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BAYESIAN ESTIMATION OF HISPANIC FERTILITY 

HAZARDS FROM SURVEY AND POPULATION DATA*

MICHAEL S. RENDALL, MARK S. HANDCOCK, AND STEFAN H. JONSSON

Previous studies have demonstrated both large gains in effi ciency and reductions in bias by in-
corporating population information in regression estimation with sample survey data. These studies, 
however, assumed that the population values are exact. This assumption is relaxed here through a 
Bayesian extension of constrained maximum likelihood estimation applied to U.S. Hispanic fertility. 
The Bayesian approach allows for the use of both auxiliary survey data and expert judgment in mak-
ing adjustments to published Hispanic Population fertility rates, and for the estimation of uncertainty 
about these adjustments. Compared with estimation from sample survey data only, the Bayesian con-
strained estimator results in much greater precision in the age pattern of the baseline fertility hazard 
and therefore of the predicted values for any given combination of socioeconomic variables. The use 
of population data in combination with survey data may therefore be highly advantageous even when 
the population data are known to have signifi cant levels of nonsampling error.

egression with sample survey data is the standard method for modeling the determi-
nants of individual demographic events. Population data are typically not considered useful 
for these analyses due to their lack of covariates. Building on a tradition of statistical work 
dating back at least as far as Deming and Stephan (1942), however, methods for obtaining 
large gains in effi ciency and reduction in bias by additionally incorporating population 
information in the regression estimation have been developed in diverse social science 
applications. Imbens and Lancaster (1994) proposed a generalized method of moments 
(GMM) estimator, and Handcock, Huovilainen, and Rendall (2000) proposed a constrained 
maximum likelihood estimator (MLE), to incorporate population information on the over-
all expected value (marginal expectation) of the dependent variable. In subsequent exten-
sions using population information on conditional expectations of the dependent variable, 
Hellerstein and Imbens (1999) and Handcock, Rendall, and Cheadle (2005) demonstrated 
further gains in effi ciency and also substantial reductions in bias. 

These studies assumed that the population values are exact, or that they are at least 
unbiased. In practice, population information relevant to many estimation problems is 
available only in data sources with incomplete coverage, as with census under enumeration, 
misreported information, an inexact match between the universes of the population data 
and of the survey. These are all potential sources of bias in the population data with re-
spect to the target population of the analysis. When demographers adjust for these biases, 
a combination of auxiliary data and expert judgment about the magnitude of adjustment 
is typically used. The use of expert judgment introduces a source of uncertainty that can-
not be addressed within the classical (“frequentist”) statistical paradigm. The alternatives 
are either to ignore this source of uncertainty or to conduct sensitivity analyses based on 
discrete alternative assumptions for the adjustments. Ignoring judgment-based sources of 
uncertainty is frequently criticized by Bayesian statisticians (e.g., Hoeting et al. 1999), 
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while the sensitivity analysis approach has the same major disadvantage as scenario-based 
population projections (Lee and Tuljapurkar 1994): it provides no quantitative estimate of 
the probability that the outcome of interest will lie outside the range given by a low variant 
and a high variant, and indeed no quantitative indication of the probability that the outcome 
will be within any given distance from the medium variant. 

The present study applies a Bayesian approach to the problem of incorporating sources 
of uncertainty involving demographic judgment into regression estimates that combine 
survey and population data. Compared with the sensitivity analysis approach, the Bayesian 
analysis provides a way of (1) formally assigning probabilities to alternative values that 
might be chosen in a sensitivity analysis; (2) replacing discrete sensitivity analysis points 
with a continuous distribution of alternative values; and (3) systematically combining 
uncertainty from expert knowledge with uncertainty from other sources, including from 
sampling error. The Bayesian approach allows for a formal statistical treatment of the fol-
lowing principal research question of the present study: how much added value from using 
population data in a demographic hazard model can be retained when the population data 
deviate substantially from the assumption that they are exact?

Bayesian methods have as yet been infrequently applied in demography. The statisti-
cal case for doing so, however, is strong. Smith (1991:322) discussed the case of using 
population data to poststratify a survey if the population data are not from exactly the same 
year as the survey. He argued that a Bayesian approach is needed to incorporate the ad-
ditional uncertainty introduced through judgment about how close in time is close enough 
to make the population data still appropriate for use in poststratifying the survey data. An 
analogy to combining data from close time periods is Assuncao et al.’s (2005) use of an 
“empirical Bayes” approach (Carlin and Louis 2000) to combine data from neighboring 
locations, incorporating both spatial and socioeconomic distance. Elliott and Little (2000) 
applied a fully Bayesian approach to adjusting census counts of the total U.S. population 
by age, sex, and race/ethnicity, incorporating both objective auxiliary data and subjective, 
expert-based judgment into the Bayesian “priors.” These are the standard elements used by 
demographers in the adjustment of population data. The empirical Bayes approach, in con-
trast, has the disadvantage of forming the priors in a way that admits no data except those 
in the likelihood function and that usurps the potentially positive roles of expert judgment 
and auxiliary data.

Our application of Bayesian methods to the combining of survey and population data 
focuses on uncertainty in population-level data on Hispanic fertility. This uncertainty is 
introduced primarily through the census-based Hispanic population estimates that form the 
denominator of those fertility rates. The large contribution of immigration to the contem-
porary U.S. Hispanic population leads to major challenges for the accurate estimation of 
that denominator and for developing an accurate and up-to-date understanding of Hispanic 
fertility levels, patterns, and determinants from either survey or population data. We argue 
that these challenges both increase the need for combining data sources to arrive at “best” 
estimates and increase the importance of developing statistically rigorous methods for es-
timating the degree of uncertainty about these combined-data estimates. 

DATA AND METHOD

In this section, we fi rst describe the three data sources that provide information about His-
panic women’s fertility. We then describe the Bayesian model that allows for the incorpora-
tion of information from the three data sources in a regression model. 

