We prove that if X ⊂ Pr is any 2-regular scheme (in the sense of Castelnuovo-Mumford) then X is small. This means that if L is a linear space and Y := LX is finite, then Y is linearly independent in the sense that the dimension of the linear span of Y is deg Y + 1. The converse is true and well-known for finite schemes, but false in general. The main result of this paper is that the converse, "small implies 2-regular", is also true for reduced schemes (algebraic sets). This is proven by means of a delicate geometric analysis, leading to a complete classification: we show that the components of a small algebraic set are varieties of minimal degree, meeting in a particularly simple way. From the classification one can show that if X ⊂ Pr is 2-regular, then so is Xred, and so also is the projection of X from any point of X.

Our results extend the Del Pezzo-Bertini classification of varieties of minimal degree, the characterization of these as the varieties of regularity 2 by Eisenbud-Goto, and the construction of 2-regular square-free monomial ideals by Fröberg.


Additional Information

Print ISSN
pp. 1363-1389
Launched on MUSE
Open Access
Back To Top

This website uses cookies to ensure you get the best experience on our website. Without cookies your experience may not be seamless.