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LEARNING PHONOLOGICAL CATEGORIES

JOHN GOLDSMITH ARIS XANTHOS

University of Chicago University of Lausanne

This article describes in detail several explicit computational methods for approaching such
questions in phonology as the vowel/consonant distinction, the nature of vowel harmony systems,
and syllable structure, appealing solely to distributional information. Beginning with the vowel/
consonant distinction, we consider a method for its discovery by the Russian linguist Boris Sukh-
otin, and compare it to two newer methods of more general interest, both computational and
theoretical, today. The first is based on spectral decomposition of matrices, allowing for dimension-
ality reduction in a finely controlled way, and the second is based on finding parameters for
maximum likelihood in a hidden Markov model. While all three methods work for discovering
the fairly robust vowel/consonant distinction, we extend the newer ones to the discovery of vowel
harmony, and in the case of the probabilistic model, to the discovery of some aspects of syllable
structure.*

Keywords: categorization, machine learning, hidden Markov models, spectral graph theory, vowel
harmony, phonology

1. INTRODUCTION. The study of phonological systems has two primary goals: a state-
ment of the generalizations regarding permissible segment sequences and structures,
and an analysis of the productive alternations that account for the variant forms of a
morpheme occasioned by the phonological content of the larger utterance in which it
is found: in short, phonology studies phonotactics and alternations. From a historical
point of view, pregenerative American phonology focused on questions of phonotactics,
lacking the tools to treat alternations in depth, and generative phonology (and postgener-
ative phonology) has focused on alternations, lacking the tools to deal with a detailed
study of phonotactics.1

In this article, we approach the general problem of inference (or acquisition) of
phonotactics, and consider the usefulness of three algorithmic styles of analysis to
three questions about the overall phonotactics and the phonological categories that
phonotactics presuppose (consonants, vowels, etc.). These questions are: (i) Given a
sample of data (transcribed symbolically) from a language, can we infer which segments
are vowels and which are consonants? (ii) Can we infer on the basis of such data
whether the language in question possesses a system of vowel harmony, and if so, what
the patterns of vowel harmony are in the language? (iii) Can we draw inferences about
the organization of segments into syllabic structure?

We have chosen these closely related questions because they seem to us to be un-
avoidable questions for phonology: while not every framework will demand a purely
distributional method of answering questions, it is more than likely that these questions
will be meaningful within any given phonological framework. And if the first question
seems very simple, the fact of the matter is that if we demand a fully explicit and
formal algorithm to identify vowels and consonants, it turns out (as we have learned)
not to be all that easy. Be that as it may, the task of discovering vowel harmony and

* This work was supported in part by a grant from the Swiss National Science Foundation to the second
author during his stay at the University of Chicago. We are grateful to a number of our colleagues for
discussion of these topics, including François Bavaud, Yu Hu, Remi Jolivet, and Jason Riggle.

1 A frank and probing survey of linguists working today would no doubt reveal a wide range of opinion
regarding the relative importance of these two poles. We believe both are important, but focus on the area
of phonotactics in this article.
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LEARNING PHONOLOGICAL CATEGORIES 5

syllable structure automatically would doubtless strike any working phonologist as a
nontrivial task—a highly nontrivial task.

It is not our goal here to engage in an ideological battle, but it would serve no purpose
to ignore the simple fact that the approach that we have taken, and described, here
stands in stark contrast with much generative work on phonology. The goal is NOT first
and foremost to develop a cognitive model of how humans use language; it is, rather,
to build a (scientific) model of language, as we know it through our observations of
it; and part of the scientific character of the work is the formal development of explicit
methods of analyzing data. Perhaps the best way to put it is that we wish to pour our
scientific creativity into developing methods for linguistic analysis, rather than into the
development of an analysis of any one particular set of data.

We explore three quite different, fully automatic algorithms that address one or more
of these questions. We look at the first for purely historical reasons—because it was
one of the first algorithms proposed to solve a phonological problem. The other two
approaches we explore are based on methods that are both powerful and promising,
and are in wide use in the machine-learning community. One is based on eigenvector
decomposition and is closely related to such methods as principal component analysis
and latent semantic indexing, while the other is based on maximum-likelihood calcula-
tions and the application of hidden Markov models. The three methods are these:

(i) The first, due to Sukhotin (1962), is one of the earliest algorithms that we are
aware of whose goal is to automatically infer which segments are vowels and which
are consonants; while we have implemented it computationally, it is simple enough
that it can be applied by hand, which was undoubtedly what motivated its discoverer.
We apply the method to a number of phonologically different languages in §2 below.

(ii) The second system is based on spectral graph theory, a relatively new mathemati-
cal field that has been applied to a wide variety of both theoretical and practical prob-
lems; it can be employed to reduce observational data, which can be thought of as
residing in a space of a large number of dimensions, to a greatly simplified representa-
tion in a small number of dimensions (Chung 1997). In our case, this operation makes
the resulting structure accessible to phonologists, when the dimension turns out to be,
for example, a sonority dimension along which vowels and consonants are scattered
appropriately. We describe the method in detail, in part because of its unfamiliarity to
linguists, and in part because it allows one to compute one-dimensional renderings of
data easily on the basis of similarity relationships that would otherwise seem to be
quite difficult to collapse in such a way; this method is likely to be of interest to
linguistics for other purposes as well (as in Belkin & Goldsmith 2002, for example).

(iii) The third system employs hidden Markov models (HMMs) in order to automati-
cally develop a probabilistic model of the data. We show that constraining the system
to learn the probabilistic parameters that maximize the probability of the data leads the
systems to infer categories of segments that are in some ways remarkably like traditional
phonological divisions of sounds into major categories, but the system consistently
infers a syllable structure that is in some ways at odds with traditional analysis; the
very same model is also capable of discovering the presence of vowel harmony in data
from Finnish.

All of the algorithms that we explore and evaluate in this article fall into the class
of what would today be called ‘unsupervised language learning’ (or grammar induction);
that is, they are designed to be neutral with respect to the language that they analyze
(neutral in the sense that they have no prior knowledge of the structure or lexicon
specific to any language) and be capable of taking data from any language as input
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and producing an analysis (as its output) that gives an accurate description of the
language that generated the input data.

The work we report here was originally motivated by our work in unsupervised
learning of natural language morphology (Goldsmith 2001, Xanthos 2008) based on
distributional and information-theoretic concepts. In order to develop a language-
independent algorithm capable of learning Arabic morphology strictly from the data,
it was necessary to consider whether such information-theoretic considerations were
sufficient to allow the learning device to ‘realize’ that there was a natural division of
segments into the categories that we have since Classic times called ‘vowels’ and
‘consonants’. Thus the importance of the question arose in the first instance in an
essentially practical context, but we have pursued the question beyond the original
needs of the morphology learner.

Looking ahead, what we demonstrate is that the first method, Sukhotin’s, works
relatively well, though it does not extend easily to other problems besides the one it
was designed to deal with: distinguishing vowels from consonants. In addition, however,
we find that its performance is relatively sensitive to the encoding scheme used, and
under some conditions it can perform quite poorly. The spectral method of analyzing
similarities does a relatively good job of distinguishing vowels and consonants, though
it is not perfect; it does quite nicely for the analysis of vowel harmony, but does not
extend naturally to the treatment of syllable structure. Maximum-likelihood analysis
on a finite-state automaton (i.e. hidden Markov model) works remarkably well in detect-
ing the vowel/consonant distinction and the vowel harmony system of Finnish, and
sheds some interesting light on the sonority hierarchy and syllable structure of French
and English.

2. PRIOR SCHOLARSHIP. There has been a certain amount of work along these lines,
but most of it is not well known at the present time. The first generation includes the
pregenerative work, such as that by Eli Fischer-Jørgensen and Fred Householder, that
is methodologically aligned with the view, widely held in the 1950s, that one of the
primary goals of linguistic theory is to develop rigorous, purely formal methods for
arriving at an analysis of a set of data; this work was almost entirely done without access
to computers (see Goldsmith & Xanthos 2008, appendix A, for further discussion).

A second generation of work on distributional classification of phonological segments
grew out of computational linguistics, from researchers using tools from mathematics
and computer science, and thus was done with full awareness of the growth of knowl-
edge of methods for data-driven classification—and also of the real complexity of the
problem. That is, even for the simple case of classifying segments into two subgroups
(vowels and consonants), there are 2n � 1 � 1 ways to do this, which means that even
a modest inventory of thirty phonemes can be divided into two categories in more than
500 million ways. Clearly, it will not suffice to have a quantitative method that will
EVALUATE the goodness of any given classification; it would take too long to evaluate
each possible division. We are back to the fundamental problem of linguistic analysis,
which is to find a means of avoiding a search through all conceivable analyses. In
hindsight, it is interesting to reread the structuralists’ accounts, because they never
seemed to be aware of how difficult the problem is, nor of the degree to which their
analysis appears (in retrospect) to be guided by their implicit knowledge of the pho-
netics.

The period since the late 1950s has seen the development of statistical methods for
classification and categorization based on iterative aggregation (see, in particular, Ward
1963). These are ‘bottom-up’ methods par excellence: the algorithm begins by assuming
that all of the elements being considered form distinct classes, each with one member.
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At each iteration, the pair of classes that are MOST similar (by some criterion) are
collapsed into a single class, and this continues until only one class, containing all the
elements, remains. In general, then, such methods do not DETERMINE how many classes
are present in the data; but given a measure of similarity and a decision as to how
many categories one ‘wants’, so to speak, such methods may succeed well in finding
useful categorizations. In the case we are interested in, it is natural to define ‘similarity’
on the basis of similar distribution. Powers (1997) reviews and compares quantitatively
an impressive number of approaches to this problem based on work done in the 1990s
(see notably Powers 1991, Finch 1993, Schifferdecker 1994). He considers in detail
the effect of different assumptions about how to measure similarity (or dissimilarity)
between two contexts (contexts are typically represented as vectors in a space of dimen-
sion 2(n � 1), where n is the number of phonemes in the language, and in which each
dimension represents the number of occurrences of a phoneme or boundary, to the left
or to the right). Powers also considers the impact of different assumptions about how
to convert the similarity between two context vectors, on the one hand, into a measure
of similarity between two disjoint SETS of elements (in this case, of phonemes), on the
other. Perhaps the most significant problem encountered in these bottom-up approaches
is that although typically one of the categories discovered by such systems does indeed
include the set of all vowels, it is not always the case that in the penultimate iteration
of the algorithm—the point at which there are exactly two categories—one of the
classes is the vowels, and the other the consonants.