Data Sources

The Panel Study of Income Dynamics (PSID; Institute for Social Research 2007) allows us 
to estimate an annual fertility hazard for Hispanic women aged 25 to 34 in any of the years 
between 1991 and 1995. A restricted age range is used in part because variables including 
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employment status are not available in the PSID for women who were not either the head 
of the household or partnered to the head, and in part to allow for a more parsimonious 
specifi cation of the hazard in a regression model. The fi ve-year period is chosen to incor-
porate data from a large Hispanic supplement sample (the “Latino sample”). The standard 
PSID survey instruments were applied to this subsample annually from 1990 through 1995 
(Survey Research Center 1993). The Latino sample included 7,453 Mexican, Puerto Rican, 
and Cuban individuals in 2,043 households that were originally sampled in the 1989 Latino 
National Political Survey (LNPS). Central American, South American, and “other” Hispan-
ics were not included in this LNPS sample. These omitted groups made up a relatively small 
proportion of the overall Hispanic population at the time the Latino sample was drawn (the 
late 1980s) but experienced very large increases over the 1990s. We combine this Latino 
subsample with the 1991–1995 person-years of Hispanic women (of all country origins) in 
the core sample of 1968 PSID household members and their descendant family members. 
Throughout the analysis, we use the core PSID weights that are designed for the use of the 
subsample components together. Weighted or unweighted, however, this combined sample 
will be only an approximation to a random sample of the rapidly changing U.S. Hispanic 
population over the 1991–1995 period. The sample design leads to much larger sampling 
error than would a sample of the same size drawn using equal probability methods. In 
bootstrapped estimates for a related analysis of Hispanic women’s family transitions in the 
PSID, we found that standard errors were, on average, 1.9 times as high as those estimated 
under the assumption of independent observations (results not shown). We use this 1.9 ratio 
when comparing the PSID with the Current Population Survey (CPS) and population data 
immediately below. We ignore this design effect, however, when comparing the different 
models that are all estimated with the PSID data. The characteristics of the PSID sample 
and variables used in estimating the Hispanic fertility hazard are shown in Table 1. A birth 
is defi ned as occurring or not between the previous panel year t – 1 and the current panel 
year t. Age is defi ned at t, and the remaining variables are defi ned at t – 1.

For this same 1991–1995 period, population-level data were available for births to 
Hispanic women by single-year age from the birth registration system (National Center 

Table 1. Hispanic Women’s Person-Years at Ages 25 to 34: Panel Study of Income 
Dynamics 1991–1995 (percentages, unless otherwise indicated)

Variable Weighted Unweighted

Proportion Giving Birth in Year 10.0 9.8

Union Status

Single 30.6 34.3

Cohabiting 8.2 8.5

Married 61.2 57.2

Education

Less than high school graduate 27.1 34.2

High school graduate 36.2 35.9

Some college or college graduate 36.8 29.9

Employment Status

Full-time employed 45.4 41.9

Full-time employed and less than high school graduate 8.7 8.8

Mean Age (years) 29.5 29.7

Percentage in Latino Sample 64.1 89.0 

Sample Size (person-years) 1,851
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for Health Statistics 2001) and for the number of Hispanic women by single-year age 
in the annual population estimates series extending from the 1990 census (U.S. Census 
Bureau 2001). Annual single-year age-specifi c Hispanic fertility rates (ASFRs) were cal-
culated using these population data series, with births to Hispanic women as the numera-
tor and number of Hispanic women as the denominator (Hamilton, Sutton, and Ventura 
2003). We refer to these ASFRs as “the 1990-based NCHS rates.” The birth registration 
system provides a complete enumeration of births in the United States, leaving only mis-
classifi cation as a source of bias in the ASFR numerator of births to Hispanic women of 
any given age. The Hispanic population denominator, however, is subject to potentially 
much larger non sampling biases. These are primarily from two sources: uncorrected 1990 
census undercount, and error in estimates of net immigration by age and sex after 1990. It 
became clear after the 2000 census that the combined effect of these biases on the Census 
Bureau’s Hispanic population estimates had been large (Guzmán and McConnell 2002). 
The subsequent upward revisions reduced the NCHS’s estimate of the Hispanic total fertil-
ity rate in 2000 from 3.10 children per woman using the 1990-based population estimates 
to only 2.73 children per woman using the 2000-based population estimates (Hamilton 
et al. 2003). The amount of downward correction of the fertility rates increased over the 
decade as the 1990-based population estimates became more and more dependent on the 
intercensal components of population change, especially that of immigration (see Figure 
1). The estimated upward bias in the 1990s-based NCHS rates was greatest for 25- to 29-
year-olds, at 18% higher in 2000 and already 9% higher in 1995. For 30- to 34-year-olds, 

Figure 1. Hispanic Total Fertility Rate Using 1990-Based and 2000-Based Population Estimates

Source: Hamilton, Sutton, and Ventura (2003).
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the 1990-based fertility rates were 11% higher in 2000 and 6% higher in 1995 (see Hamilton 
et al. 2003: Table 4). 

Although it was the 2000 census that clearly revealed that the Hispanic population 
estimates had been downwardly biased, this information was not available to researchers of 
Hispanic fertility in the 1990s. Information from sample surveys, however, already provided 
reasons to suspect that the NCHS estimates were too high before the 2000 census results.1 
Chief among these were the substantially lower estimates of Hispanic fertility produced at 
the time from the CPS (see, e.g., Smith and Edmonston 1997). The CPS weights incorporate 
poststratifi cation to census-based population estimates that are themselves closely related 
to the population denominators of the NCHS fertility rates (Bureau of Labor Statistics 
2002). The CPS’s survey-derived birth numerators, however, make the CPS an independent 
source of fertility rate information from a current sampling frame. The CPS data provide 
both a major indicator that the NCHS data are biased and, together with expert judgment, 
a means for correcting this bias. In 1995, the CPS included a fertility history in its June 
supplement. In Figure 2, we alternatively compare the CPS in the year ended June 1995 
(“CPS 1995”) and of the fi ve years 1991–1995 to June 1995 (“CPS 1991–1995”) with both 
the PSID annual birth probabilities that are estimated over the period 1991–1995 and the 
NCHS annual fertility rate that is estimated for the calendar years 1991–1995. We do not 
present the NCHS estimates for the single calendar year 1995 because they differed little 
from the NCHS 1991–1995 average. Using the CPS sample for the year ended June 1995 
avoids sample-selection biases due to migration that might be present when retrospectively 
estimating Hispanic fertility rates over the entire 1991–1995 period. The costs of ignoring 
CPS respondents’ reports of births more than a year before the survey, however, are that only 
bias in the NCHS or PSID data for the year ended June 1995 may be evaluated and that the 
CPS Hispanic sample size is then relatively small. When only this “1995” person-year of 
fertility exposure is used for each woman, there are 1,039 cases aged 25 to 34. 

