The challenge of assessing seldom-visited, benthic substrates has created the need for a method to describe benthic communities quickly and ef- ficiently. Macroscale rapid ecological assessments (REAs) of algal assemblages provide managers of coral reefs and other benthic ecosystems with the fundamental descriptive data necessary for continued yearly monitoring studies. The high cost of monitoring marine communities, especially remote sites, coupled with the time limitations imposed by scuba, require that statistically valid data be collected as quickly as possible. A photoquadrat method using a digital camera, computer software for photographic analysis, and minimal data collection in the field was compared with the conventional method of point-intersect (grid) quadrats in estimating percentage cover in subtidal benthic communities. In timed studies, photoquadrats yielded twice the number of quadrats (and an almost infinite number of data points) as conventional methods, provided permanent historical records of each site, and minimized observer bias by having only one observer identifying algae in the field. However, photoquadrats required more post-collection computer analyses of digital photographs than conventional methods. In the manual method, observer bias in algal identification can occur depending on the degree of experience of individual divers. On the other hand, photoquadrats rely on one observer in the field and one observer in the laboratory, standardizing algal identification. Overall, photoquadrats do not yield the finer resolution in diversity that was found using point-intersect quadrats but do provide a more precise estimate of percentage cover of the abundant species, as well as establishing a permanent visual record in the time allowed by work with other teams.