Ellison explored the usefulness of MINIMUM DESCRIPTION LENGTH analysis (henceforth,
MDL analysis) for the problem of distinguishing classes of phonological segments (see
Ellison 1991, 1994, and Rissanen 1989 for the general framework). One of the goals
of MDL analysis is to use information-theoretic concepts in order to determine the
correct granularity appropriate for analyzing a collection of data. In its simplest form,
MDL analysis calls our attention to the fact that the two extremes of categoriza-
tion—putting every element into a singleton category, and putting every element in
the same category—are both of little or no value; the first overfits the data, and the
second underfits. MDL offers a way to measure the complexity of a set of categories
and the success with which such a set of categories models the observed data, and it
offers an OBJECTIVE FUNCTION (that is, a function whose value we attempt to optimize)
combining these two expressions, which should be minimized in order to find the best
analysis of the data. In order to achieve this, it is necessary to establish a method that
extracts the regularities in the data in a lossless way, in such a way that we can measure
the information in the data that is NOT in the regularities, and a method to MEASURE

quantitatively both the model that extracts the regularities and the size of the data after
the regularities have been extracted. In more concrete terms, then, Ellison’s MDL-style
analysis consists of three components: the specification of a set of models with these
properties, evaluation metrics of the sort just mentioned, and a search algorithm for
FINDING the analysis for a given corpus that optimizes the MDL evaluation metrics.
Ellison employs simulated annealing, a statistical process according to which the search
algorithm hops about in a fashion that is almost completely random at the beginning,
but that increasingly hops only when the change leads to an immediate improvement
in the value of the evaluation metric, eventually stopping because no change can be
found that favors an increase in the evaluation metric (meaning that an optimum—and
hopefully a global optimum—for parametric values has been found). Ellison reports
excellent results for his method.

The present work seeks to address the challenges of unsupervised learning of phonol-
ogy in a relatively theory-neutral way, in part to see just how few assumptions can be
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made without impeding our ability to infer structural patterns from the linguistic data.
We see our work as part of a larger project of understanding linguistic analysis from
a Bayesian perspective: crudely put, seeing whether linguistic theory can be construed
as a particular form of statistical learning without abandoning any of the established
results concerning linguistic structure in the description of particular languages—and
if that is possible, how is that reconceptualization to be accomplished. A number of
researchers have been developing perspectives along these lines, sometimes unknown
to one other, over the last fifteen years, in publications such as Ellison 1991, 2001,
Powers 1997, Goldsmith 2001, Goldsmith & O’Brien 2006, Goldwater 2006, Dowman
2008, as well as others cited therein.2

3. VOWELS AND CONSONANTS. In this section, we describe and evaluate three ap-
proaches to the problem of identifying the two classes, that of vowels and that of
consonants, in a distributional way: an approach described by Boris Sukhotin (1962),
a method based on spectral decomposition of matrices encoding segment transition
information, and a maximum-likelihood method that employs hidden Markov models,
or HMMs. This order of presentation corresponds to increasing ability to correctly
model the data.

Needless to say, we recognize that there are phonetic differences between what Pike
(1943) called vocoids and contoids, but as he was at pains to point out, the phonetic
distinction is related to and yet independent of the linguist’s notion of vowel/consonant.
The question of the relationship of the phonetic character of vocoids and the category
of vowels is much like the question of determining what is a verb and what a noun in
a crosslinguistic way: most of the time, and for most languages, the answer is perfectly
obvious, but that does not mean that to understand the problem deeply and to have an
answer that works even for the difficult cases is easy. Semantics provides a way to
identify what is a noun and what a verb 95 percent of the time, but the linguist cares
more about the more difficult cases where the traditional distributional considerations
come to the fore in making the decision. So too in phonology: phonetics suffices 95
percent of the time, but linguists have known since William Dwight Whitney (see
n. 17) that phonetics is not enough, and that phonological distribution is both critical
and criterial.

3.1. SUKHOTIN’S ALGORITHM. To the best of our knowledge, Sukhotin was the first
to propose a truly algorithmic and language-independent solution to the problem of
identifying vowels and consonants on the basis of a symbolic transcription (Sukhotin
1962, 1973).3 His method is also conceptually and computationally much simpler than
the other approaches investigated here and provides a good opportunity to introduce a
few basic notations. It relies on two fundamental assumptions: first, that the most
frequent symbol in a transcription is always a vowel, and second, that vowels and

2 Regrettably, we were not familiar with the work by Powers and Ellison before the work described here
was undertaken, and we offer the reader a broader than usual review of the previous literature in part because
so much of it is rarely cited today. See also Peperkamp et al. 2006 for a closely related perspective, and
citations involving the use of statistical models in the psycholinguistic acquisition literature, where Saffran
et al. 1996 has had a major impact. There is a growing community of researchers who have recently approached
phonological problems with computational tools and concepts, and many of them share the basic perspectives
of this article; this community includes Sharon Goldwater (Goldwater 2006), Bruce Tesar (Tesar 1998),
Bruce Hayes, Colin Wilson (Hayes & Wilson 2008), and Jason Riggle; one of us (JG) has pursued in detail
with Jason Riggle the treatment of vowel harmony that is sketched in this article (Goldsmith & Riggle 2007).

3 We thank Remi Jolivet for drawing our attention to this work. We have also profited from the analysis
of Sukhotin’s algorithm given by Guy (1991).
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consonants tend to alternate more often than not. Starting from the first assumption,
Sukhotin’s algorithm attempts to divide the phonemes of a language into two classes
that satisfy the second assumption.

Consider a language with an inventory of n phonemes P :� � p1, . . . , pn�, and
suppose we have a sample from this language (a sample from P*) called C. We define
the function Count(.) as specifying the number of times its argument is found in the
relevant corpus C; thus Count(ba) specifies the number of times the sequence of
phonemes /ba/ occurs in the corpus. We may construct a table where each row and
each column corresponds to a phoneme, and each cell stores the number of times that
the corresponding phonemes occurred next to one another (irrespective of their order).
More specifically, we build a square MATRIX R, of dimensions (n � n), where the cell
at the intersection of the i-th row and the j-th column is defined as rij :� Count(pipj)
� Count(pjpi). R is thus a symmetric matrix; that is, the i-th row is identical to the
i-th column, or equivalently rij � rji. The elements on the main diagonal should be
equal to twice the number of times that each phoneme occurs next to itself, but Sukhot-
in’s convention is to ignore these values by setting them to zero (rii :� 0).

For instance, given the sample corpus described in Appendix A, we find an inventory
of five phonemes P � �b, n, s, a, i�, so n � 5. Using the frequencies of sequences of two
phonemes reported in Table A1,4 we may calculate the components of R as indicated: r11

� 0 by convention, r12 � Count(bn) � Count(nb) � 0, . . . , r15 � Count(bi) �
Count(ib) � 3, and so on. We obtain the (5 � 5) matrix given in 1.

b
n
s
a
i

R �

b
0
0
0
4
3

n
0
0
2
7
3

s
0
2
0
2
2

a
4
7
2
0
0

i
3
3
2
0
0

(1)

Sukhotin’s algorithm begins by labeling all phonemes as consonants. Then it enters
an iterative phase: during each cycle, it uses the information contained in R to assign
to each tentative consonant a score that represents the likelihood that it actually IS a
vowel; the single most likely candidate at that point is labeled as a vowel, and then
removed from any further calculations, and in effect from the matrix. This process is
repeated until no more consonants are likely to change category, and those that are left
are the consonants. The algorithm can then return the entire list of phonemes, with
each one labeled as vowel or consonant.

At the core of this approach lies the score v(pi) that is iteratively assigned to each
phoneme pi. Based on the assumption that consonants and vowels are classes that tend
to alternate, a candidate for vowelhood is expected to occur more frequently next to a
consonant than next to a vowel; thus, the DIFFERENCE between its frequency next to a
consonant and its frequency next to a vowel should be positive: the larger, the better.
This difference is precisely the score v(pi) assigned by Sukhotin’s algorithm.

When we apply Sukhotin’s algorithm to natural language corpora, we find that its
accuracy is highly dependent on the particular set of data being processed. We have
run experiments on three large lists of words in English, French, and Finnish.5 The

4 Sequences involving a word boundary are not used in this case.
5 These corpora can be downloaded from http://hum.uchicago.edu/�jagoldsm/Papers/GoldsmithXanthos/

GoldsmithXanthos.htm, along with relevant software.
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English and French corpora were phonetic transcriptions,6 whereas the Finnish corpus
was orthographically transcribed (written Finnish is notoriously close to a phonetic
transcription). Basic facts about these corpora are summarized in Table 1.7

# WORDS # PHONES

CORPUS TYPES TOKENS TYPES TOKENS

English 38,466 58,156 54 386,421
French 15,864 21,768 36 147,146
Finnish 32,156 44,040 27 466,134

TABLE 1. Basic facts about the corpora.

Table 2 shows the classification of vowels and consonants performed by the algorithm
on each corpus. For French and Finnish, the results are good though not perfect. In the
French corpus, the most frequent phoneme turns out to be /ʁ/, so it is misclassified as
a vowel in the first place. This does not affect the classification of the remaining
phonemes, however, all of which are correctly labeled. In Finnish, all consonants and
vowels are correctly identified, with the exception of the rare symbol �q�, whose
role is not entirely unlike that which it has in English: it occurs primarily in borrowings,
and is pronounced [k] or [kv]. A closer look at the contexts where it occurs confirms
that, with regard to the criterion underlying this approach, this symbol clearly behaves
more like a vowel than a consonant: it follows a consonant in fifteen out of eighteen
occurrences in noninitial position; similarly, it is followed by a consonant in eleven
out of sixteen occurrences in nonfinal position (this consonant is systematically �v�).
Notice also that the items listed in Table 2 are arranged by decreasing order of typicality:
the most vowel-like symbols are at top of the vowels column, and the less vowel-like
symbols are at top of the consonants column;8 thus, the misclassification of �q� in
Finnish may also be viewed as a problem of threshold—it should have been the most
vowel-like consonant, rather than the other way around.

