Abstract

The Maui Nui complex of the Hawaiian Islands consists of the islands of Maui, Moloka'i, Lana'i, and Kaho'olawe, which were connected as a single landmass in the past. Aspects of volcanic landform construction, island subsidence, and erosion were modeled to reconstruct the physical history of this complex. This model estimates the timing, duration, and topographic attributes of different island configurations by accounting for volcano growth and subsidence, changes in sea level, and geomorphological processes. The model indicates that Maui Nui was a single landmass that reached its maximum areal extent around 1.2 Ma, when it was larger than the current island of Hawai'i. As subsidence ensued, the island divided during high sea stands of interglacial periods starting around 0.6 Ma; however during lower sea stands of glacial periods, islands reunited. The net effect is that the Maui Nui complex was a single large landmass for more than 75% of its history and included a high proportion of lowland area compared with the contemporary landscape. Because the Hawaiian Archipelago is an isolated system where most of the biota is a result of in situ evolution, landscape history is an important determinant of biogeographic patterns. Maui Nui's historical landscape contrasts sharply with the current landscape but is equally relevant to biogeographical analyses.

pdf