Abstract

It is generally assumed that there is a good correlation between systematics and the secondary compounds found in plants. However because of the frequent homoplasy of chemical characters this has been difficult to test using statistical methods. Here we applied two nonparametric tests on a published data set, where 50 species of New Caledonian Cunoniaceae were screened for bioactivity against several pathogenic strains. Using Moran’s I index we showed that in two of nine tests against pathogenic strains there was a significantly higher similarity than expected in bioactivities between species belonging to the same genus and a significantly higher than expected dissimilarity in bioactivity between species belonging to different tribes. When considering the bioactivities against all pathogenic strains with Mantel tests, we also found significant correlation between bioactivity and phylogenetic distance in two of four tests. This has implications in screening and conservation. Searches for new molecules and bioactivity should preferentially be made on species spread across the tree of life. There is also a need to preserve as much phylogenetic diversity as possible to make sure that the widest reservoir of natural compounds remains available for future generations.

pdf