The classification obtained for English was quite bad when we used the transcriptions
for vowels that were present in the file. In particular, half of the phonemes labeled as
vowels (10/21) are actually consonants, and the proportion of real vowels misclassified
as consonants is even higher (20/33). It appears, however, that the primary reason for
the poorness of the results lies in the particular method used to represent stress level:
there is no connection made between (for example) the vowel /+/ and the vowel /�+/;
despite the fact that they are qualitatively the same vowel, they are treated by the system
as two unrelated segments, and this leads to a representational scheme in which there
are many vowels with a much lower frequency. When we remove the stress level from
the vowels, we get very different results, results that are much better. In particular, the
only divergence from a phonetic classification is that /Û/ is misclassified as a vowel.

6 They are given here in mostly standard IPA. Note that in the English transcription, there is a distinction
between stressed and unstressed vowels, the former of which are marked by a prefixed � symbol. In the
French transcription, there is no distinction between /a/ and /&/, and /h/ denotes the h-aspiré, which is treated
as a phoneme in this case; h-aspiré words are phonetically vowel-initial, but behave with respect to phrase-
level phonological rules as if they began with a consonant; most such words descended from Germanic
h-initial borrowings.

7 Note that the experiments reported here and throughout the article make no attempt to evaluate how
the results of a method vary across a range of samples within a single language; more details about this
important issue can be found in Xanthos 2008:75–89.

8 This is where our implementation of the algorithm differs from Sukhotin’s: we keep ORDERING phonemes
after the zero threshold, so that we can also evaluate their typicality as consonants.
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ENGLISH FRENCH FINNISH

CONSONANTS VOWELS CONSONANTS VOWELS CONSONANTS VOWELS

t R t ʁ t i
k Û l a s a
d ì s i n e
p s n e l u
z l k U k o
b n m o m ä
�ε ^ d ã r y
�I m p ε v ö
g w b y p q
i h v :̃ h
v �eì z ε̃ j
+ j f : d
�: �^ Ç u b
�+ υ g ø g
�a &ì j œ f
√ eì + œ̃ c
�i t+ « w

�&ì f w x
�u L h
dÇ &υ ɥ
�R oì
&

�oυ
ε

�&υ
u
:
+
θ
�υ
�oì
υ
Ç

TABLE 2. Results of Sukhotin’s algorithm on three natural language corpora.

Similarly to /ʁ/ in French, /Û/ is one of the most frequent consonants in this corpus;
/n/ and /t/ are more frequent, but once the two first vowels (/R/ and /ì/ ) have been
identified, and their cooccurrences next to other phonemes have been subtracted, the
phoneme with the highest score is /Û/.

On the whole, these results suggest that Sukhotin’s algorithm has two main weak-
nesses, both of which are related to the overall frequency of phonemes. On the one
hand, the classification of low-frequency phonemes tends to be unreliable, because of
the insufficient diversity of their contexts (though it shares this weakness to some extent
with any data-driven method). On the other hand, the algorithm suffers from the fact that
its first decisions are based on no or little more information than the overall frequency of
phonemes; this means that there is a risk for high-frequency consonants to be misclassi-
fied as vowels. In the case of our English corpus, the systematic splitting of each vowel
into a stressed and an unstressed phoneme seems to create a situation where both flaws
are exacerbated, hence the generalized collapse of the results.

3.2. SPECTRAL CLUSTERING. Spectral clustering is a relatively recent application of
well-known principles of matrix algebra to the particular matrices that are used to
describe graphs. In this section, we show how it applies to the phonological task of
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identifying vowels and consonants. We first review the basics of graph theory, and
then address the specific issue of graph partitioning, that is, dividing the nodes of a
graph up into natural groupings—where the ‘naturalness’ emerges in each case directly
out of the strengths of graph weights, which indicate similarity, in a sense that we make
explicit below. With this by way of background, we show how this method can be
used to successfully infer major phonological categories in the three corpora we de-
scribed above.

GRAPH THEORY. The term GRAPH is a technical term, and it is defined as a set V of
NODES (also called VERTICES), and a set E of EDGES that are said to JOIN or CONNECT

pairs of nodes (see e.g. Biggs 1993, Chung 1997). In the graphs that we consider, the
edges do not have an inherent direction; they simply join nodes, and so we say that
the graphs are UNDIRECTED. However, the edges of our graphs are WEIGHTED, which
means that they are associated with a real number; such a weight must be nonnegative.
Intuitively, the weight of an edge specifies the strength of the connection between two
nodes; a zero weight corresponds to the complete absence of connection. Figure 1 gives
an example of such a graph. It has n � 5 nodes V � �b, n, s, a, i� with weighted
edges.9

FIGURE 1. A sample weighted undirected graph.

Graphs are commonly represented by a matrix, called an ADJACENCY matrix. If the
graph G has n nodes, then its adjacency matrix is an (n � n) symmetric matrix A where
each row and each column corresponds to a node, and the cell aij at the intersection of
the i-th row and j-th column stores the weight of the edge connecting nodes i and j
(with 0 if they are not connected). The adjacency matrix of the graph represented in
Fig. 1 is given in 2.10

9 Notice that, in this figure, nodes that are strongly connected are less distant than those that have a
weaker or no connection; this convention intuitively supports the interpretation of weights as measures of
SIMILARITY.

10 The elements on the main diagonal represent LOOPS, that is, edges connecting a node to itself; for the
sake of readability, these were not represented in Fig. 1.



LEARNING PHONOLOGICAL CATEGORIES 13

b
n
s
a
 i

A �

 b
.09
.07
.05
.01

 0

 n
.07
.11
.03
.02

 0

 s
.05
.03
.06
.03
.01

 a
.01
.02
.03
.13
.07

 i
 0
 0

.01

.07

.05

(2)

The sum of the weights of the edges connecting any given node i to all of its neighbors
is called its DEGREE, and we can see that the sum of the i-th row of A is equal to the
degree of node i. Using the ‘dot notation’ according to which placing a dot in the place
of a variable is to be construed as a summation over all values, we may define the
degree of node i as di :� ai•. This value is a measure of the overall connectivity of i.
If we think of the weights on the edges of the graph as characterizing degree of simi-
larity, then the degree of a node represents its total solidarity with the group as a whole.
In our example, the degrees of /b/, /n/, /s/, /a/, and /i/ are d1 � .09 � .07 � .05 �
.01 � .22, d2 � .23, d3 � .18, d4 � .26, and d5 � .13 respectively. The VOLUME of
a graph is a measure of its total connectivity. It is defined as the sum of the degrees
of its nodes, or equivalently as the sum of ALL cells of A: vol(G) :� d• � a••. In our
example, it is equal to 1.02.

GRAPH PARTITIONING. We build a graph below in which each node corresponds to a
phoneme, and the weights of the connections between the nodes represent distributional
similarity. We would like to employ methods and techniques from graph theory that
enable us to automatically find optimal ways to divide the set of nodes of a graph into
two or more subgroups on the basis of the weights of the edges. Our goal is to find
phonological categories among the phonemes in this way. In order to simplify our
discussion, we assume henceforth that all of our graphs are CONNECTED, which means
that in effect, there are no islands in our graphs: it is always possible to find a path
from any node in a graph to any other node, following edges of the graph.

Partitioning a graph G consists in dividing its nodes into two disjoint subsets S and
T. We have assumed that our graph is connected, and therefore partitioning it involves
cutting at least one edge. Since the weights of G’s edges represent the similarities
between the nodes, and since we ultimately are looking for a way of partitioning the
nodes of our graph into reasonable groupings, it follows that a natural criterion for
choosing among the ways of dividing n nodes into two groups (and there are 2n � 1 � 1
different ways!) is to preserve the largest possible amount of connectivity. Intuitively,
we can imagine creating a partition by drawing a line on the page in such a way that
all of the nodes in S are on one side of the line, and all of the nodes in T are on the
other side. Viewed in this way, it is clear that our goal must be to find a line that cuts
through as small a number of edges as possible, and the edges that it does cut should
have as small a weight as possible. Formally, this means defining the sets S and T in
a way that minimizes the resulting CUT, that is, the sum of the weights of edges connect-
ing nodes BETWEEN the two groups, as in 3.

(3) cut(S,T ) :� ∑
i�S

∑
j�T

aij

For the graph represented in Fig. 1, this criterion leads to the partition S � �b, n, s�,
T � �a, i�, whose cut is minimal and equal to .01 � .02 � .03 � .01 � .07 (see
Table 3).
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S T cut(S, T) �(S, T)
�b, n, s, a� �i� .08 .62
�b, n, s, i� �a� .13 .5
�b, n, a, i� �s� .12 .67
�b, s, a, i� �n� .12 .52
�n, s, a, i� �b� .13 .59
�b, n, s� �a, i� .07 .18
�b, n, a� �s, i� .18 .58
�b, s, a� �n, i� .2 .51
�n, s, a� �b, i� .21 .6
�b, n, i� �s, a� .19 .43
�b, s, i� �n, a� .21 .43
�n, s, i� �b, a� .24 .5
�b, a, i� �n, s� .18 .44
�n, a, i� �b, s� .15 .38
�b, n� �s, a, i� .11 .24

TABLE 3. Cut and conductance for each partition of the graph plotted in Fig. 1.

