We show that if $E$ is an elliptic curve over ${\bf Q}$ with a ${\bf Q}$-rational isogeny of degree $7$, then the image of the $7$-adic Galois representation attached to $E$ is as large as allowed by the isogeny, except for the curves with complex multiplication by ${\bf Q}(\sqrt{-7})$. The analogous result with $7$ replaced by a prime $p > 7$ was proved by the first author. The present case $p = 7$ has additional interesting complications. We show that any exceptions correspond to the rational points on a certain curve of genus $12$. We then use the method of Chabauty to show that the exceptions are exactly the curves with complex multiplication. As a by-product of one of the key steps in our proof, we determine exactly when there exist elliptic curves over an arbitrary field $k$ of characteristic not $7$ with a $k$-rational isogeny of degree $7$ and a specified Galois action on the kernel of the isogeny, and we give a parametric description of such curves.


Additional Information

Print ISSN
pp. 77-109
Launched on MUSE
Open Access
Back To Top

This website uses cookies to ensure you get the best experience on our website. Without cookies your experience may not be seamless.