Comparing the estimates in the three data sources, the main features are as follows. 
First, the fertility level in the 1990-based NCHS series is higher than that in either the 
CPS or PSID. The overall 25- to 34-year-old fertility rate is, respectively, 0.1281 in the 
NCHS, 0.1196 in the 1991–1995 CPS, 0.9821 in the 1995 CPS, and 0.0999 in the PSID. 
Both the 1995 CPS and 1991–1995 PSID rates are signifi cantly lower than the NCHS rate 
at the p < .05 level, while the 1991–1995 CPS rate is signifi cantly lower than the NCHS 
rate at the p < .10 level. Although a discrepancy between the population and survey data 
sources would normally be considered as evidence of bias in the survey data sources, 
here we consider it as evidence of potential bias in the population data source. Compared 
with the 1990-based NCHS estimates, the overall fertility rate among women aged 25–34 
is 7% lower in the 1995 CPS, 23% lower in the 1991–1995 CPS, and 22% lower in the 
1991–1995 PSID. With the hindsight of the 2000-based revisions, these differences are 
seen to be greater than the downward adjustments made by NCHS: respectively, 5.3% 
and 3.3% lower for 25- to 29-year-olds and 30- to 34-year-olds in 1993 (the midpoint of 
1991–1995) and 8.7% and 5.6% lower in 1995. Simply shifting from using the popula-
tion-level (NCHS) data to using an alternative auxiliary data source such as the CPS to 
provide a single best estimate of the overall Hispanic fertility hazard, then, would likely 
result in overcorrection of the upward bias of the NCHS fertility rate.

The NCHS estimates display a smooth age pattern, in contrast to the substantial sam-
pling error apparent in the CPS and PSID estimates. Only in the NCHS data is it clear that 
the fertility rate falls monotonically with age from 25 to 34 years old. Visual inspection of 
the PSID line reveals a generally downward sloping function similar to the NCHS. Visual 

1. We fi rst proposed this Bayesian approach to correct a likely upward bias in the published population age-
specifi c fertility rates in a version of this article presented at the 2001 annual meeting of the Population Association 
of America, before the 2000 census results were known.
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inspection of the two CPS series, however, suggests a fl atter or possibly curvilinear function. 
While the 2000-based revisions to the NCHS age-group-specifi c fertility rates indicated a 
greater downward adjustment for 25- to 29-year-olds than for 30- to 34-year-olds, we assume 
below that information is not available to the researcher at the time of the construction of 
the Bayesian prior around the population ASFRs. The confl icting evidence between the CPS 
and PSID patterns, however, does not provide information with which to impose any age 
structure on a demographic adjustment to the 1990-based NCHS data. We therefore we use 
those data sources only for their information about the overall level of the fertility rates. 

A Bayesian Approach to Combining Data

The fundamental characteristic of a Bayesian analysis is its combination of a likelihood 
function for sample data with outside information on the model’s parameters (Gelman et al. 
2003). Information about the regression parameter ββ that is available to the researcher before 
the estimation using the sample is expressed as a prior probability distribution, or simply a 
“prior.” Bayesian statistical inference about ββ is made in terms of probability statements that 
are based on the combined information from the estimation sample and the priors. These are 
derived from the “posterior distribution” p(ββ) generated by the estimation process:

p(ββ | y,x) = α(y,x)q(ββ)L(ββ | y,x). (1)

The fi rst term, α(y,x), is a normalizing constant to ensure the expression on the right 
side of the equality integrates to unity. It does not depend on ββ, so interest focuses on the 
prior distribution q(ββ) and the likelihood L(ββ | y,x). We omit reference to α(y,x) in further 
development of the Bayesian model below. The likelihood term expresses the information 

Figure 2. Survey and Population Estimates of Hispanic Fertility, 1991–1995
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in the survey sample data about ββ. The posterior distribution for ββ represents our complete 
knowledge of it based both on the sample survey data and prior knowledge about the value 
of this parameter represented by q(ββ).

The likelihood function in this expression is as for standard (“frequentist”) regression 
estimation. In our case, the likelihood is for a discrete fertility hazard using data from the 
PSID only. Let ββ be the unknown p-dimensional parameter of interest describing the re-
lationship between the dependent variable Y and a vector of explanatory variables X. The 
dependent variable Y has two levels: 0 denotes no birth, and 1 denotes a birth, during the 
year [t – 1, t). The regressor vector X is specifi ed from the limited set of PSID variables 
described in Table 1, recognizing that more variables might be included in a model that 
takes full advantage of the rich information available in a panel survey data set such as the 
PSID. The regressors are indicator variables for union status, education, and employment 
status, plus nine indicator variables for single-year ages 26 to 34. The intercept represents 
the reference group of 25-year-old, married women who are high school graduates and were 
not full-time employed in the previous year. We use a binary logistic regression model for 
the birth probability P(Y = 1 | X = x, ββ ):

logit[P(Y = 1 | X | x,β)] = x′ββ, (2) 

where the regression parameter ββ and regressors x are vectors. The PSID survey data, 
including the PSID sample weights wi, are denoted by D = (yi,xi,wi), i = 1, . . . n. The log-
likelihood expression that is maximized is 

    
log L(%β | y,x) = w

i
log P(Y = y

i
| X = x

i
,%β)

i=1

n

∑ .β β  (3)

The disadvantage in estimating the parameter vector ββ using the sample likelihood alone 
is that we forgo the opportunity to allow additional information, including that from the 
NCHS and CPS data described above, to improve the estimation of ββ.

To use this additional information, we implement a specifi c form of the general Bayes-
ian model (1) that is an extension of the constrained maximum likelihood (ML) approach to 
combining population and survey data. Instead of using a prior distribution of the parameter 
values themselves, this model uses a prior distribution consisting of quantities that are 
functions of the parameter values. These quantities are the single-year age-specifi c fertility 
rates, denoted by the vector φ. The function describes the relationship of the parameters 
of a fully specifi ed fertility hazard model to the age-specifi c fertility rates. We denote this 
“constraint” function by C(ββ) = φ, and provide details of its nature and relationship to the 
likelihood below. 

Let q(ββ,φ) be the prior distribution for ββ and φ in model given by the logistic regres-
sion Eq. (2) and the constraint function. This prior distribution represents what we know 
about ββ and φ from other sources, before the PSID survey data are formally taken into 
account. In its most general formulation, the prior q(ββ,φ) is a multivariate distribution 
representing our knowledge about the regression parameter ββ and the population value φ. 
Where prior information is available about both φ and ββ, additional steps need to be taken 
to avoid logical inconsistencies between the separate priors for φ and ββ (e.g., the Bayesian 
melding approach of Poole and Raftery 2000). Our application simplifi es the specifi cation 
of q(ββ,φ) such that prior information is available only about φ. In Bayesian terminology, 
we specify an “informative” prior distribution for φ and a “noninformative” distribution 
for ββ. The prior distribution is then given by

q(ββ, φ) = q(φ)I(C(ββ) = φ), (4)

where q(φ) is our expression of prior knowledge about the population value of the con-
straint. We represent our lack of prior knowledge about ββ as prior independence between 

ββ and φ and as ββ being diffuse over its range. Note that the constraint function implies 
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that once a given value of φ is realized from its prior distribution q(φ), ββ becomes (a 
posteriori) dependent on that realized value and on the sampling distribution of ββ. Prior 
independence simply means that the distribution of φ and the sampling distribution of ββ 
are independent.

