In lieu of an abstract, here is a brief excerpt of the content:

AMERICAN JOURNAL OF MATHEMATICS Founded in 1878 by Johns Hopkins University INDEX TO VOLUME 141 2019 PAGE ABANTO, D. P. and J. M. ESPINAR. Escobar type theorems for elliptic fully nonlinear degenerate equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 1179 ADDINGTON, NICOLAS, BRENDAN HASSETT, YURI TSCHINKEL, and ANTHONY VÁRILLY-ALVARADO. Cubic fourfolds fibered in sextic del Pezzo surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1479 AKHTARI, SHABNAM and MANJUL BHARGAVA. A positive proportion of Thue equations fail the integral Hasse principle . . . . . . . . . . . . . . . 283 ALLEN, PATRICK B. On automorphic points in polarized deformation rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 AZZAM, JONAS, MIHALIS MOURGOGLOU, XAVIER TOLSA, and ALEXANDER VOLBERG. On a two-phase problem for harmonic measure in general domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1259 BÄR, CHRISTIAN and ALEXANDER STROHMAIER. An index theorem for Lorentzian manifolds with compact spacelike Cauchy boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1421 BHARGAVA, MANJUL. See AKHTARI, SHABNAM BHATT, BHARGAV, MANUEL BLICKLE, GENNADY LYUBEZNIK, ANURAG K. SINGH, and WENLIANG ZHANG. Stabilization of the cohomology of thickenings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 BLICKLE, MANUEL. See BHATT, BHARGAV BOURGAIN, JEAN, MARIUSZ MIREK, ELIAS M. STEIN, and BŁAŻEJ WRÓBEL. Dimension-free estimates for discrete Hardy-Littlewood averaging operators over the cubes in Zd . . . . . . . . . . . . . . . . . . . . . . . . 857 BRENDLE, SIMON and PEI-KEN HUNG. A sharp inscribed radius estimate for fully nonlinear flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 BREUIL, CHRISTOPHE. Ext1 localement analytique et compatibilité local-global. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611 BURGOS GIL, JOSÉ IGNACIO, PATRICE PHILIPPON, JUAN RIVERALETELIER , and MARTÍN SOMBRA. The distribution of Galois orbits of points of small height in toric varieties . . . . . . . . . . . . . . . . . 309 ČAP, ANDREAS and A. ROD GOVER. c-projective compactification; (quasi-)Kähler metrics and CR boundaries . . . . . . . . . . . . . . . . . . . . . . 813 CASCINI, PAOLO and HIROMU TANAKA. Purely log terminal threefolds with non-normal centres in characteristic two . . . . . . . . . . . . . . . . . . . 941 CASPERS, M., D. POTAPOV, F. SUKOCHEV, and D. ZANIN. Weak type commutator and Lipschitz estimates: resolution of the NazarovPeller conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593 CHOUSIONIS, VASILEIOS, KATRIN FÄSSLER, and TUOMAS ORPONEN. Intrinsic Lipschitz graphs and vertical β-numbers in the Heisenberg group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1087 CHURCH, THOMAS, BENSON FARB, and ANDREW PUTMAN. Integrality in the Steinberg module and the top-dimensional cohomology of SLn OK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1375 DE PAUW, THIERRY and ROGER ZÜST. Partial regularity of almost minimizing rectifiable G chains in Hilbert space . . . . . . . . . . . . . . . . . . . . . 1591 DONOVAN, WILL and MICHAEL WEMYSS. Contractions and deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563 ERDOĞAN, M. BURAK, WILLIAM R. GREEN, and EBRU TOPRAK. Dispersive estimates for Dirac operators in dimension three with obstructions at threshold energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1217 ESPINAR, J. M. See ABANTO, D. P. FARB, BENSON. See CHURCH, THOMAS FÄSSLER, KATRIN. See CHOUSIONIS, VASILEIOS FAYAD, KARAM and JAN NEKOVÁŘ. Semisimplicity of certain Galois representations occurring in étale cohomology of unitary Shimura varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503 FRAHM, JAN and EYAL KAPLAN. A Godement–Jacquet type integral and the metaplectic Shalika model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 FREITAG, EBERHARD and RICCARDO SALVATI MANNI. On the variety associated to the ring of theta constants in genus 3 . . . . . . . . . . . . . . . 705 GABORIAU, DAMIEN, ADRIAN IOANA, and ROBIN TUCKER-DROB. Cocycle superrigidity for translation actions of product groups. . . . 1347 GALASHIN, PAVEL and PAVLO PYLYAVSKYY. The classification of Zamolodchikov periodic quivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447 GÉRARD, CHRISTIAN and MICHAŁ WROCHNA. The massive Feynman propagator on asymptotically Minkowski spacetimes . . . . . . . . . . . . 1501 GIANAZZA, UGO and SEBASTIAN SCHWARZACHER. Self-improving property of degenerate parabolic equations of porous medium-type 399 GOVER, A. ROD. See ČAP, ANDREAS GREEN, WILLIAM R. See ERDOĞAN, M. BURAK HAN, JIYUAN and JEFF A. VIACLOVSKY. Deformation theory of scalar-flat Kähler ALE surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1547 HASSETT, BRENDAN. See ADDINGTON, NICOLAS HUNG, PEI-KEN. See BRENDLE, SIMON IOANA, ADRIAN. See GABORIAU, DAMIEN JAO, CASEY. The quintic NLS on perturbations of R3 . . . . . . . . . . . . . . . . . 981 JENDREJ, JACEK. Construction of two-bubble solutions for energycritical wave equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 KAMGARPOUR, MASOUD and DANIEL S. SAGE. A geometric analogue of a conjecture of Gross and Reeder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1457 KAPLAN, EYAL. See FRAHM, JAN KAPOVITCH, VITALI and JOHN LOTT. On noncollapsed almost Ricciflat 4-manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737 KEELER, DENNIS S. Erratum to: Fujita’s conjecture and Frobenius amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1477 LOTT, JOHN. See KAPOVITCH, VITALI LU, GUOZHEN and QIAOHUA YANG. Paneitz operators on hyperbolic spaces and high order Hardy-Sobolev-Maz’ya inequalities on half spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1777 LUO, WENZHI and FAN ZHOU. On the Hecke eigenvalues of Maass forms 485 LYUBEZNIK, GENNADY. See BHATT, BHARGAV MAZET, LAURENT, MAGDALENA RODRÍGUEZ, and HAROLD ROSENBERG . Minimal graphs over Riemannian surfaces and harmonic diffeomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1149 MIREK, MARIUSZ. See BOURGAIN, JEAN MOURGOGLOU, MIHALIS. See AZZAM...

pdf

Additional Information

ISSN
1080-6377
Print ISSN
0002-9327
Launched on MUSE
2019-11-02
Open Access
No
Back To Top

This website uses cookies to ensure you get the best experience on our website. Without cookies your experience may not be seamless.