-
The Yang-Mills flow and the Atiyah-Bott formula on compact Kähler manifolds
- American Journal of Mathematics
- Johns Hopkins University Press
- Volume 138, Number 2, April 2016
- pp. 329-365
- 10.1353/ajm.2016.0011
- Article
- Additional Information
- Purchase/rental options available:
We study the Yang-Mills flow on a holomorphic vector bundle $E$ over a compact K\"ahler manifold $X$. Along a solution of the flow, we show that the curvature endomorphism $i\Lambda F(A_t)$ approaches in $L^2$ an endomorphism with constant eigenvalues given by the slopes of the quotients from the Harder-Narasimhan filtration of $E$. This proves a sharp lower bound for the Hermitian-Yang-Mills functional and thus the Yang-Mills functional, generalizing to arbitrary dimension a formula of Atiyah and Bott first proven on Riemann surfaces. Furthermore, we show any reflexive extension to all of $X$ of the limiting bundle $E_\infty$ is isomorphic to ${\rm Gr}^{{\rm hns}}(E)^{**}$, verifying a conjecture of Bando and Siu.