Now, it may happen that using this criterion for ‘best cut’ yields undesirable
results. For example, it might be the case in a graph with 100 nodes that one node
i was connected to only one other node in the graph, and that the ‘best’ cut simply
snipped node i off from the rest of the graph, when in reality we were more
interested in finding a more balanced division of the nodes into two groups. For
this reason, it is useful to refine the criterion for ‘best cut’ by adding the constraint
that S and T should be balanced in terms of the total weights of their nodes. Among
several ways of doing this, the experiments described below rely on the CONDUCTANCE

measure �(S, T) proposed in Kannan et al. 2000 (see Goldsmith & Xanthos 2008,
appendix C, for more details on this). In our example, this revised criterion leads
to the same partition S � �b, n, s�, T � �a, i�, with minimal conductance �(S,
T) � .18 (see Table 3).

At this point, what we have is a method for evaluating the relative ‘quality’ of any
proposed partitioning of a graph, but no method for quickly finding the best one. Indeed,
the number of partitions to evaluate grows exponentially as the number n of nodes in
the graph gets larger. Solutions to problems of this sort that involve exhaustive search
are generally unacceptable for obvious reasons—they take too long—and this is what
motivates the spectral approach to graph partitioning, whose fundamental idea is based
on the natural equivalence of undirected graphs, on the one hand, and symmetric ma-
trices, on the other. A symmetric matrix can always be decomposed in a very special
way, one that expresses it as a ‘rotation’ (a rotation being a mapping that leaves a
vector’s size unchanged), followed by a set of pure expansions or contractions along
a specific set of vectors that are all orthogonal to one another, followed by another
rotation; this is known as the spectral theorem for symmetric matrices. It is the interme-
diate set of expansions/contractions that plays the major role here (the directions of
pure contraction or expansion are called EIGENVECTORS), because the ranking of these
eigenvectors by their degree of contraction also tells us their importance in the recon-
struction of the entire graph. It is a well-known result (Chung 1997) that the vector
that best summarizes the cut of the graph into two sections is the SECOND EIGENVECTOR

(or FIEDLER VECTOR) of the graph. The main property of this vector is to assign a single
number to each node in the graph, in such a way that nodes with a strong connection
between them, that is, similar phonemes in this case, are assigned similar numbers; in
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effect, this allows us to represent phoneme similarity on a single dimension, as shown
in Figure 2.11

FIGURE 2. Second eigenvector of the graph represented in Fig. 1.

This process obviously involves a loss of information, but it is guaranteed to yield
the best possible reproduction of the overall pattern of similarity defined by the edges
of the graph—under the constraint that each node must be represented by a single
real number. Thus, although the spectral description in Fig. 2 is only an approximate
representation of the graph in Fig. 1, it highlights the similarity between nodes /b/ and
/n/ on the one hand, and /a/ and /i/ on the other hand, as well as the more central
situation of /s/ (though it is clearly closer to the first pair), and it does it in a purely
quantitative way, making it unnecessary for a human being to look at the graph and
make decisions about what should be close to what.

Spectral clustering relies on these results to narrow drastically the range of partitions
to be evaluated. Since the second eigenvector of a graph summarizes the largest possible
amount of the graphs’s connectivity, it provides a reasonable basis for filtering out
irrelevant partitions—without actually calculating their conductance. Thus, a strategy
that is commonly adopted is to evaluate only those partitions that result from grouping
nodes according to their position on the second eigenvector. In our example, this
amounts to four partitions (see Fig. 2): (i) S � �b�, T � �n, s, a, i�; (ii) S � �b, n�,
T � �s, a, i�; (iii) S � �b, n, s�, T � �a, i�; and (iv) S � �b, n, s, a�, T � �i�. We have
seen previously that partition (iii) has minimal conductance; the important point here
is that it was indeed ‘preselected’ by the spectral approach, contrary to the vast majority
of less optimal partitions (eleven out of fifteen, in this artificially small case). This
illustrates the efficiency of spectral clustering as a way of quickly searching the space
of possible partitions of a graph.

APPLICATION TO THE DISCOVERY OF VOWELS AND CONSONANTS. Weighted graphs are
well suited for representing a system of discrete units—in our case, phonemes—with
connections of variable strength between them. Undirected graphs add the further con-
straint that the connections be symmetric; similarity is a typical example of a symmetric
relation that can be embodied by a connection in such a graph. When spectral clustering
is applied to a graph that encodes some form of similarity between phonemes, it results
in a partitioning where similar phonemes are grouped together and the size of groups
is as balanced as possible. We observe then that the use of a similarity based on
the distribution of phonemes leads to a categorization that corresponds well with the
distinction between vowels and consonants.

Any real application of this method requires the notion of DISTRIBUTIONAL SIMILARITY

to be made precise. In particular, it is necessary to give a full specification of how the

11 To be precise, the vector represented in Fig. 2 and used for the spectral clustering is the Fiedler vector
of the graph after dividing the value associated with each phoneme by the square root of its stationary
probability; see Goldsmith & Xanthos 2008, appendix C, and Xanthos 2008:60–65 for more details.
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corpus should be processed in order to assign to each pair of phonemes (or equivalently,
to each edge of the graph) a numeric value quantifying the similarity between the
distribution of these phonemes. We offer an intuitive presentation of the idea here; see
Appendix B here and Goldsmith & Xanthos 2008, appendix D, for further details.

In general, we say that two phonemes are DISTRIBUTIONALLY similar if they occur in
similar CONTEXTS. The context of an occurrence of a phoneme can be defined as the
previous phoneme (as in the experiments reported below), the two previous phonemes,
the previous and next phonemes, and so on. A given corpus can then be used to evaluate
the number of occurrences of each phoneme in each context—a number that is typically
zero for many phoneme-context combinations. Thus, each phoneme may be character-
ized by a list of numbers corresponding to its frequency in each context, and the
distributional similarity between two phonemes can be assessed by comparing the lists
of frequencies associated with them. Given a table with the frequency of each phoneme
in each context, it is relatively easy to apply a mathematical manipulation in order to
derive the adjacency matrix of a weighted undirected graph, where the weight of an
edge corresponds to the distributional similarity of the pair of phonemes connected by
this edge.

ENGLISH FRENCH FINNISH

CLUSTER 1 CLUSTER 2 CLUSTER 1 CLUSTER 2 CLUSTER 1 CLUSTER 2
u √ U « ä x
�υ n :̃ z a n
υ Ç œ n o h
�u L : f e r
�^ v i b u v
oì k ø v q c
�oì g w d y l
�&ì dÇ y g i w
�i + e k ö m
i m ɥ p f
^ l ε + s
�: θ u Ç d
�ì f o s j
�eì b a m p
&ì t+ ã h b
�ε s œ̃ l k
�& p j t g

�&υ d ε̃ ʁ t
�oυ h
R t
�R
eì
�+
:

oυ
ì
&
j
+
ε

&υ
w
Û
z

TABLE 4. Results of the spectral method on three natural language corpora.
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We have applied this procedure to build a phonotactic graph for each of the three
corpora used in the previous section. Table 4 shows the partitioning of phonemes
resulting from the application of spectral clustering to these three graphs.12 The classifi-
cation of English phonemes is not perfect, but it is much better than what Sukhotin’s
algorithm would predict. In particular, the splitting of vowels into a stressed and un-
stressed version does not seem to bear on the results.13 The only errors are the misclassi-
fications of four consonants as vowels: /j/, /w/, /Û/, and /z/. Classifying glides with
vowels seems to be a consistent behavior of the spectral method, since it also occurs
for French (more on this below). Although /Û/ and /z/ appear relatively frequently after
a consonant, the same holds for other consonants as well, and it is not clear why the
method would specifically misclassify these two phonemes with vowels. Since they
stand right next to the boundary between vowels and consonants, one hypothesis is that
their misclassification stems from the denominator of the conductance (see Goldsmith &
Xanthos 2008, appendix C) rather than its numerator: in other words, that they help
balance the volumes of the groups more than they contribute to their distributional
homogeneity.

The results for French are quite similar, as the glides (/j/, /w/, and /ɥ/) are also
misclassified as vowels. The reason for this seems to be that we have chosen to define
a phoneme’s context as the previous phoneme in a word, and for glides this phoneme
is much more likely to be a consonant than a vowel (in both languages). In fact, if we
define the context of a phoneme as the two phonemes that surround it, we find that
glides are correctly classified as consonants, and so are English /Û/ and /z/.14

The results for Finnish are exactly identical to those of Sukhotin’s algorithm, that
is, the symbol �q� is misclassified as a vowel (see §3.1). This behavior recurs when
the context is defined as the surrounding phonemes or the following one; in the latter
case, �n� is further misclassified as a vowel—the least vowel-like one.

Overall, it seems that the spectral approach performs considerably better than Sukhot-
in’s algorithm. The spectral approach’s tendency to label glides as vowels can be fixed
by modifying the definition of context to take into account the following phoneme as
well, which is also the case in Sukhotin’s algorithm. Insofar as the spectral method’s
classification of English phonemes is considerably better than that of Sukhotin’s algo-
rithm, it seems more robust with regard to variations in the encoding scheme being
used. On the whole, we consider this a significant step toward an unsupervised solution
to the problem of learning major phonological categories.

3.3. MAXIMUM LIKELIHOOD: HIDDEN MARKOV MODELS. The third method that we have
explored poses the problem of phone categorization in terms of a natural optimization
problem: suppose we construct a finite-state device with a small number of states (two
states, in most of the cases that we examine). Each state is in principle capable of
generating all of the phonemes of the language. In fact, each state has its own probability
distribution for generating each of the symbols of the language, and each state has a
probability distribution for transitioning to itself or any of the other states (typically,

12 In this table, the ordering of phonemes reflects their ordering on the (normalized) Fiedler vector, that
is, the phonemes at the top of each column are those that are located at each extreme of the vector.

13 Interestingly, the stressed and unstressed versions of several vowels (/υ/, /oì/, /i/, /R/) are actually located
next to one another on the Fiedler vector.

14 Note that when a phoneme’s context is defined as the phoneme that follows it, glides are correctly
classified, as are English /Û/ and /z/, but other divergences occur in English: /s/, /√/, and /n/ are misclassified
as vowels, and /i/ as a consonant.
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there is only one other state). We desire to find the assignment of probability distribu-
tions for these two functions (emission distribution and transition distribution) for each
state in such a way that the probability of the corpus—which is to say, of the data
sample—is maximized (see Figures 3 and 4).