Applying Bayes theorem to this distribution, the constraint function, and the logistic 
regression model (2) produces the “posterior” distribution that we can interpret as repre-
senting what we know about ββ and φ after combining our prior knowledge with the survey 
data. This distribution has density

p(ββ,φ | y,x) ∝ q(φ)I(C(ββ) = φ)L(ββ | y,x), (5)

omitting now the normalizing constant and replacing the equal sign with the  proportionality 
symbol, ∝. The posterior distribution is proportional to the product of three factors: the 
prior distribution q(φ), the indicator function for constraint function C(ββ) = φ, and the 
likelihood L(ββ | y,x). Under the Bayesian paradigm, this posterior distribution represents 
our complete knowledge of ββ and φ based both on the sample survey data and on prior 
knowledge from a combination of the NCHS and CPS data and expert judgment about those 
data sources. We show below that this posterior density is multivariate normal in ββ and 
orthogonal between ββ and φ, and therefore that the expectation and (co)variances of ββ are 
suffi cient to describe the posterior parameter of interest. 

In our application, there are 10 constraint constants corresponding to each of the 10 
ages in our sample, ca, a = 25,26, . . . ,34. The constraint functions express the population 
values of the age-specifi c fertility rates (ASFRs) as weighted averages of the probabilities 
of birth by each combination of the socioeconomic covariates for that single-year age. The 
weights are the proportions of all women of the single-year age that have a given combina-
tion of the socioeconomic covariates. Formally, each of the age a constraints is given by

c C P Y y A a P A a
a a

= = =∑ = = ⋅ = =( ) ( , , ) ( ).ββ ββ
x

X x X x  (6)

This specifi cation is equivalent to that of Handcock et al. (2005), where it was assumed 
that the values ca were known exactly from the population data. We relax this assumption 
here and instead denote the 10 single-year age constraints as prior distributions of the true 
vector of age-specifi c fertility rates, φ = φ25, . . . ,φ34. Formally, these fall in the category 
of “elicited priors” (see, e.g., Carlin and Louis 2000:23–25; Kadane et al. 1980). Gill (2002: 
chap. 5) discusses different types of priors that may be used specifi cally in social science 
applications, noting that while “…an overwhelming proportion of the studies employing 
elicited priors are in the medical and biological sciences, the methodology is ideal for a 
wide range of social science applications” (p. 129). With an elicited prior, experts in the 
fi eld of the substantive analysis are asked their opinions about the most likely value and 
how likely is the true value to exceed or be less than 1 or more-specifi c, meaningful quanti-
ties. The prior distribution is generated by imposing a continuous probability distribution 
about these points. A common choice for the form of the prior distribution, and that chosen 
here, is the normal. Its advantages include giving higher weights to values that are nearer 
the most-likely value and that deviations from this most-likely value are equally likely to 
be positive or negative. The elicited most-likely value then becomes the mean (�) of the 
distribution. The standard deviation (σ) parameter can be derived from the elicited prob-
ability that the true value exceeds (or, conversely, is less than) a substantively meaningful 
point. This elicited probability is interpreted as a cumulative probability in a normal dis-
tribution with mean � .

We do not conduct a formal elicitation in the present study but instead present the 
Bayesian priors under a likely range of the opinions of demographers working in this area, 
given the results from the comparisons between the 1990-based NCHS estimates and the 
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lower CPS estimates as presented earlier. To encompass a plausible range of demographic 
opinion, we follow good Bayesian practice by conducting tests of the sensitivity of the 
posterior (the fi nal estimates) to changes in the prior. We construct a main prior and two 
alternative priors. For our main prior, we adjust the population values by assuming that the 
true age-specifi c fertility rates are all 7.5% lower than of the 1990-based NCHS rates. This 
is very close to the 7% difference between the 25- to 34-year-old fertility rate based on 
the 1990 NCHS and that based on the 1991–1995 CPS. For our two alternative priors, we 
assume that the true age-specifi c fertility rates are as much as 15% lower than the 1990-
based NCHS rates and therefore closer to 23% difference between the 1990-based NCHS 
rate and the 1995 CPS rate. We refer to the fi rst alternative prior as the “high-bias” prior. 
In both the main prior and the high-bias prior, the 1990-based NCHS value is taken to be 
2 standard deviations above the mean: the point at which the chance is only 1 in 20 that 
the true value is at least this high. The greater distance of the mean of the fi rst alternative 
prior from the 1990-based NCHS value, however, implies a higher variance than for the 
main prior. We add further variance in a second alternative prior, referred to as the “high-
bias, high-variance” prior. Its mean is again 15% lower than the 1990-based NCHS value, 
but now there is a 1 in 6 chance that the true value is at least as high as the 1990-based 
NCHS value, implying that the 1990-based NCHS value is only 1 standard deviation above 
the mean of these two alternative priors. Due to the symmetry of the normal distribution, 
it also implies a 1 in 6 chance that the true population ASFR was as much as 30% lower 
than the NCHS value. As such, it refl ects extremely low confi dence in the reliability of the 
population-level Hispanic fertility rates; it is therefore presented as an upper bound on the 
plausible degree of uncertainty of the true population value given the 1990-based NCHS 
data and our knowledge from other sources. The shapes and locations of the three different 
priors are illustrated for age 25 in Figure 3.

