The paper deals with asymptotic nodal geometry for the Laplace-Beltrami operator on closed surfaces. Given an eigenfunction f corresponding to a large eigenvalue, we study local asymmetry of the distribution of sign(f) with respect to the surface area. It is measured as follows: take any disc centered at the nodal line {f = 0}, and pick at random a point in this disc. What is the probability that the function assumes a positive value at the chosen point? We show that this quantity may decay logarithmically as the eigenvalue goes to infinity, but never faster than that. In other words, only a mild local asymmetry may appear. The proof combines methods due to Donnelly-Fefferman and Nadirashvili with a new result on harmonic functions in the unit disc.


Additional Information

Print ISSN
pp. 879-910
Launched on MUSE
Open Access
Back To Top

This website uses cookies to ensure you get the best experience on our website. Without cookies your experience may not be seamless.