments, tend to yield estimates that apply
most directly to narrow slices of the observation sample, and additional assumptions are
necessary to generalize these local average treatment effect (LATE) estimates to a broader
population (Hoggatt and Greenland, 2014).

The upshot is that when making causal inferences, most analyses, whether they use data
from observational studies or randomized experiments, will rely on some sort of untestable
assumptions. If we are requiring that a counter-hypothesis be tenable, it seems the criteria
should include a reasonable assessment of the plausibility of such assumptions. However,
if we are comparing competing sets of untestable assumptions (corresponding to the pro-
ponent’s original analysis and the critic’s analysis in support of a counter-hypothesis) how
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should we assess which of the sets of assumptions are most plausible? Would it be bet-
ter, for instance, to use an instrumental variables approach where the instrument is weak
and the exclusion restriction is questionable or to use an observational study where we are
uncertain that we have measured all confounders?

2.3 Sensitivity Analysis: A way forward?

One way to tackle this problem is to promote increased use of sensitivity analyses, by which
we mean any of a variety of approaches that explore the sensitivity of our estimates to
violations of key assumptions of our analysis. Rather than making a binary decision about
which counter-hypotheses are tenable, the goal would be for critics (and perhaps proponents
if they are acting as their own critics) to provide a range of estimates that are derived from
different sets of assumptions supporting the proponent’s analyses. Bross was one of the
first scholars to propose this strategy in the context of health research (Bross, 1966, 1967),
and much of the early sensitivity analysis literature focused on methods to address possible
departures from ignorability assumption (for example Cornfield et al., 1959).

Yet today, more than 50 years after Bross wrote his commentary, sensitivity analysis is
seldom used in applied empirical research. This is true despite that the fact that there has
been increased focus in the methodological literature in recent years on approaches to assess
sensitivity to departures from the ignorability assumption in simple observational studies
(see, for example, Rosenbaum and Rubin, 983a; Rosenbaum, 1987; Greenland, 1996; Gast-
wirth et al., 1998; Rosenbaum, 2002; Imbens, 2003; McCandless et al., 2007; Rosenbaum,
2010; Harada, 2013; Carnegie et al., 2016; Dorie et al., 2016). Moreover some simple sen-
sitivity analyses can be done with a basic spreadsheet program, and software packages are
available for more complex applications (for example, Gangl, 2004; Keele, 2010; Carnegie
et al., 2015).

It is true, however, that there has been less of a focus on developing methods and
software to explore the sensitivity to assumptions required for other types of causal anal-
yses including instrumental variables, mediation, fixed effects, and regression discontinuity
(exceptions include Imbens and Rubin, 1997; Small, 2007; Imai et al., 2010; Middleton
et al., 2016; McCandless and Somers, 2017). Even more rare are publications that compare
two competing identification strategies (for an interesting example of this see DiPrete and
Gangl, 2004) or that simultaneously address two different types of assumptions in one anal-
ysis (for example Dorie et al., 2016). Certainly more work is needed to create user-friendly,
interpretable approaches that can be applied in a variety of circumstances.

Furthermore, the results from a sensitivity analysis will be more useful when that anal-
ysis incorporates both statistical expertise and a subject matter expert’s prior knowledge
A truly interdisciplinary approach to sensitivity analysis could, for example, incorporate
subject-matter-specific models for the data generating process, information about the types
of likely unobserved confounders, and the most plausible direction and magnitude of (con-
ditional) associations between the unobserved confounders and the treatment and outcome.
It could also address Bross’ call for the statistical critic to supply more specific and tenable
counter-hypotheses. Unfortunately, requiring collaboration between investigators, who are
subject matter experts, and statisticians, who can translate this knowledge into parameters
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for a formal, quantitative sensitivity analysis, may create an additional hurdle to broader
use.

We argue that the practical barriers to adoption of sensitivity analysis are not merely
technical, however. Equally lacking are clear incentives to make sensitivity analysis a routine
part of empirical research. It is understandable that research proponents would be reluctant
to incorporate additional analyses that may make their findings less credible. For example,
“failure testing” to assess quantitatively whether a violation of ignorability could “explain
away” an observed association will often show that the existence of such a confounder
is possible, if not plausible. More sophisticated applications of sensitivity analysis may
be better suited to the objectives of research proponents when these methods quantify
how causal effect estimates change depending on a wide range of specific assumptions (for
example see Carnegie et al., 2016), thus formalizing the process of assessing which counter-
hypotheses are most tenable.

External incentives to promote sensitivity analysis may also be needed, and research
gatekeepers (such as editors and reviewers) have an important role to play. For example,
editorial standards could promote the use and transparent reporting of results from sensi-
tivity analyses in the peer-reviewed literature. Referees of papers could request statistical
reviews and encourage or even require that research proponents include sensitivity analysis
for key assumptions. Journal editors could also require that statistical criticism be pub-
lished in discussion articles with clearly stated counter-hypotheses and sensitivity analysis
as appropriate. Efforts to encourage data sharing can also promote more rigorous evaluation
of counter-hypotheses using a research proponent’s own data.

3. Conclusion

Today, as when Bross wrote his commentary, it can seem as if the only job of the statistical
critic is to point out problems that could occur, regardless of plausibility or likely impact.
A downside of this kind of hit and run criticism, where the mere observation of a flaw in
a study’s methodology is enough to discount the study’s findings, is that it can foster a
double standard whereby a research proponent must rule out every conceivable alternative
hypothesis to justify a study’s findings but a critic need only suggest a counter-hypothesis
to undermine them. This double standard may lead to knee-jerk dismissal of findings based
on observational data and overconfidence in randomization as a design feature. We agree
with Bross that progress may require the statistical critic to stand on more equal footing
with the research proponent. Incentivizing or requiring this has ramifications for issues as
broad as the standards for peer review in journal publication, data sharing policies, and
establishment of criteria for evaluating the empirical support for scientific hypotheses.
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