Estimation

If the survey data are all the information we have, under standard regularity conditions, the 
estimated value β̂β  that maximizes the likelihood (3) is an asymptotically effi cient estimator 
of ββ. The estimator is also asymptotically unbiased, and normal with asymptotic variance 
Vs, where Vs is the inverse of the expected information matrix for the parameter ββ , whose 

elements are given by 

   

−E
ββ

∂2 log L(ββ | y,x)⎡⎣ ⎤⎦

∂β
i
∂β

j

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 (Casella and Berger 2002). We refer to 

these as the unconstrained model estimates. 
If we maximize the likelihood of Eq. (2) subject to the exact constraint function (6), the 

estimator 
  
β̂β

c
 is asymptotically effi cient, unbiased, and normal, just as is the unconstrained 

MLE for the situation in which the population data are ignored. However, while the asymp-
totic variance in the unconstrained version is given by the expected information matrix VS, 
in the constrained version, the asymptotic variance is

VC = VS – VSH
T[HVSH

T]–1HVS, (7)

where H
∂C

i
( )

∂%β
j

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

p×c
β

%ββ
 is the gradient matrix of C(ββ) with respect to ββ. Since the second term 

in this expression is positive defi nite, the inclusion of the population information always 
leads to an improvement in the estimation of ββ. The variance formula given in (7) shows 
that the constrained estimator 

  
β̂β

c
 is, on average, closer to ββ than is the unconstrained esti-

mator 
  
β̂β

u
. In particular, the standard error of the estimator in the version using the popula-

tion information will always be less than the unconstrained estimator that ignores it. This 
is the key result of the constrained ML model (Handcock et al. 2005). 
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The standard approach to maximization in a Bayesian model is to use numerical inte-
gration to compute the posterior density in (5), using numerical approximations to integrate 
out the normalizing constant. Because of the prior independence assumed between the 
constraints and the regression parameters, we are able to use instead a computationally 
simpler, sequential approximation based on Monte Carlo sampling. We draw 1,000 normal 
variates corresponding to 1,000 realizations of the prior. Consistent with our assumption 
that uncertainty in the population denominator has an equal effect across all ages, a single 
normal variate draw is suffi cient for all 10 ages, with an affi ne transformation of it taken to 
form the 10 age-specifi c rates φ = φ25, . . . ,φ34. For each realization of the prior, the regres-
sion estimation is then conducted as for constrained MLE with exact population values. 
That is, Eq. (2) is maximized subject to Eq. (6), but with the random draw φa substituting 
for fi xed constraint value ca. Each draw of φ produces a different set of parameter point 
estimates β̂βφ with (co)variances Var( β̂βφ). Given the univariate normality of the prior about 
each of the constraint values and the approximate (asymptotic) multivariate normality 
of the parameter estimates from the logistic regression for any given value of the prior 
( Handcock et al. 2005), the posterior distribution of the parameter estimates will also be 
closely approximated by a multivariate normal distribution.

The posterior distribution of the parameters is then generated directly from the Monte 
Carlo simulation results. The Monte Carlo approximations to the posterior means of the re-
gression parameters are just the means of the 1,000 estimated regression parameter  values, 
Eφ[ β̂βφ]. Using the conditional variance identity (Casella and Berger 2002), estimates of 

Figure 3. Main and Alternative Bayesian Prior Distributions About the Population Fertility Rate at 
Age 25
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the posterior (co)variances of the parameters are derived as the sum of two sources: (1) the 
Bayesian analogue of the (co)variance of the sampling distribution of the (exactly) con-
strained parameter estimates, Eφ[Var( β̂βφ)]; and (2) variability due to the uncertainty in the 
value of the population constraints, Varφ( β̂βφ).

RESULTS 

The results of estimating alternative versions of a logistic regression model of the annual 
probability of a birth among Hispanic women aged 25 to 34 are shown in Table 2. We 
compare parameter estimates and standard errors (SEs) under the unconstrained and exact 
constraints models, and compare these to parameter estimates and standard deviations about 
the posterior distribution of the parameters (SDPs) for the Bayesian constraints models. The 
SDPs are higher than the SEs due to the additional variability of allowing for uncertainty in 
the value of the population constraints Varφ(E[ β̂β φ]), as seen in the expression Varφ( β̂βφ) = 
Eφ[Var( β̂βφ)] + Varφ(E[ β̂βφ]), where SDP( β̂βφ) is just the square root of Varφ( β̂βφ). The term 
Varφ(E[ β̂βφ]) increases as the standard deviation of the prior distribution of φ increases. 
Therefore SDP( β̂βφ) will tend to increase when moving from the main prior to the fi rst-
 alternative and then second-alternative priors.

The regressor variables are age, marital status, education, and employment status, as 
described in Table 1. The parameters and standard errors for the socioeconomic variables 
are little changed by constraining to population values, in either the exact constraints or the 
Bayesian constraints models. This is consistent with previous results (Handcock et al. 2005) 
showing that only the intercept and the directly constrained regressor variables have their 
parameter values or standard errors altered substantially by the introduction of population 
constraints. In the present application, only age is directly constrained. The standard errors 
for the age coeffi cients are reduced by a factor of approximately 10 by constraining to the 
population data. This reduction is almost as large in the Bayesian constraints models as in 
the exact constraints model. These results refl ect the large amount of information about the 
single-year age pattern of U.S. Hispanic fertility conveyed by the observed, 1990-based 
ASFRs, together with the assumption that bias in those rates is of equal magnitude across 
the 10 single-year ages. This assumption accounts for the lack of change in the parameter 
estimates and standard errors for the age coeffi cients when moving from the exact con-
straints to the Bayesian constraints model.

The magnitude of reduction about the intercept standard error is sensitive to the 
 specifi cation of the prior. The reduction in the standard error about the intercept SE(β0) 
ranges from 0.242 for the unconstrained model to 0.148 for the exact constraints model. 
When the assumption of exactly known population values in our main prior is relaxed, the 
 standard deviation of the posterior, SDP(β0) = 0.157, is not much higher than the exact 
constraints SE(β0) of 0.148. When, under the fi rst alternative, high-bias prior, the mean 
of the  distribution is moved twice the distance from the 1990-based series (15% lower 
instead of 7.5% lower), SDP(β0) increases to 0.183, still closer to the exact constraints 
value than to that of the unconstrained model. Thus, even when using constraints formed 
from population data that encompass unusually large magnitudes of error, statistical pre-
cision is increased not only in the estimation of the age pattern but also in the estimation 
of the overall fertility level.

Under the high-bias, high-variance prior, however, SDP(β0) increases to 0.264, higher 
even than SE(β0) for the unconstrained model (0.242). One interpretation of this is that 
it shows how extreme the variability assumption is for this prior. A second valid (and 
complementary) interpretation, however, is that this comparison implies an overestimation 
of the precision of the estimate of the intercept parameter in the unconstrained model. Pre-
cision is overestimated (uncertainty is underestimated) due to the implicit assumption that 
the sample is exactly representative of the population. Instead, we expect that the PSID’s 
sample is not fully representative of the changing U.S. Hispanic population and that indeed 
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no panel survey will be without a very frequently refreshed sample and sampling frame. 
The Bayesian framework allows us to incorporate this as a source of uncertainty even in 
the unconstrained version. 

