We propose two constructions extending the Chern-Moser normal form to non-integrable Levi-nondegenerate (hypersurface type) almost CR structures. One of them translates the Chern-Moser normalization into pure intrinsic setting, whereas the other directly extends the (extrinsic) Chern-Moser normal form by allowing non-CR embeddings that are in some sense "maximally CR". One of the main differences with the classical integrable case is the presence of the non-integrability tensor at the same order as the Levi form, making impossible a good quadric approximation---a key tool in the Chern-Moser theory. Partial normal forms are obtained for general almost CR structures of any CR codimension, in particular, for almost-complex structures. Applications are given to the equivalence problem and the Lie group structure of the group of all CR-diffeomorphisms.


Additional Information

Print ISSN
pp. 915-947
Launched on MUSE
Open Access
Back To Top

This website uses cookies to ensure you get the best experience on our website. Without cookies your experience may not be seamless.