FIGURE 3. A simple two-state hidden Markov model.

FIGURE 4. The states in the HMM.

As this task is described, it corresponds directly to a well-known task in machine
learning, training a hidden Markov model (henceforth, HMM), and there is a well-
known algorithm that can rapidly find the parameters for these distributions, and it
does this in such a way that the data is assigned the highest probability. (Actually, the
algorithm is sure to find a local maximum, and not guaranteed to find a global maximum;
this difference does not seem to play a role in the cases we are looking at.) We employed
this Baum-Welch algorithm (a special case of expectation maximization) in order to
find the appropriate distributions on the basis of the training data that we have described
for each language. (For technical discussion of HMMs, we refer the reader to Charniak
1993 and Jelinek 1997.) The intuition that lies behind this is that if there is local
structure to the sequence of symbols that the HMM is being trained on, then it will
find a way to distribute the sounds differentially to the two states, and to train the
transition probabilities between the two states as well. If there is a tendency in the data
to alternate between sounds of two different sets, then the system will assign those
sounds to different sets, and assign a higher probability to the transitions between
distinct states than that which it assigns to the ‘transitions’ that allow the system to
remain in the same state. If, by contrast, the data has different characteristics—if, for
example, the data shows stretches of several segments from one subgroup, followed
by stretches of segments from another group—then the system will assign higher proba-
bilities in one of the states to the one subgroup, and higher probabilities in the other
state to the other subgroup, and at the same time, it will assign relatively low transition
probabilities to links between states 1 and 2 in either direction. We observe below that
each of those descriptions will be borne out in actual linguistic cases: the former in
the case of vowels and consonants, and the latter in the case of vowel harmony.

OBSERVING RESULTS FOR ENGLISH. The HMM takes about 2,000 iterations through
the English data we used (on the order of 50,000 words in each case) in order to arrive
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at a steady state, but it arrives at a state not far from that steady state within about fifty
iterations. At that point, we can observe three aspects of the results: the emission
probabilities, the transition probabilities, and the common convergence despite random
initial assumptions.

PHONE LOG RATIO PHONE LOG RATIO

L �999 u 2.22
√ �999 ^ 2.30
w �999 i 2.31
n �999 &υ 2.32
l �999 &ì 2.83
h �999 oυ 3.93
+ �999 eì 4.99
Û �999 �&ì 5.11
m �999 �oì 5.81
v �999 �i 7.39
Ç �999 �oυ 12.7

dÇ �999 �&υ 275
b �999 �eì 262
j �999 oì 263
f �999 �u 999
g �829 R 999
k �576 ε 999
t+ �361 + 999
θ �5.19 �^ 999
p �4.37 & 999
d �3.95 ì 999
s �2.75 �+ 999
t �2.20 : 999
z �1.37 �ε 999

�& 999
�: 999
�ì 999
�R 999
�υ 999
υ 999

TABLE 5. Phones and the log ratios of their emissions, comparing the two states of the HMM for English.

First, and most importantly, we can observe the relative log probabilities of
the EMISSION of each phoneme across the two states, that is, for each phoneme p,

log
prstate

1
(p)

prstate
2
(p)

. This is given in Table 5, where a positive value indicates a phoneme

that the network prefers to generate in state 1, while a negative value indicates a
phoneme that the network prefers to generate in state 2. We use ‘999’ to represent a
ratio greater than or equal to 999 (typically because the denominator in the expression
is zero, or close to it), and similarly for ‘�999’. The segments are naturally divided
into two groups, based on whether the ratio is positive or negative. This informs us of
the categorization that the system has learned for the two sets of segments. As we see,
the method is thus 100 percent successful. The ENTROPY of the emissions of a state is
the average base-2 logarithm of the reciprocal of the emission probabilities, and it is
the usual way of looking globally at a set of probabilities; when the entropy decreases,
more of the probability is being focused on a smaller subset of the candidates. We can
see this ‘focusing’ explicitly in the top graph of Figure 6, where the fall in the entropies
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shows that both states are learning to specialize and divide their labor, so to speak,
between them, with one state specializing in consonants and the other in vowels.

Second, we can inspect the TRANSITION probabilities for the two states. We can do
this in a few ways. (i) We can consider the final steady-state values of the four state
transition probabilities, as shown in Figure 5. (ii) We can plot the evolution of these
four transitions on a graph, where the x-axis represents ‘time’, or the iterations in the
learning regime, as in Fig. 6. We present graphically the evolution of the transition
probabilities over the course of the first forty iterations during the learning phase.15

FIGURE 5. English: two-state finite-state automaton.

FIGURE 6. English transitions.

15 A moment’s study of the data displayed in Table 5 leads one to the question of WHY there seems to be
a span of vowels (/u/, /^/, /i/, /&υ/, /&ì/, /oυ/, /eì/, /�&ì/, /�oì/, /�i/) and of consonants (/θ/, /p/, /d/, /s/, /t/, /z/)
whose log ratio is surprisingly close to zero. There appear to be two separate answers to this question. The
data that we have used, a CMU wordlist widely available at http://www.speech.cs.cmu.edu/cgi-bin/cmudict,
includes a number of words in which two vowels appear adjacent to each other: for example, overarching
� /�oυ�v^�&Ût+� ì√/, biotic � /bi�&tìk/. This appears to be the reason why a number of unstressed diphthongs
have such a small log ratio. The consonants whose log ratio is small are those that tend to appear in clusters
with high frequency, and we return to their behavior in the next section, when we look at the way three-
state HMMs analyze this data.
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FIGURE 7. Five paths to the learning of English transitions. x-axis is prob (state 1 N state 1);
y-axis is prob (state 2 N state 2). All movement is downward and to the left.

Third, we can observe the evolution of the transition probabilities over the course
of several different learning experiments, as in Figure 7. This figure shows the evolution
of five learning experiments. Each point resides in a two-dimensional space, with coor-
dinates (x, y); the first coordinate x marks the probability of transition from state 1 to
state 1, and y is the probability of the transition from state 2 to state 2. We refer to
this space as ‘phase space’; its coordinates represent transition probabilities. Starting
values for these probabilities were chosen at random from near the center of the square
extending from (0,0) to (1,1). As we see, the values expressed during the learning
process converge on the same final point in this phase space.16

ALTERNATING AND HARMONY SYSTEMS. When the transition from each state to itself
is considerably less than 0.5, as is the case here, then the system has learned to preferen-
tially ALTERNATE between the two states (which we may reasonably label ‘V’ and ‘C’
once we inspect the identity of the segments being generated by them). It turns out
that, when we analyze vowel harmony data in parallel fashion below, the system reaches
equilibrium at a point in a different quadrant, one where the probability of the transitions
from one state back to itself is close to one; this is a natural characterization of a
HARMONY system. See Figure 8 for a graphical representation of these two regions in
phase space: the harmony system is the upper right quadrant, and the alternating system
is the lower left quadrant.

OBSERVING RESULTS FOR FRENCH. Turning now to a corpus of French, we find essen-
tially the same results; the results after 1,200 iterations are given in Table 6 and Table
7. Figure 9 presents the transition data graphically. Figure 10 illustrates the early and

16 We see here that when the starting position for the probability of 1 N 1 transition in phase space is
further from the final correct position, there is a strong tendency for the learning algorithm to overshoot the
correct value along this dimension before correcting the 2 N 2 probability. This tendency deserves closer
study.
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harmony
region

alternating
region

(0,1)

(0,0)

(1,1)

(1,0)

FIGURE 8. Phase space, defined by probability of each state transitioning to itself.

most important part of the learning during a single training, showing both transition
probabilities and state emission entropies, as above. See also Figure 11, which shows
the passage to learning for three systems starting from four different initial random
values. Again, as in English, the end point of the learning is a spot in the alternating
region of phase space.

PHONE LOG RATIO PHONE LOG RATIO

s 5.26 U �999
t 7.96 ε �999
g 600 : �999
p 933 u �999
d 999 i �999
k 999 ã �999
Ç 999 ε̃ �999
m 999 :̃ �999
n 999 ø �999
l 999 œ �999
f 999 a �473
b 999 y �11.6
r 999 o �10.5
« 999 œ̃ �5.53
v 999 e �4.93
+ 999
h 999
ɥ 999
w 999
j 999
z 999

TABLE 6. Phones and the log ratios of their emissions, comparing the two states of the HMM for French.

As in English, vowels and consonants are correctly categorized. As above, we use
‘999’ to represent a ratio greater than or equal to 999, and similarly for ‘�999’. The
‘consonant’ identified as an /h/ is the h-aspiré, which is treated as a phoneme in this
data set.
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to state 1 to state 2
from state 1 .23 .77
from state 2 .98 .02

TABLE 7. Transition probabilities, two-state HMM for French.

FIGURE 9. French: two-state finite-state automaton.

FIGURE 10. French transitions.

The results that are described here, which are similar to the results we have found
in all of the data sets we have looked at, suggest that an effective procedure for dividing
vowels and consonants into two distinct categories is to train a two-state HMM on a
string of symbolic representations of phones, in order to find the parameters that maxi-
mize the probability of the data. To turn the same point around, we could say that IF

linguists define, at a high level of abstraction, their goal to be the development of a
model that maximizes the probability of the data, then if they choose to divide the
phonological segments of a spoken language into two sets, there is strong reason to
believe that the two sets of segments that EMERGE from this distributional task are the
segments that have, since the time of the Greeks, been called VOWELS and CONSONANTS.

It is perhaps not too strong to describe our results so far as the ‘discovery’ of vowels
and consonants—though one might also call them the discovery of a method to discover
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FIGURE 11. Dynamics of learning French V/C. All movement is downward to the left.

vowels and consonants (distinct from, and largely simpler than, that of Ellison, discussed
above). These two categories are doubtless the most important and fundamental in
all of phonology.17 What question, or questions, comes next? What other aspects of
phonological structure are both basic and robust in a cross-theoretical way? That is,
what aspects of phonology would all perspectives on phonology agree upon as the next
most significant, after the discovery of the vowel/consonant distinction?