Variance and Bias Compared Between the Three Models

In this subsection, we use the Bayesian posterior mean squared deviation (MSD; see 
Rendall, Handcock, and Jonsson [2007] for details) as a unifi ed framework to compare 
the variance and bias of the estimates under the three model types: the unconstrained, 
exact constraints, and Bayesian constraints models. This is the Bayesian analogue of the 
frequentist mean squared error (MSE). The MSE sums two sources of error, the sampling 
variance and the mean squared bias. The MSD admits a third source of error that we refer to 
as constraint variance. It represents the variation in the parameter estimate β̂βφ attributable 
to our uncertain knowledge of the true constraint value. In Table 3, we present empirical 
estimates of the three components of the MSD for the intercept parameter. This is the key 
parameter for understanding the role of different levels of uncertainty assumed in the prior 
constructed to represent knowledge about the true population values, and for understanding 
the costs of estimating the model with no adjustment to the 1990-based NCHS values (in 
the exact constraints model). 

The fi rst new insights provided by the Bayesian approach are in comparing the exact 
constraints estimator with the unconstrained estimator. When the population data are biased, 
the exact constraints estimator is no longer unambiguously superior to the unconstrained 
estimator. While the sampling variance term is still unambiguously lower for the exact 

Table 3. Mean Squared Deviation (MSD)a of the Intercept Parameter:  Unconstrained, 
Exact Constraints, and Bayesian Constraints  Models

 
Model Type _____________________________________________

  Exact Bayesian
Assumed Prior Unconstrained Constraints Constraints

Main Prior

(1) Mean squared bias 0.0042 0.0070 0.0000

(2) Sampling variance 0.0587 0.0219 0.0220

(3) Constraint variance 0.0025 0.0025 0.0025

MSD 0.0654 0.0315 0.0245

High-Bias Prior

(1) Mean squared bias 0.0017 0.0361 0.0000

(2) Sampling variance 0.0587 0.0219 0.0221

(3) Constraint variance 0.0114 0.0114 0.0114

MSD 0.0719 0.0694 0.0335

High-Bias, High-Variance Prior

(1) Mean squared bias 0.0029 0.0408 0.0000

(2) Sampling variance 0.0587 0.0219 0.0220

(3) Constraint variance 0.0479 0.0479 0.0479

MSD 0.1094 0.1106 0.0699    

aMean squared deviation (MSD) = sum of rows (1), (2), and (3). Row (1) = point estimate of β0 under 
Bayesian prior. Row (2) = asymptotic variance for the each regression estimate of β0, given by [SE(β0)]2. 
Row (3) = variance in β0 due to uncertainty about the true population constraint value.
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 constraints model, this can be offset by a higher mean squared bias. An almost exact off-
setting of variance by bias is indeed seen to occur empirically when either the high-bias 
or high-bias, high-variance prior for φ is used. While the sampling variance about β0 is 
0.0587 for the unconstrained estimator compared with only 0.0219 for the exact constraints 
estimator, this difference is offset by a much higher mean squared bias for the exact con-
straints estimator (0.0361 and 0.0408, respectively, for the two alternative priors) than for 
the unconstrained estimator (respectively, 0.0017 and 0.0029). 

For the main prior, however, the mean of the constraint distribution is constructed to 
be only half as far from the observed population value, and the mean squared bias for the 
exact constraints model is accordingly greatly reduced compared with that for the high-bias 
and high-bias, high-variance priors. The greater sampling variance of the unconstrained 
estimator then dominates, and the MSD for the exact constraints model (0.0315) is only 
half that of the MSD for unconstrained model (0.0654). That is, under our best estimate of 
the true population values of the Hispanic ASFRs, the estimation of the intercept parameter 
using the 1990-based NCHS data as if it were unbiased (the exact constraints model) still 
results in estimates that are substantially better than those from the (unconstrained) model 
that ignores those data.

The differences in the MSDs of the exact constraints and Bayesian constraints models 
are due almost entirely to the mean squared bias term. The Bayesian constraints model will 
have a lower MSD than the exact constraints model for every prior distribution of φ that is 
not centered exactly on the 1990-based ASFR values used in the exact constraints model. In 
the case of the main prior, the mean squared bias for the exact constraints model (0.0070) 
is low relative to sampling variance (0.0219). The MSD for the Bayesian constraints model 
(0.0245) is therefore not much lower than it is for the exact constraints model (0.0315). 
Under the high-bias and high-bias, high-variance priors, however, the constraint distribu-
tion is centered twice as far from the observed population values, and so the mean squared 
bias of the exact constraints model is high and the consequent increase in MSD over that 
for the Bayesian constraints model is large: 0.0694 versus 0.0335 for the high-bias prior, 
and 0.1106 versus 0.0699 for the high-bias, high-variance prior. 

Note that the “constraint variance” component of the MSD is identical across the 
unconstrained, exact constraints, and Bayesian constraints models. This result may be 
counterintuitive for the unconstrained model because it is specifi ed and estimated without 
explicit reference to population values. Implicitly, however, the sample data used in the 
unconstrained model are assumed to be drawn from the population for which the constraint 
prior is specifi ed. Under the Bayesian interpretation represented in the calculation of the 
MSD for all three models, we begin from the assumption that the PSID may not be exactly 
representative of the population, and we use the prior for the population values to represent 
our knowledge of the PSID’s departures from perfect representativeness. This knowledge, 
when carried through to the posterior distribution of the regression  parameters, allows us to 
evaluate the potential impact of bias in the PSID on the parameter estimates of the PSID’s 
departures from perfect representativeness. Not only the location but also the variance of 
the prior matters when evaluating the unconstrained model. The greater the variance in the 
prior, the less we know about the extent to which the PSID is potentially unrepresentative. 
This, too, increases our uncertainty about the unconstrained model estimates. 

Empirically, the constraint variance is remarkably small for the main prior: 0.0025. 
This is only 1/20 of the variance contributed by the PSID survey data (sampling variance) 
in the unconstrained case (0.0587), and 1/10 of the sampling variance when constrained 
estimation is used (0.0219 and 0.220 respectively, in the exact constraints and Bayesian 
constraints cases). The contribution of constraint variance increases to a substantial level 
under the high-bias prior (0.0114), though this is still only half as high as the constrained 
models’ sampling variances. In the high-bias, high-variance model, constraint variance is 
twice the level of sampling variance under constrained regression, though still lower than 
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sampling variance for unconstrained regression. The low level of constraint variance rela-
tive to sampling variance for both the main prior and the high-bias prior provides strong 
support for the conclusion that the use of population data may be highly advantageous for 
regression estimation even when the population data are believed to have substantial levels 
of nonsampling error.

