In lieu of an abstract, here is a brief excerpt of the content:

明治・大正の日本の地震学 : 「ローカル・サイエンス」 を超えて Boumsoung Kim, Meiji Taishō no Nihon no jishingaku: Rōkaru saiensu o koete [Beyond Local Science: The Evolution of Japanese Seismology during the Meiji and the Taisho Eras] Tokyo: Tokyo Daigaku Shuppankai, 2007. vi + 174pp, ¥3,360. Shuhei Kimura Received: 7 April 2010 /Accepted: 7 April 2010 /Published online: 26 May 2010 # National Science Council, Taiwan 2010 Seismology, the science of earthquakes and related issues, must seek to understand the Earth’s natural mechanisms and to minimize the damage seismic events can cause. Because it has so often addressed safety measures, seismology offers STS scholars a lens through which they can observe scientists, government officials, laymen, and, of course, nature. Japan, a leader in the field, lays claim to the oldest society of seismologists and may be the first country to have appointed a seismologist to a university professorship. In Meiji Taishō no Nihon no jishingaku, Kim Boumsong limns the complex history of Japanese seismology in the Meiji and the Taishō eras, from the institutionalization of the science to the many innovations in observing seismic activities, showing that these were exploited in the revitalization of national pride. The book’s many figures and pictures guide readers along the argument, which attempts to go beyond the old dichotomy between “internalistic” and “externalistic” explanations of scientific progress. It is not enough to argue that Japan first acquired science and technology from Western countries, only to catch up with its teachers later, and every STS scholar, especially those interested in debunking “centerperiphery ” models, will want to read this work by a promising historian of science. In the introduction, Kim outlines the book’s theoretical framework, highlighting an episode from the career of Ōmori Fusakichi, a forgotten researcher called the “world’s authority of seismology” in the United States in 1906. If Japan was winning plaudits over a century ago, could it really have been at the periphery of seismic East Asian Science, Technology and Society: an International Journal (2010) 4:175–177 DOI 10.1007/s12280-010-9126-1 S. Kimura (*) Department of Social Environment, Fuji Tokoha University, Fuji, Shizuoka, Japan e-mail: shuhei.kimura@gmail.com studies? To analyze the characteristics and historical significance of this discord, Kim describes in fine detail how Japanese seismology rose to international preeminence and later lost that position. In the first chapter, Kim explains that the birth of Japanese seismology, from the late 1870s to the early 1880s, was midwifed by foreign advisers (o-yatoi gaikokujin). Established after the 1880 Yokohama earthquake, the Seismological Society of Japan played a leading role as “foreign scientists in Japan discovered natural phenomena unique to Japan, a country far from Europe, and transformed them into Western scientific knowledge” (25). In other words, Japanese seismology was born at the intersection of Western science and Japanese terrain. While young foreign advisors Thomas Grey and James Alfred Ewing developed seismographs—one of the most important “inscription devices” in seismology—their colleague John Milne stretched his observation network nationwide to collect seismological data. Concerned about reducing earthquake damage, the Japanese government subsidized this observation network, which became the basis for the future development of Japanese seismology. The second chapter traces the rise of a generation of native seismologists who gradually superseded their foreign counterparts. This process, which began in the late nineteenth century, involved the institutionalization of national seismic observations and of a department of seismology at the Imperial University. As Kim writes, “Seismological observations in Japan, which happened to be initiated by foreign advisors, grew into a uniquely Japanese system as earthquake observation absorbed hardware and software from the Seismological Society of Japan and allied itself to the national system of meteorological observatories” (54). The transition from foreign to Japanese scientists, or from the Seismological Society to state institutions, shifted the discipline’s emphasis to what Kim calls “meteorological seismology.” The third chapter features Ōmori Fusakichi. A professor of seismology at Tokyo Imperial University, Ōmori served as the secretary-general of the Imperial Earthquake Investigation Committee, succeeding to Milne’s position as a “center of calculation.” Kim explains that Ōmori’s conclusions (rejected by modern seismologists), based on both contemporary data collected from all over the world and historical records of earthquakes in...

pdf

Share