Two possible answers come easily to mind. One is vowel harmony; the other is
syllable structure. We turn to each of these two phenomena in the next two sections.

4. LEARNING VOWEL HARMONY. By VOWEL HARMONY we mean the strong tendency
of a language to impose a restriction on the choice of vowels inside phonological words
in such a way that each word selects vowels from only one of a relatively small number
of subsets (typically two) of the vowels of the language. The subsets may overlap in
some cases (in which case we speak of ‘neutral’ vowels); the subsets of vowels are
typically, but not always, natural from a phonetic point of view. A common pattern is
that the front vowels of a language form one set, and the back vowels another; see van
der Hulst & van de Weijer 1995 for an overview of vowel harmony systems.

17 Whitney, for example, wrote in 1865:

The question of the mutual relation of vowels and consonants, of what constitutes the essential distinction
of either class from the other, is one of primary interest as regards the theory of the alphabet, and does
not appear to me ever to have been taken up and discussed in a wholly satisfactory manner . . . Those
who study the spoken alphabet have been content . . . to treat the vowels and consonants as two indepen-
dent bodies, partners in the work of articulate expression, indissolubly married together for the uses of
speech, yet distinct individuals, to be classed, arranged, and described separately, and afterward set side
by side. (in Silverstein 1971:198)

Whitney proceeds to argue for a cline, stretching from obstruents through liquids to glides and thence to
vowels. Bloomfield (1933:130) proposes that phonemes are divided into PRIMARY and SECONDARY (prosodic)
phonemes, and primary phonemes are divided into consonants and vowels. Trubetzkoy (1969:92) does like-
wise, focusing on properties of phonemes rather than on the phonemes themselves (a natural thing, since
he was creating structuralism in so doing); these properties divide into vocalic, consonantal, and prosodic
properties.
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The task of identifying vowel harmony is thus a problem of category discovery. Our
question then is this: is there an algorithm that takes as its input a set of phonological
data, and returns an answer of ‘No!’ when the data does not display vowel harmony,
and returns a labeling of the vowels into appropriate harmonic subgroups when the
data is drawn from a language with vowel harmony? In the next two subsections, we
explore the effectiveness of spectral methods and maximum-likelihood/HMM methods
in answering this challenge. As noted above, we have used a corpus of 44,040 Finnish
words in standard orthography as our training set. The traditional account of Finnish
is that there are two neutral vowels, represented by graphemes �i� and �e�, and a
vowel harmony system on backness and frontness. The back vowels are �u�, �o�,
and �a�, while the front vowels are �ö�, �ä�, and �y�. For this experiment, we
have extracted from each word the subsequences consisting of just the vowels; this
leaves us with 15,412 distinct vowel sequences in the lexicon, and 101,913 vowel-type
occurrences.

4.1. SPECTRAL APPROACH. In §§3.1 and 3.2, we described two methods for classifying
the phonemes of a corpus into two categories that correspond well with vowels and
consonants. Considering the problem of vowel harmony reveals a fundamental differ-
ence between these two methods: Sukhotin’s algorithm is able to identify vowels and
consonants because it is BY DESIGN a device for detecting alternating patterns, and
vowels and consonants constitute a typical instance of this pattern; by contrast, spectral
clustering is able to do so because it is a device for grouping similar objects together,
and all members of the set of vowels (respectively consonants) are similar with regard
to their tendency to alternate with members of the other category. As a consequence,
Sukhotin’s algorithm is helpless to learn vowel harmony, because members of a har-
mony category tend NOT to alternate with members of the other, whereas the spectral
approach is able to shed light on this phenomenon on the basis of the exact same
criterion as before: distributional similarity.

FIGURE 12. Second eigenvector of the graph of Finnish vowels.

Thus we have applied the spectral method introduced in §3.2 without any change
to the corpus of Finnish vowels, and it results in a classification where front vowels
and neutral vowels form a single group, while back vowels are in a group of their
own.18 As shown in Figure 12, the positions of vowels on the second eigenvector of
the graph reveal a more fine-grained structure: neutral vowels �i� and �e� constitute
a separate cluster, and the set of front vowels is divided into a cluster comprising �y�
and �ä� and another cluster containing only the vowel �ö�.

While the spectral approach is able to capture certain relevant features of a vowel
harmony system, it offers no way of handling the fact that in such a system, phonemes

18 Recall that the clustering algorithm that we use invariably returns two categories. From Fig. 12, it may
seem that neutral vowels are more similar to back vowels. But the spectral representation just serves as a
filter that discards a large proportion of possible partitionings; ultimately, the crucial criterion is the CONDUC-

TANCE (see Goldsmith & Xanthos 2008, appendix C, for general discussion) associated with each partitioning,
and not the distances induced by the spectral projection.
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may in effect belong to more than one group—as the neutral vowels of Finnish do.
One way of overriding this limitation would be to apply a FUZZY clustering algorithm
(see e.g. Bezdek 1981). The specificity of such algorithms lies in their ability to charac-
terize set membership in probabilistic terms: thus, it is likely that neutral vowels would
‘belong’ to both groups (back and front vowels) with approximately the same probabil-
ity, while the vowels composing the core of these groups would ‘belong’ to one of
them with a much higher probability than to the other.

In any event, this example demonstrates the superior generality of the spectral ap-
proach over Sukhotin’s algorithm, as the former can handle the different patterns of
distributional similarity involved in the learning of the vowel/consonant distinction and
of a vowel harmony system.

4.2. MAXIMUM-LIKELIHOOD METHODS. We turn now to the task of discovering vowel
harmony by maximum-likelihood methods, parallel to the discovery of the vowel/
consonant distinction described in §3.3 above. The method is simplicity itself: we train
an HMM (one that is identical in its initial form before training to the one used in the
earlier analysis) on the sequence of vowels in each word, where what counts as a vowel
has already been determined. If the transition parameters for the states map to a point
in the ‘harmony’ part of our phase space—and especially if they map to a point very
close to (1,1)—then we can infer that the system has discovered a vowel harmony
system. Those vowels that are principally emitted by just one state constitute one of
the vowel harmony classes, while the vowels that are principally emitted by just the
other state constitute the other vowel harmony class; vowels that are emitted by both
states, with roughly equal probabilities, are neutral vowels.

VOWEL LOG RATIO VOWEL LOG RATIO

ö 999 o �7.66
ä 961 a �927
y 309 u �990
e 0.655
i 0.148

TABLE 8. Log ratios of emission probabilities for Finnish vowels.

We find that the vowels in our Finnish corpus are quickly and easily distributed
along a single dimension, as in Table 8. The vowels seem to fall into four categories:
those with a very large positive log ratio (the front vowels, �ö�, �ä�, and �y�),
those with a very large negative log ratio (the back vowels, �a� and �u�), those
with a log ratio very close to zero (the two neutral vowels in Finnish, �e� and �i�),
and, unexpectedly, a fourth category, �o�, which is a back vowel and yet is surprisingly
distant from its congeners �a� and �u�. In any event, the system as it stands gives
the right results, in the following sense. The optimal path through the finite-state device
for a word with only front vowels (or a mixture of front vowels and neutral vowels)
keeps the system in state 1, and in a word with only back vowels (or a mixture of back
vowels and neutral vowels) in state 2. The emission and transition results after 1,000
iterations of training are given in Table 8 and Table 9. Table 8 shows the separation
of the vowels into two groups, and Table 9 shows that this is a harmony system, by
virtue of the fact that the transition from each state to itself is much higher than the
transition to the other state; this same point is represented graphically in Figure 13,
but note that this last figure is deceptive; the labeling there makes it appear that vowels
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have unambiguously been divided into two categories, when in fact the structure is a
good deal more articulated, as noted earlier.

to front Vs to back Vs
from front Vs .90 .10
from back Vs .03 .97

TABLE 9. Transition probabilities, two-state HMM for Finnish vowel harmony.

FIGURE 13. Finnish vowel transitions.

As we have presented the use of the HMM so far, its effectiveness might as well
have been limited to the ease with which it can be used to find parameters that maximize
the probability of the data. There is, however, a second aspect of HMMs that is worth
remarking upon. After the appropriate parameters for an HMM have been learned, the
typical use to which an HMM is put is this: for each string of data (here, each Finnish
word) the HMM will find the UNIQUE PATH through the states that generates the data
with the highest probability. Typically, there will be a large number of possible paths
through the network that will generate the same string, because each state has a nonzero
probability of generating each of the symbols in the alphabet, and each state-to-state
transition is greater than zero. But there is a straightforward algorithm that allows us
to determine which SINGLE path through the network generates a given string with a
higher probability than any other path. Now, this is particularly interesting in the case
at hand, because for the two neutral vowels of Finnish, both states generate both vowels
with nearly equal probability. But because of that fact, and because the probability of
transitioning from one state TO THE OTHER is very low, it follows that a neutral vowel
in a front-vowel word will be generated by the front-vowel state, while a neutral vowel
in a back-vowel word will be generated by the back-vowel state.

FIGURE 14. Finnish transition evolution. All movement is upward to the right.
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In Figure 14, we see a graphic rendering of the evolution of the transition probabili-
ties, that is, the evolution of the system in phase space. As before, the axes on this
graph plot the probability of transition from each state back to itself; the x-axis marks
the probability of a transition from front-vowel state to front-vowel state, and the
y-axis marks the probability of a transition from back-vowel state to back-vowel state.
In each of our training instances, we begin our probabilities with a random value not
too far from a uniform distribution, and hence roughly in the middle of this [0,1] square.
We see the transition probability values move consistently toward the (1,1) point, and
all systems that are in the upper right quadrant are naturally labeled as HARMONY sys-
tems: once in a given state, they prefer to remain in that state; see the discussion above
contrasting harmony and alternation.