Predicted Birth Probabilities Under the Unconstrained, Exact Constraints, 
and Bayesian Constraints Models

We have seen that both the intercept and the age coeffi cient parameters for the Hispanic 
fertility model are estimated with substantially less error in the Bayesian constraints model 
than in the unconstrained model. Together, these parameters generate the baseline fertil-
ity hazard for women aged 25 to 34 in the multivariate regression model. Improvements 
in the baseline fertility hazard will be important for the researcher when predicted birth 
probabilities are needed.2 The intercept and age parameters are included in the function to 
predict the birth probability for any given set of socioeconomic regressor values. Therefore, 
every predicted probability will be estimated with lower bias and higher effi ciency in the 
Bayesian constraints model than in the unconstrained model and without the bias present 
in the exact constraints model.

These predicted probabilities for ages 25 to 34 are presented for the three models in 
Figure 4 for the reference category of married women who are high school graduates and 
were not full-time employed in the previous year. The main prior is used in the estimation 
of the Bayesian constraints model. Because there were no signifi cant age interactions, 
all sets of predicted probabilities for different combinations of socioeconomic variables 
will be represented by uniformly raised or lowered versions of these lines, according 
to the sign and magnitude of the coeffi cients for those variables in Table 2. Because the 
 posterior distributions of the predicted probabilities are well approximated by normal 
distributions, it is suffi cient to describe the central tendency and dispersion using the 
mean and the Bayesian analogue to the 95% confi dence interval, referred to as the “95% 
 credible interval” (Gill 2002). The upper and lower limits of the credible interval are also 
presented in Figure 4. While these are not strictly comparable to the frequentist confi dence 
interval, the latter is also presented in Figure 4 for the unconstrained and exact constraints 
models. When comparing the width of a 95% confi dence interval to the width of the 95% 
credible interval presented here, the reader should bear in mind that the latter more fully 
accounts for the sources of uncertainty about the point estimates, including uncertainty 
due to  constraint variance. 

The effi ciency gains from including population data in both the exact constraints and 
Bayesian constraints models versus ignoring these data in the unconstrained model are ap-
parent when comparing the lines and their surrounding intervals in Figure 4. Much greater 
uncertainty due to sampling variability in the unconstrained model is evident both from the 
fl uctuations in the shape of the age schedule and from the much broader 95% confi dence 
interval around the point estimates of that age schedule. This would not, moreover, be 
solved by a simple parameterization of the age relationship. This is apparent from the much 
greater difference of the PSID from the predicted values of the Bayesian constraints line 
at older than younger ages in the 25- to 34-year-old interval. Either a linear or smoothed 
curvilinear exact parameterization would result in a line that slopes too sharply downward 
into Hispanic women’s 30s. Thus, parameterization would decrease the variance about the 
estimates but would do so in a biased way.

The overall level of the predicted birth probabilities is lower for the Bayesian than 
for the exact constraints model, corresponding to the 7.5% lower mean in the population 

2. See Handcock et al. (2005) for an example of when additional population data on socioeconomic variables 
can be used to make similarly large improvements to a broader range of coeffi cient estimates.
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prior for any given age-specifi c fertility rate. However, compared with the highly fl uctu-
ating predicted probabilities of the unconstrained model, the exact constraints and Bayes-
ian constraints models appear remarkably close to each other. This provides a visual rep-
resentation of the dominance of the contribution of sampling error to the MSD difference 
between the exact constraints and unconstrained model estimates. Recall, moreover, that 
the MSDs we calculated above were only for the intercept term at age 25. At this age, 
the distance of the predicted probability of the unconstrained model (0.154) from that of 
the Bayesian constraints model (0.162) is less than the distance for the exact constraints 
model (0.174). At subsequent ages, however, the unconstrained model’s predicted prob-
abilities drift much further away from those of the Bayesian constraints model than do 
the predicted probabilities of the exact constraints model. The estimates using the 1990-
based NCHS values as if they were exact are therefore not only more effi cient but also 
generally less biased than the estimates using the PSID sample data alone. The problems 
with using the exact constraints model, however, are that some degree of upward bias is 
very probably introduced and that the standard errors and confi dence intervals overstate 
the accuracy of its regression parameter estimates. 

DISCUSSION

Previous applications of constrained MLE have shown that population information may 
reduce both bias and variance about regression estimates from sample data. These stud-
ies, however, assume that the population data are unbiased. The present study relaxes this 

Figure 4. Predicted Birth Probabilities for College-Educated Married Women, Part-Time or Not 
Employed: Unconstrained, Exact Constraints, and Bayesian Constraints
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 assumption, using a Bayesian method for incorporating a combination of auxiliary data 
and expert judgment. Faced with biased population data, the non-Bayesian options would 
be to (1) adjust the population data and assume that the amount of uncertainty due to this 
adjustment can either be ignored or evaluated satisfactorily through a sensitivity analysis; 
(2) use the population data without adjustment, noting the possible biases in a qualitative 
caution to the reader; or (3) not use the population data at all. 

The Bayesian approach employed here improves on all three of these options. In 
spirit, it is closest to a combination of adjustment combined with sensitivity analysis 
about discrete alternative adjustments that could have been made (option (1)). In this way, 
our approach is consistent with the more rigorous of standard demographic approaches to 
handling population data. The Bayesian estimator, however, provides a fuller and more 
principled approach than sensitivity analysis to evaluating the additional uncertainty in-
troduced by adjustment. As noted earlier in the article, the sensitivity analysis approach 
does not tell us how likely any given alternative value is, but rather only what that alter-
native value would be.

Option (2)—using population data without adjustment—is equivalent to the exact 
constraints approach to combining population and survey data as proposed by Handcock 
et al. (2000, 2005). Option (3)—not using population data at all—is equivalent to an un-
constrained estimator, meaning standard regression estimation from survey data only. 
Under the fi rst specifi cation of the distribution of true population values (referred to as our 
main prior), the exact constraints estimator still outperforms the unconstrained estimator. 
Under the two plausible alternative assumptions, however, one incorporating a larger mean 
adjustment to the population data and the other incorporating a greater variance, the exact 
constraints estimator performed no better than the unconstrained estimator. In contrast, for 
the Bayesian estimator, all values in our range of plausible levels of error in the population 
data resulted in a greatly improved precision of the underlying age-specifi c fertility hazard 
as compared with unconstrained estimation. Therefore, to ignore the population data would 
be a poor choice unless the underlying age-specifi c hazard is of no importance for the sub-
stantive purposes of the research. 

We used the Hispanic fertility application as an example of the estimation problems 
when both population and survey data have substantial and only partially known biases. In 
other applications, survey data may be clearly less biased than population data. This may 
occur, for example, when more sensitive survey methods are used to capture behavior that 
is poorly captured by population data. Abortions are one example (in Lara et al. 2006), and 
the underreporting of income in government administrative sources is another (Kapteyn and 
Ypma 2007). In these cases, constrained estimation will still bring large gains in effi ciency 
(through reduced sampling variability) but possibly at a cost in terms of constraint bias 
and variance that is too great to justify the additional computational burden of using the 
population sources. The Bayesian model provides a sound framework for making decisions 
about these trade-offs. 

