Abstract

This essay discusses a prominent definition of universal concomitance in the Nyāya School of Classical Indian Philosophy. This definition holds that universal concomitance is equivalent to the absence of undercutting conditions. It will be shown that though this definition seems to be inadequate, there is an auxiliary condition that may be added which makes the equivalence between universal concomitance and the absence of undercutting conditions deductively correct. It will then be shown that this auxiliary condition fits well into the Nyaya foundations of logic and that furthermore this auxiliary condition does not unreasonably restrict the applicability of the definition of universal concomitance as the absence of undercutting conditions. Hence, the conclusion is that this interpretation is a good candidate for how the definition of universal concomitance as the absence of undercutting conditions should be understood.

pdf

Additional Information

ISSN
1529-1898
Print ISSN
0031-8221
Pages
pp. 359-374
Launched on MUSE
2012-08-03
Open Access
No
Back To Top

This website uses cookies to ensure you get the best experience on our website. Without cookies your experience may not be seamless.