5. LEARNING ASPECTS OF SYLLABLE STRUCTURE.
5.1. SYLLABLE STRUCTURE AS MAXIMUM LIKELIHOOD. The discussion in §3.3 assumed

without discussion that we would divide the segments of a language into two categories,
vowels and consonants. There is no reason, however, to restrict maximum-likelihood
estimation (such as we seek with an HMM) to two categories. We are free to ask a
question such as this: if we devise a three-state finite-state automaton, and train it on
data from English or French (or any other language) in order to establish its emission
and transition probabilities so as to maximize the probability of the training data, what
will be generated by each of the three states? The Baum-Welch learning algorithm will
assign a function to the third state, one that expresses the next most important statistical
dependency in the data, compared to the two-state model—but what would that be?
The two-state model is incapable of capturing any sort of dependency between adjacent
vowels and between adjacent consonants, but the fact is that in our data (as in most
languages), there are far more sequences of adjacent consonants than there are of
adjacent vowels. We would therefore think it likely that the learning algorithm would
use the new state in order to divide the work of generating consonant sequences across
two different states, trying to find a way to predict which consonants occur first in a
cluster, and which appear second in a cluster.

On the basis of this reasoning, we expected that when presented with data from
French, the system would divide the work of generating consonant sequences into two
states, one of which generated coda consonants and one of which generated onset
consonants. What we found, however, was slightly different. Although the system
passed through a state that was roughly of that sort, it would eventually find a different
organization of the data, in which one of the states was playing the same role as the
consonant state in the two-state models of §3.3, while the other was essentially responsi-
ble for generating the last element of an onset cluster. In this section, we describe that
result and suggest some areas for future research.

to state 1 (V) to state 2 (C) to state 3 (cluster)
from state 1 (V) .01 .94 .05
from state 2 (C) .71 .08 .21
from state 3 (cluster) 1 0 0

TABLE 10. Transition probabilities, three-state HMM for French.

In Figure 15, we see a representation of a typical instance of learning the transition
probabilities. The final equilibrium state for the transition probabilities is what is seen
at the end, and it is displayed in Table 10. We can easily see that there is a brief initial
learning period leading to a tentative hypothesis of the parameters, reached at about
iteration 50, followed by a period of near quiescence up to iteration 200, followed by
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FIGURE 15. French three-state learning dynamics for transition and entropy.

FIGURE 16. Crucial emission changes during French three-state learning dynamics.
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a rapid shift to the final equilibrium state by iteration 250. The situation between
iterations 50 and 200 represents a hypothesis in which both consonant states can transi-
tion to the other, but neither transitions much to itself. But this is abandoned by the
discovery of a better structure after iteration 250, in which the two consonant states
take on quite different characters. One of them (state 3 in this case) becomes used LESS;
it is used primarily to generate the last member of an onset cluster, and it ALWAYS

transitions to the vowel state. For mnemonic purposes, we refer to this as the ‘cluster
state’, and the other state as the ‘consonant state’. We find this pattern consistently,
and we believe that a deeper understanding of this is called for. If we think of the state-
transition probabilities as specifying a point in a six-dimensional space (a hypercube),
then we may describe this change as one that brings the system to one of the edges of
the hypercube (the edge corresponding to transitions out of the cluster state having
values (0,1,0)), which in some sense is suggestive of a categorical, rather than a gradient,
analysis.19 When we look more closely at what emission probabilities change along
with the transition-probabilities shift during the rapid change from iteration 200 to 250,
it turns out that it is only a small number of parameters that are modified; these are shown
in Figure 16. The maximum-likelihood parameter values for transition and emission
probabilities are given in Table 10 and Table 11. We omit segments whose emission
probabilities fall below 0.01. See Figure 17 for a partial graphical summary.

FROM STATE 1 PROB FROM STATE 2 PROB FROM STATE 3 PROB

a .19 ʁ .14 ʁ .28
e .18 s .11 j .21
i .17 t .10 l .12
o .10 k .10 t .11
ε .06 l .08 w .06
ã .06 p .07 e .06
y .05 m .06 m .03
U .04 d .06 ɥ .02
:̃ .04 n .06 s .01
u .03 b .05 ε̃ .01
: .03 f .04 n .01
ε̃ .03 g .03 y .01

v .03 k .01
z .03
Ç .02
+ .02

TABLE 11. Emission probabilities, three-state HMM for French.

A detailed examination of the final parameters of the model (Tables 10 and 11)
reveals the difference in behavior of the consonant state and cluster state (states 2 and
3). Consider the case of single, intervocalic consonants (recall that state 1 is the vowel
state). In this context, transitioning via the consonant state is about thirteen times more
probable than via the cluster state.

(4) Pr(1 N 2) ⋅ Pr(2 N 1) � 0.94 ⋅ 0.71 � 0.67
Pr(1 N 3) ⋅ Pr(3 N 1) � 0.05 ⋅ 1 � 0.67/13.3

19 The transitions from each state are determined by two degrees of freedom, so to speak, because the
probabilities of the three transitions must add up to 1.0; since there are three states, that means that there
are six parameters, and hence a specification of the transition probabilities can be thought of as specifying
a point in a part of a six-dimensional space.
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Thus, all other things being equal, in order for an intervocalic consonant to be emitted
by the cluster state rather than by the consonant state, it should have an emission
probability by the former more than 13.3 times greater than by the latter, a constraint
that only glides (and all glides) satisfy; most of the time, an intervocalic consonant
will be emitted by the consonant state. Virtually any consonant occurring before another
consonant should be emitted by the consonant state, whatever precedes it, because the
probability of transitioning from the cluster state to something other than the vowel
state is close to zero.

(5) Pr(3 N 2) � Pr(3 N 3) � 0
Therefore, in principle, a postconsonantal consonant emitted by the cluster state could
occur only in prevocalic position. In postconsonantal and prevocalic position, conso-
nants are emitted by the cluster state unless their emission probability by the consonant
state is more than 3.5 times greater than by the cluster state.

(6) Pr(2 N 2) ⋅ Pr(2 N 1) � 0.08 ⋅ 0.71 � 0.06
Pr(2 N 3) ⋅ Pr(3 N 1) � 0.21 ⋅ 1 � 0.06 ⋅ 3.5

The consonants that will rather be emitted by the cluster state in this context are the
glides and liquids, along with /t/ and /m/. To sum up, aside from an occasional intervo-
calic glide, the model still favors transitioning from the vowel to the consonant state
and vice versa, possibly looping within the latter for a while. Sometimes, before it
transitions back to the vowel state, it takes a detour via the cluster state to emit a
prevocalic glide, liquid, /t/, or /m/. Overall, the base-2 log probability of French material
is improved by 1.97 percent by virtue of moving from a two-state model to a three-
state model.20

FIGURE 17. Three states for generating French strings.

This model generates sequences like /abʁa/ and those like /aʁba/ in different ways
(the logic of the situation is parallel to that discussed in the vowel harmony case). /ʁ/
and /b/ can both be generated by both the consonant and the cluster states, but the
transition probabilities between these two states are quite different, and the relevant

20 On the set of 21,574 French words, the inverse log probability was 611,376 according to the two-state
model, and 599,293 according to the three-state model. The comparable values for the 58,156 English words
were 1,926,121 and 1,872,089, corresponding to an improvement of 2.75 percent. This means that for both
corpora, the three-state model fits the data better than the two-state model—at the cost of an increase in
complexity of the model, as measured by a greater number of parameters.
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Emit: while in state: prob transition prob

a 1 .19 1 N 2 .94
b 2 .05 2 N 2 .08 probability: 1.35 � 10�5

ʁ 2 .14 2 N 1 .71
a 1 .19

Emit: while in state: prob transition prob

a 1 .19 1 N 2 .94
b 2 .05 2 N 3 .21 probability: 9.98 � 10�5

ʁ 3 .28 3 N 1 1
a 1 .19

Emit: while in state prob transition prob

a 1 .19 1 N 2 .94
ʁ 2 .14 2 N 2 .08 probability: 1.35 � 10�5

b 2 .05 2 N 1 .71
a 1 .19

Emit: while in state: prob transition prob

a 1 .19 1 N 2 .94
ʁ 2 .14 2 N 3 .21 probability: 1.03 � 10�8

b 3 .001 3 N 1 1
a 1 .19

TABLE 12. Structural differences between /abʁa/ and /aʁba/.

calculations are given explicitly in Table 12. The path through the HMM that produces
the sequence /abʁa/ with maximum probability is the one that emits those symbols by
following the sequence of states 1 2 3 1, while the path that produces the sequence
/aʁba/ with maximum probability involves the sequence of states 1 2 2 1. While in
theory there are 34 possible state sequences, that is, paths, to generate any sequence of
four symbols, in practice we can ignore any sequence that does not generate the vowels
from state 1, and we can ignore any path that involves a sequence 3 N 1 or 3 N 2,
since those transition probabilities are close to zero. We have chosen this example to
illustrate the point we noted above, that state 3 is effectively dedicated to generating
the last element of an onset cluster.21

Needless to say, a range of further cases should be studied. We would predict, for
example, that a language that contains an optional coda but no onset clusters will use
its third state to generate coda consonants, and an interesting study would be to look
at further languages that, like English and French, have both codas and onset clusters,
to see under what conditions the third state is used to account for codas, and under
what condition for onset clusters.22

21 It is worth noting that this way of observing the behavior of the model, namely in relation to a small
number of selected phonological patterns, is often more revealing of the phonotactics of the language than
the direct study of probabilities assigned by the model to unrestricted phoneme sequences. For instance, if
we consider all sequences of two consonants that are LOGICALLY possible given the inventory of French
phonemes, we find that in initial position, the three-state model assigns the highest probability to /rr/, which
is not a legal cluster in French. This is not surprising, as HMMs are based on the assumption that state
transitions and symbol emissions are independent; as a result, illegal clusters involving very frequent pho-
nemes are often more probable than legal clusters of rarer phonemes.