Finally, a major issue for the acceptance of Bayesian methods in demography is the 
subjectivity of the priors. For this reason, we fi rst discussed their construction as being a 
formalization of procedures involving subjective judgment that demographers routinely use 
to adjust population data. Following good practice in demographic adjustment, we used 
the best available auxiliary data source, the CPS, to bring as much objective  knowledge as 
possible into the construction of the prior. Further, we argued that unconstrained estima-
tion itself incorporates subjectivity in the researcher’s judgment that these data are suffi -
ciently representative of the population to be useful in a regression analysis that attempts 
to generalize to the female Hispanic population of reproductive age. We therefore argue 
that the methods used here do not introduce new elements of subjectivity, but instead that 
they quantify the effects of traditional elements of subjectivity that implicitly enter a non-
Bayesian demographic analysis. 



82 Demography, Volume 46-Number 1, February 2009

REFERENCES

Assuncao, M.T., C.P. Schmertmann, J.E. Potter, and S.M. Cavenaghi. 2005. “Empirical Bayes Estima-

tion of Demographic Schedules for Small Areas.” Demography 42:537–58.

Bureau of Labor Statistics. 2002. “Current Population Survey: Design and Methodology.” Technical 

Paper 63RV. Bureau of Labor Statistics and U.S. Census Bureau, Washington, DC.

Carlin, B.P. and T.A. Louis. 2000. Bayesian and Empirical Bayesian Methods for Data Analysis. 2nd 

edition. New York: Chapman Hall.

Casella, G. and R.L. Berger. 2002. Statistical Inference. 2nd edition. Pacifi c Grove, CA: Duxbury 

Press.

Deming, W.E. and F.F. Stephan. 1942. “On the Least Squares Adjustment of a Sampled Frequency 

Table When the Expected Marginal Tables Are Known.” Annals of Mathematical Statistics 

11:427–24.

Elliott, M.R. and R.D.A. Little. 2000. “A Bayesian Approach to Combining Information From a 

Census, a Coverage Measurement Survey, and Demographic Analysis.” Journal of the American 

Statistical Association 95:351–62.

Gelman, A., J.B. Carlin, H.S. Stern, and D.B. Rubin. 2003. Bayesian Data Analysis. 2nd edition. New 

York: Chapman Hall. 

Gill, J. 2002. Bayesian Methods: A Social and Behavioral Sciences Approach. New York: Chapman 

Hall. 

Guzmán, B. and E. Diaz McConnell. 2002. “The Hispanic Population: 1990–2000 Growth and 

Change.” Population Research and Policy Review 21:109–28.

Hamilton B.E., P.D. Sutton, and S.J. Ventura. 2003. “Revised Birth and Fertility Rates for the 1990s 

and New Rates for Hispanic Populations, 2000 and 2001: United Status.” National Vital Statistics 

Reports, Vol. 51, No. 12. Hyattsville, MD: National Center for Health Statistics.

Handcock, M.S., S.M. Huovilainen, and M.S. Rendall. 2000. “Combining Registration-System and 

Survey Data to Estimate Birth Probabilities.” Demography 37:187–92.

Handcock, M.S., M.S. Rendall, and J.E. Cheadle. 2005. “Improved Regression Estimation of a 

Multivariate Relationship With Population Data on the Bivariate Relationship.” Sociological 

Methodology 35:291–334.

Hellerstein, J. and G.W. Imbens. 1999. “Imposing Moment Restrictions From Auxiliary Data by 

Weighting.” Review of Economics and Statistics 81:1–14.

Hoeting, J.A., D. Madigan, A.E. Raftery, and C.T. Volinsky. 1999. “Bayesian Model Averaging: A 

Tutorial.” Statistical Science 14:382–401.

Imbens, G.W. and T. Lancaster. 1994. Combining Micro and Macro Data in Microeconometric Mod-

els.” Review of Economic Studies 61:655–80.

Institute for Social Research. 2007. “An Overview of the Panel Study of Income Dynamics.” Avail-

able online at http://psidonline.isr.Michigan.edu/Guide/Overview.html.

Kadane, J.B., J.M. Dickey, R.L. Winkler, W.S. Smith, and S.C. Peters. 1980. “Interactive Elicita-

tion of Opinion for a Normal Linear Model.” Journal of the American Statistical Association 

75:845–54.

Kapteyn, A. and J.Y. Ypma. 2007. “Measurement Error and Misclassifi cation: A Comparison of Sur-

vey and Administrative Data.” Journal of Labor Economics 25:513–51.

Lara, D., S.G. Garcia, C. Ellertson, C. Camlin, and J. Suarez. 2006. “The Measure of Induced Abor-

tion Levels in Mexico Using Random Response Technique.” Sociological Method and Research 

35:279–301.

Lee, R.D. and S. Tuljapurkar. 1994. “Stochastic Population Forecasts for the United States: Beyond 

High, Medium, and Low.” Journal of the American Statistical Association 89(428):1175–89.

National Center of Health-Statistics. 2001. “National Vital Statistics System-Birth Data: National 

Center of Health Statistics.” Available online at http://www.cdc.gov/nchs/births.htm.

Poole, D. and A.E. Raftery. 2000. “Inference for Deterministic Simulation Models: The Bayesian 

Melding Approach.” Journal of the American Statistical Association 95:1244–55.



Bayesian Estimation of Hispanic Fertility Hazards 83

Rendall, M.S., M.S. Handcock, and S.H. Jonsson. 2007. “Bayesian Estimation of Hispanic Fertil-

ity Hazards From Survey and Population Data.” RAND Labor and Population Working Paper  

WR-496. RAND, Santa Monica, CA.

Smith, J.P. and B. Edmonston. 1997. The New Americans: Economic, Demographic and Fiscal Effects 

of Immigration. Washington, DC: National Academy Press.

Smith, T.F.M. 1991. “Post-Stratifi cation.” The Statistician 40:315–23.

Survey Research Center. 1993. Description of the 1990 PSID/LNPS Early Release File. Survey Re-

search Center, University of Michigan, Ann Arbor, MI.

U.S. Census Bureau. 2001. “National Population Estimates for the 1990s: Monthly Postcensal 

Resident Population, by Single Year of Age, Sex, Race, and Hispanic Origin.” Available online at 

http://www.census.gov/population/www/estimates/nat_90s_1.html.


