The cone of lower semicontinuous traces is studied with a view to its use as an invariant. Its properties include compactness, Hausdorffness, and continuity with respect to inductive limits. A suitable notion of dual cone is given. The cone of lower semicontinuous 2-quasitraces on a (non-exact) C*-algebra is considered as well. These results are applied to the study of the Cuntz semigroup. It is shown that if a C*-algebra absorbs the Jiang-Su algebra, then the subsemigroup of its Cuntz semigroup consisting of the purely non-compact elements is isomorphic to the dual cone of the cone of lower semicontinuous 2-quasitraces. This yields a computation of the Cuntz semigroup for the following two classes of C*-algebras: C*-algebras that absorb the Jiang-Su algebra and have no non-zero simple subquotients, and simple C*-algebras that absorb the Jiang-Su algebra.


Additional Information

Print ISSN
pp. 969-1005
Launched on MUSE
Open Access
Back To Top

This website uses cookies to ensure you get the best experience on our website. Without cookies your experience may not be seamless.