22 For a discussion and comparison of the three major themes in the treatment of syllabification, see
Goldsmith 2009; these three focus, respectively, on segment-transition possibilities, on constituent structure,
and on waves of sonority.
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6. DISCUSSION. There are two general points that arise out of the work discussed
here. The first is that a nontrivial problem (and perhaps more than one) can be solved
without recourse to a rich set of prior assumptions of the sort that would be good
candidates for inclusion in universal grammar. Indeed, not only do we not need to have
recourse to a rich universal grammar, but also the principle that we have employed
(‘maximize the probability of the data’, or maximize the likelihood) is not far from a
basic principle of rationality. Experts may argue over how that principle should be
made precise, and the details do matter; but there is no call for an explanation that
relies on genetic endowment or Darwinian evolution.

The second general point is that this article has focused on questions of METHOD of
empirical analysis. Like any discussion of method, the proof, or test, of the method
here lies entirely in the results that flow from the method and their value to us as
linguists. But it has long been a shibboleth in theoretical linguistics that a focus on
methods of data analysis is misplaced effort: in this view, the path from observations
to hypothesis is the sociology of the scientific laboratory, and of no interest as such to
science or scientists; all that matters is providing evidence in support of a hypothesis,
regardless of how the hypothesis is found.

In our view, those who embrace this view have gone too far. The position undoubtedly
has its origins in the proposals of the logical empiricists (notably those of Reichenbach
1938) to distinguish the CONTEXT OF DISCOVERY from the CONTEXT OF JUSTIFICATION:
how a scientist comes up with an idea is a good story for a biography, but it is not the
stuff of which science is made. While this is doubtless true, the point can be overmade,
and it can lead to a perspective in which scientists feel they may pick and choose the data
that serves their hypothesis best.23 We have argued BY DOING that well-conceptualized
decisions about method may lead to surprising conclusions that shed considerable light
on the nature of language.

Of course, if we have focused on method, it is method at an abstract level. In the
treatment of graph-theoretic approaches to phonological analysis, we have emphasized
the conceptual content of the approach, and the particular numerical algorithms used
to calculate eigenvectors (to take one example) are of no particular interest, once we
understand how they work. In the maximum-likelihood models, we employed hidden
Markov models in order to compute the appropriate values of the parameters, but the
HMMs themselves are of no particular interest, once we understand the conditions
under which we can use the standard learning algorithms to optimize a function (which
in our case we choose to be the probability of the data, given certain structural con-
straints).

23 A clear example of going too far in such a direction, in our opinion, is offered by Chomsky (2000),
who presents a case in favor of a style that he refers to as Galilean. Of course, any two people can look at
what Galileo did and draw radically different lessons from his successes, but Chomsky suggests that ‘[w]hat
was striking about Galileo and was considered very offensive at that time, was that he dismissed a lot of
data; he was willing to say ‘‘Look, if the data refute the theory, the data are probably wrong.’’ And the data
that he threw out were not minor.’ We read the Galilean record quite differently. Galileo’s scientific style
had three components to it: first, a deep and thorough skepticism about the established beliefs of the time;
second, a belief that REALLY LOOKING at nature—as it is, not as we would like it to be—is essential; and
third, a belief that the language in which the principles of nature are written is mathematical in character.
These are the Galilean principles that we have attempted to emulate. There is no scientific style that permits
one to ignore data; there is only the acknowledgment that one’s job is not yet finished. Those are two very
different things.
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In terminology suggested in Chomsky 1986 and widely adopted since, the analysis
proposed here is essentially one of E-LANGUAGE, rather than I-LANGUAGE. While no two
writers use these terms in exactly the same way, there is rough agreement that the study
of I-language is the study of a capability or a faculty of individual humans who are
speakers of a language, while the study of E-language is the analysis of linguistic data
that is collected from some naturalistic source (that is, the data in question was not
designed and prepared for this experiment, but is rather sampled in some appropriate
way from a natural source). We have no objection at all to the study of I-language
(indeed, we have been known to actively engage in it, and urge others to do so), but
believe that researchers who study E-language are at an advantage with regard to achiev-
ing proper scientific standards of linguistic rigor vis-à-vis linguists who study I-lan-
guage, and this advantage is only growing as improvements in computational and
statistical methods become available. Our purpose here has been to demonstrate this
proposition in several case studies.

APPENDIX A: SAMPLE CORPUS

Throughout the article, we use the following list of words for our examples: /ban/, /banana/, /bib/, /binis/,
/nab/, /saab/, /sans/, and /sins/. These combinations of phonemes were selected with the intent of keeping
the phonemic inventory small. Any resemblance with existing words is merely a coincidence.

Table A1 below gives the number of occurrences of each phoneme and each sequence of two phonemes
in this corpus. Sequences including a word-initial boundary (denoted by the symbol #) are also listed, since
they are used for the spectral clustering of consonants and vowels (see Appendix B).

PHONEME COUNT SEQUENCE COUNT

b 7 aa 1
n 7 ab 2
s 6 an 4
a 8 ba 2
i 4 bi 2

ib 1
in 2
is 1
na 3
ni 1
ns 2
sa 2
si 1
#b 4
#n 1
#s 3

TABLE A1. Number of occurrences of phonemes and sequences of phonemes.

APPENDIX B: BUILDING A PHONOTACTIC GRAPH

In this appendix, we introduce a method for constructing a graph in which each node corresponds to a
phoneme and the weight of each edge is a measure of the DISTRIBUTIONAL SIMILARITY between two phonemes.
The data that we use are frequencies of phonemes in CONTEXTS. For the sake of simplicity, we assume that
the context of a phoneme is its left neighbor within a word (including the word boundary symbol #, in the
case of the first phoneme of a word), but the model is flexible with regard to what counts as a context. With
this definition, the number of occurrences of a phoneme j in a context k in a corpus is equal to the number
of occurrences of these two symbols in that order: Count(kj). Thus, on the basis of a corpus with n different
phonemes and m different contexts, we may construct a matrix F with n rows and m columns, and store the
number of occurrences of phoneme j in context k in the cell at the intersection of the j-th row and k-th
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column: fjk :� Count(kj). For example, based on the sample corpus given in Appendix A, we construct the
following (5 � 6) matrix F.24

    #–  b–  n–  s–  a–  i–
b  4    0    0     0    2    1
n   1    0    0     0    4    2
s   3    0    2     0    0    1
a  0     2    3    2    1    0
 i   0     2     1    1     0    0

F �

Our goal is to use F to build the adjacency matrix A of a weighted undirected graph. We do so by means
of a two-step method. First, we construct a square matrix W with n rows and n columns, such that the value
at the intersection of the i-th row and the j-th column represents the PROBABILITY for phoneme j to occur in
the same context as phoneme i (i.e. in a context where phoneme i can also occur). Then, we apply a simple
operation to W in order to turn these probabilities into a measure of distributional similarity between phonemes,
thus effectively building the desired adjacency matrix A.

In order to construct the matrix W, we first construct two (n � m) matrices, H and V, which result from
the horizontal and vertical normalization of F. Thus, H is obtained by dividing the values in each row of F
by the sum of these values.

    #–   b–    n–   s–    a–    i–
b  4/7  0     0      0     2/7  1/7
n  1/7   0     0   0      4/7  2/7
s   3/6  0     2/6  0     0      1/6
a   0     2/8  3/8  2/8  1/8  0
 i    0     2/4  1/4  1/4  0      0

H �

Similarly, V is obtained by dividing each column of F by its sum.

    #–   b–    n–   s–   a–   i–
b  4/8  0    0      0   2/7  1/4
n  1/8  0    0    0   4/7  2/4
s   3/8  0    2/6  0   0      1/4
a   0     2/4  3/6  2/3  1/7  0
 i   0     2/4  1/6  1/3   0      0

V �

Both H and V are transition matrices, from phonemes to contexts and from contexts to phonemes respectively.
It is important to notice that, in this framework, the term ‘transition’ is NOT used to refer to the succession
of phonemes in the speech stream, but to a process that is not directly observed in the data, and consists of
the selection of a context given a phoneme or the other way round.

The (n � n) matrix W obtains as the result of the matrix product of H and VT, where VT denotes the
transpose of V, that is, the matrix whose (ordered) columns are the (ordered) rows of V.

b
n
s
a
 i

.31

.29

.04
0

W �

 n
.31
.49
.15
.07

 0

 s
.25
.13
.34
.13
.08

 a
.04
.08
.17

 i
 0
 0

.06

.27

.38
.5
.54

b
.4

This matrix is also a transition matrix, this time from phonemes to phonemes: each cell of W gives the
probability of transitioning from one phoneme to another via all possible contexts. It is maximal when the
two phonemes have the same distribution (in the mathematical sense) and minimal when they never occur
in the same context, that is, when their distributions are complementary.

In spite of this correlation with distributional similarity, however, W is not an actual measure of it, insofar
as it is not symmetric. But it has certain properties that entail a natural way of turning it into a symmetric

24 By convention, we use the underscore symbol to distinguish references to (isolated) contexts from
references to phonemes.
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matrix. Define the STATIONARY probability of phoneme i as the ratio of the total count of i (i.e. the sum of
the i-th row of F) to the total count of phonemes in the corpus (i.e. the sum of all the cells of F): �i :�
fi•
f••

. It can be shown (see e.g. Chung 1997) that W is specifically associated with the graph described by the

adjacency matrix A, which is defined as as follows.

aij :� �i ⋅ wij

In other words, A can be easily calculated by multiplying each row i of W by the corresponding stationary
probability �i. In our example, we find that the values of �i are .22, .22, .19, .25, and .13; multiplying the
rows of W by these values results in the following matrix A.

A �

b
n
s
a
 i

 b
.09
.07
.05
.01

 0

 n
.07
.11
.03
.02

 0

 s
.05
.03
.06
.03
.01

 a
.01
.02
.03
.13
.07

 i
 0
 0

.01

.07

.05

This is actually the adjacency matrix that we used as an example in §3.2 and represented in Fig. 1. As
desired, each row and column of A corresponds to a phoneme, and the weight aij of the connection between
phonemes i and j is a measure of their distributional similarity.25 Phonemes with similar distributions are
strongly connected, whereas phonemes with dissimilar distributions are weakly or not connected. As we
have seen in §3.2, the application of spectral clustering to the adjacency matrix that was just constructed
results in a partitioning of phonemes into classes that correspond well with vowels and consonants.26
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